@article{RSMUP_1984__72__99_0, author = {Menini, Claudia}, title = {Linearly compact rings and selfcogenerators}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {99--116}, publisher = {Seminario Matematico of the University of Padua}, volume = {72}, year = {1984}, mrnumber = {778336}, zbl = {0555.16015}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1984__72__99_0/} }
TY - JOUR AU - Menini, Claudia TI - Linearly compact rings and selfcogenerators JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1984 SP - 99 EP - 116 VL - 72 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1984__72__99_0/ LA - en ID - RSMUP_1984__72__99_0 ER -
%0 Journal Article %A Menini, Claudia %T Linearly compact rings and selfcogenerators %J Rendiconti del Seminario Matematico della Università di Padova %D 1984 %P 99-116 %V 72 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1984__72__99_0/ %G en %F RSMUP_1984__72__99_0
Menini, Claudia. Linearly compact rings and selfcogenerators. Rendiconti del Seminario Matematico della Università di Padova, Tome 72 (1984), pp. 99-116. http://www.numdam.org/item/RSMUP_1984__72__99_0/
[1] Duality over Topological Rings, J. Algebra, 75 (1982), pp. 395-425. | MR | Zbl
,[2] Topologies Linéaires et Modules Artiniens, J. Algebra, 41 (1976), pp. 365-397. | MR | Zbl
,[3] Pontryagin Type Dualities over Commutative Rings, Ann. Mat. pura e applicata, 121 (1979), pp. 373-385. | MR | Zbl
,[4] Rings with ascending condition on annihilators, Nagoya Math. J., 27 (1966), pp. 179-191. | MR | Zbl
,[5] Linearly Compact Rings and Strongly Quasi-Injective Modules, Rend. Sem. Mat. Univ. Padova, 65 (1980), pp. 251-262. See also: ERRATA-CORRIGE, Linearty Compact Rings and Strongly Quasi-Injeotive Modules, Ibidem, vol. 69. | Numdam | MR | Zbl
,[6] Good dualities and Strongly quasi-injective modules, Ann. Mat. pura e applicata, 127 (1981), pp. 187-230. | MR | Zbl
- ,[7] Topologically left artinian rings. To appear on J. of Algebra. | MR | Zbl
- ,[8] A characterization of discrete linearly compact rings by means of a duality, Rend. Sem. Mat. Univ. Padova, 65 (1981), pp. 219-234. | Numdam | MR | Zbl
- ,[9] Linearly compact modules and local Morita duality, in Ring Theory, ed. R. Gordon, New York, Academic Press, 1972. | MR | Zbl
,