
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

DEREK J. S. ROBINSON
Infinite soluble groups with no outer automorphisms
Rendiconti del Seminario Matematico della Università di Padova,
tome 62 (1980), p. 281-294
<http://www.numdam.org/item?id=RSMUP_1980__62__281_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1980, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1980__62__281_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Infinite Soluble Groups with no Outer Automorphisms.

DEREK J. S. RORINSON (*) (**)

1. Introduction.

If G is a group, Aut G will denote the full automorphism group
of G and Inn G the normal subgroup of all inner automorphisms.

Aut is the outer automorphism group. The group G
is said to be complete if both the outer automorphism group and the
centre ~(G) are trivial. If gr is the inner automorphism induced by
an element g, then of course i : G - Aut G is a homomorphism, and G
is complete precisely when í is an isomorphism.

Complete groups were introduced over eighty years ago by H61-
der [9] in connection with the theory of group extensions, which was
then in an early stage of development. H61der noticed that there were
certain groups G which admitted only trivial extensions in the sense
that G ~ H always implied that for some subgroup K.
It is now well-known that this property characterizes complete groups.

After a long period of neglect complete groups are beginning to
receive attention once more, especially finite soluble complete groups
-see [3], [4], [8]. Here we shall consider infinite soluble complete
groups with particular reference to polycyclic groups or, more gen-

erally, to soluble groups of finite total rank. Recall that a soluble

group is said to have finite total rank if the sum of the p-ranks for all p

(*) Part of this work as done at the University of Freiburg where the
author was a Humboldt Prize Awardee. The author wishes to thank Profes-
sor O. H. Kegel for hospitality. A version of this paper was presented at the
Convegno « Teoria dei gruppi », Universita di Trento, June 1979.

(**) Indirizzo dell’A.: University of Illinois - Urbana, Illinois, U.S.A.
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(including p = 0) is finite when taken over all the factors of some
abelian series.

In studying metanilpotent complete groups one encounters two
quite different types of problem.

(i) A cohomological problem: given that Q is a nilpotent group
and A a Q-module, can one deduce from .H°(Q, A) = 0 = A)
that H2(Q, ~) = 0 ~

(ii) A Carter subgroup problem; identify the Carter (i.e. self

normalizing nilpotent) subgroups of the outer automorphism group
of a nilpotent group N. ,

Of course (i) has a positive answer when both group and module
are finite in view of Gaschiitz’s well-known theorem [5]. However in

the infinite case one cannot always draw this conclusion. The best
result we know of is

THEOREM 1. Let Q be a nilpotent group and let A be a Q-module
which has finite total rank as an abelian group. If A) = 0 =
- A), then Hn(Q, A) = 0 = Hn(Q, A) for all n.

This theorem, which is the basic result of the paper, depends on
certain (near) splitting theorems established in [14].

The second problem has been completely solved when N is a finite
abelian group [3]. However, as Theorem 1 of [8] indicates, such a
complete solution is not to be expected even when N is a finite p-group.
On the other hand, if one could obtain information about say Carter
subgroups of GL(n, Z), this would have repercussions for polycyclic
complete groups that are abelian by nilpotent.

We establish a characterization of metanilpotent complete groups
with finite total rank which reduces their classification to that of

certain Carter subgroups of outer automorphism groups of nilpotent
groups. This is Theorem 2.

Subsequently it is shown that various types of infinite soluble group
with finite total rank cannot be complete, among them groups of

Hirsch length 1, supersoluble groups, torsion-free abelian by nil-

potent groups.
In the final section we construct an example of a torsion-free poly-

cyclic group of Hirsch length 7 which is complete, thus answering a
question raised during the 1978 Warwick Symposium. This is rather

similar to the question of the existence of complete groups of odd
order that was first mentioned by Miller [12] and answered positively
by Dark [1] and Horosevskii [10] : see also [8].
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2. Techniques.

Almost all theorems about outer automorphisms of soluble groups
depend on the well-known relation between derivations and automor-
phisms stabilizing a series. For convenience we state the necessary
facts as a lemma: for a proof see [7] (§ 3.5) or [11].

LEMMA 1. Let N be a normal subgroup of a group G such that
C,,(N) - ~(N). Denote by AN the group of automorphisms of G that
stabilize the series 1«N«G. If Q = G/N and A = ~(N), then

Here Der (Q, A) and Inn (Q, A) are the group of derivations and
the subgroup of inner derivations respectively. Also A is a Q-module
via conjugation.

It is Lemma 1 which makes the entry of homological methods ine-
vitable. We consider now the consequences of the vanishing of HI(Q, A),
our main object being Theorem 1.

PROOF OF THEOREM 1. Let T denote the (Z- )torsion-subgroup of A
then T satisfies the minimal condition. Since 0 = A ) - AQ, we
have 0. It now follows from [14], Theorem B, that HI(Q, T ) _
= 0 = T ) for all n. Applying the cohomology sequence to
T &#x3E; A we obtain

from which it follows that H°(Q, A/T) = 0 = AIT). It there-

fore suffices to prove the theorem for the module A/T. Assume from
now on that A is torsion-free.

Since AQ = 0, we deduce via [14], Lemma 5.12, that AQ is finite.
Now if ~Q==0y the result follows at once from [14], Corollary CD.
We therefore suppose that and choose a prime p which divides

JA Q 1. Thus An application of the cohomology sequence
to the exact sequence where the first mapping is

multiplication by p, reveals that (A/pA)Q = 0. But this implies that
0 since A/pA is finite and Q is nilpotent, and we reach a.

contradiction.
While Theorem 1 is not valid if Q fails to be nilpotent, there are
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some special situations where something can be salvaged. We record
one such result for future reference.

LEMMA 2. Let Q be an extension of a cyclic group by a cyclic
p-group and let A be a Q-module which is a finitely generated free
.abelian group. If A) = 0 = A), then H2(Q, A) = 0.

PROOF. There is a cyclic normal subgroup N such that QIN = 
is a cyclic p-group, say of order pk. Consider the five term sequence

We see at once that Hl(QjN, B) = 0 where B ==AN . Thus, if v is
the endomorphism b-b(1 + x + x2 + ... + of B, we have

But Bv ~ AQ = 0, so B = B(x -1 ). Now x acts on
as an element of p-power order. Consequently B = pB, which

shows that B --- 0. We deduce from the sequence that

Now N is cyclic, AN = 0 and A is finitely generated: thus the
group A ) is finite. The above equation therefore implies that
Hl(QIN, Hl(N, A)) = 0. Finally 1~2(N, A) _ -0 because N is cyclic and
AN = 0. That H2(Q, A) = 0 is now a consequence of the Lyndon-
Hochschild-Serre spectral sequence.

To make the transition to the problem of self-normalizing subgroups
it is necessary to note

LEMMA 3 (Wells [17], Schmid [15]). Let N be a normal sub-

.group of a group G such that Ca(N) - ~(N). Let Q --- G/N and as-
sume that H2(Q, ~(N)) = 0: Then if a in Aut N normalizes Q, regarded
as a subgroup of Out N, there is an automorphism of G that in-

duces a in N.
This machinery can now be applied to give criteria for a group to

be complete.

LEMMA 4. Let N be a normal subgroup of a group G such that
°CG(N) _ = A has finite total rank and Q = is nilpotent.
If G is complete, then

(i) Hn(Q, A) ---- 0 = Hn(Q, A) for all n.

(ii) Q is a Carter subgroup of Out N.
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Conversely if (ii) and (iii) hold, every automorphism of G that leaves
invariant is inner. If N is characteristic, then G is complete.

PROOF. Suppose that G is complete. Then (i) is true by Lemma 1
and Theorem 1, while (iii) is a special case of (i). If x(Inn N) normal-
izes Q, then, according to Lemma 3, the automorphism a extends
to a-necessarily inner-automorphism of G, which implies that

a(Inn G) E Q. Thus Q i s a Carter subgroup of Out G.
Conversely suppose that (ii) and (iii) are valid. Assume that y is

an outer automorphism of G that leaves N fixed. Then y induces an
automorphism ce in A that normalizes G/A as a subgroup of Aut N,
and hence Q as a subgroup of Out N : thus cx(Inn N) E Q. Since we

may modify y by an inner automorphism, it is permissible to assume
that y acts trivially on N. Hence y also acts trivially on Q. To com-
plete the proof we need to show that A) - 0.

Let T be the torsion-subgroup of A. Since T’ = = 1, we
deduce from [14], Theorem B, that H’(Q, T) = 0. Also (A/T)Q =
-- 1, so it follows via Theorem D of [14] that

Hl(Q, = 0. Consequently A ) = 0.
Lemma 4 can be applied with N equal to the Fitting subgroup of

a metanilpotent group. Alternatively A can, in suitable circumstances,
be a maximal normal abelian subgroup.

3. Metan.ilpotent complete groups.

We can now prove a classification theorem for metanilpotent com-
plete groups with finite total rank. First some terminology. Suppose
that N is a nilpotent group and Q a subgroup of Out N. An element
a(Inn N) of Q will be called unipotent if there is a positive integer n
such that [a, na] = 1 for all a E N. It is easy to prove that this concept
is well-defined by using the nilpotence of N.

THEOREM 2.

(i) Let G be a metanilpotent complete group with finite total
rank. Let F = Fit G be the Fitting subgroup, A the centre of F and
Q = Then 1~’ is nilpotent and Q is a Carter subgroup of Out F
with no non-trivial unipotent elements; also A = [A, Q] and CA(Q ) = 1.

(ii) Conversely, let I’ be a nilpotent group of finite total rank
whose outer automorphism group contains a Carter subgroup Q with
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no non-trivial unipotent elements. If A == [A, Q] and °..4.(Q) = 1
where A is the centre of F, then there exists a complete group
G = G(I’’, Q ) such that and moreover the

coupling associated with the extension I’ ~ G + Q is the inclusion
I’.

(iii) The groups G(F, Q) and _G(I’, Q) are isomorphic if and only
if there is an isomorphism a : F - F inducing oc’ : Out F -* Out F such
that Q"’ and Q are conjugate in Out F. Thus G(F, Q) is determined
to within isomorphism by the isomorphism class of F and the con-
jugacy class of Q in Out F.

PROOF.

(i) That F is nilpotent has been proved in [6], Theorem 1.3.
Suppose that xI’’ is a unipotent element of Q. Then it is easy to

see that (r, F) is nilpotent. But (r, F) is also subnormal in G, so
it is contained in the Baer radical. It follows from [6], Theorem 1.3
once again that x E I’. Therefore Q contains no non-trivial unipotent
elements. The remaining statements in (i) follow from Lemma 4.

(ii) By Lemma 4 and Theorem 1 we have H3(Q, A) = 0. Hence
there is an extension F ~ G + Q which realizes the coupling Q- Out F.
The unipotent condition guarantees that the image of F equals Fit G.
That G is complete is now a consequence of Lemma 4.

(iii) If then certainly It is clearly
permissible to identify F and I’. Then plainly Q and Q are conjugate
in Out F. 

_

Conversely suppose that Q and Q are conjugate in Out I’. Changing
our point of view slightly let us suppose that there are injective
couplings x : Q - Out F and Q - Out F whose images are conjugate
Carter subgroups of the allowed type. We shall prove that G = G(F, Qx)
and G = G(F, Qx) are isomorphic.

By hypothesis there exists a E Aut .F such that

If a’ is the inner automorphism of Out F induced by a, then x = 
for some x E Aut Q.
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Now form successive push-out and pull-back diagrams

The couplings of these three extensions are respectively x, xa’ and
xzce’ = i. Since H2(Q, A) = 0 by Lemma 4, two extensions with

coupling x are equivalent; thus G-~- ~_ G. On the other hand it is

clear that G ~ G* ^~ G+. Hence 

4. Incomplete groups.

We consider next some types of infinite soluble group that cannot
be complete.

THEOREM 3. Let G be a non-trivial abelian by nilpotent group with
finite total rank. If G contains no elements of order 2, then G is not
complete. In particular a non-trivial torsion-free abelian by nilpotent
group cannot be complete if it has finite torsion-free rank.

PROOF. Let A be a maximal normal abelian subgroup such that
Q = G/.A is nilpotent. Then clearly A = CG(A). If G is complete,
we deduce from Lemma 4 that G splits over A ; thus G = XA,
X r1 A = I for some X  G. But X must be self-normalizing in Aut A,
so it contains an element of order 2, a contradiction.

On the other hand there are infinite metabelian groups with finite
total rank that are complete, the following being a simple example.
Let be a set of primes containing 2 and define G to be the holo-

morph of the additive group of all rationals whose denominators are
n-numbers. Then it is not difficult to prove that G is a complete meta-
belian group: of course G contains an element of order 2. If Inj =
- r C oo, then G is a finitely generated minimax group with Hirsch
length r + 1. Taking n = {2} we get a group of Hirsch length 2,
which is the least possible in view of the next result.

THEOREM 4. Let G be a soluble group with finite total rank whose
Hirsch length is 1. Then G is not complete.
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PROOF. Assume that G is in fact complete. By Lemma 9.34 and
Theorem 9.39.3 of [13] there is a normal series such
that T is a divisible abelian group with the minimal condition, N jT
is a torsion-free abelian group of rank 1 and GjN is finite.

We claim that H2(GJT, T) has finite exponent. Since GIN is finite,
it is enough to prove that .g2(N/T, T) has finite exponent. Now T
satisfies the minimal condition, so there is an integer k such that
[T, ~N] - [T, k+1N] = S say. Clearly a central extension of a divisible
group by a group of rank 1 always splits; from this it is straightforward
to prove that TIS) - 0. Also S = [8, N], so Theorem C
of [14] shows that S) has finite exponent. Therefore

H2(N/T, T) has finite exponent and our claim is established.
Suppose that T ~ 1; then for some prime p the p-component T1J

of T is non-trivial. Let d be the cohomology class of the extension
by the previous paragraph d has finite order, y say e.

It is easy to see that there exist infinitely many multiplicatively in-
dependent p-adic integers 81, 82 , ... such that For

each we define a G-automorphism ai of T by means of the assign-
ments (r e T), and (xETq,q=l=p). Now L1(ai)*==L1
since ed = 0. It follows from [16], Proposition 4.1 that ai is induced

by a necessarily inner automorphism of G. However ~al , a2 , ... ~ is a
free abelian group of infinite rank and such a group cannot be iso-

morphic with a factor of G. By this contradiction T = 1.
Let F be the Fitting subgroup of G. Then ~F since N is abelian.

Now N has rank 1 and F is nilpotent, so [N, F] = 1 and F  CG(N) = C
say. Hence G/ C is finite. Since N cannot be central in G, we must
have G : C ~ = 2 and G = x, 0) where ax = a-’ for all a in N.

Let A = ~(F). By Lemma 1 we have H1(Gjl", A) = 0, which

implies that 0 where B = C~(C). If v is the endomor-

phism of B in which b .- then Ker v = [B, x] . = 1,
so in fact B = [B, x]. Also 1 ~ Bm ~ N for some m &#x3E; 0 : therefore
N = N2.

. Next N) has finite exponent, say e, since G/N is fini,te.

Choose k &#x3E; 0 so that 2k -1 mod e and let a be the automorphism
a :-+ a2k of N. Then = 2 ; thus a is induced by conjugation by
some element of G. However this means that (X has finite order, which
is certainly not the case.

We turn now to polycyclic groups.
THEOREM 5. An infinite supersoluble group G cannot be com-

plete.



289

PROOF. Suppose that G is in fact complete. Let A be a maximal
normal abelian subgroup of G : then it is well-known that A = Ca(A)"
so that H’(Q, A) = 0 where Q = Notice that A cannot contain

elements of order 2 because ~(G) = 1. Therefore we may form the

exact sequence where in the first mapping a ;--&#x3E; a2.

The cohomology sequence yields

which shows that 1. Consequently A = A 2 and A is finite-
But this implies that G is finite.

It is known that there are numerous finite supersoluble complete
groups but a classification of them does exist: for information about
these groups see [8]. Note that infinite supersoluble groups may well
fail to have outer automorphisms, y as is demonstrated by the group

Finally a result about abelian by metacyclic groups.

THEOREM 6. Let G be a non-trivial torsion-free polycyclic group.
Assume that G is an extension of an abelian group by a cyclic by cyclic
p-group for some prime p. Then G is not complete.

PROOF. Supposing G to be complete we choose a maximal normal
abelian subgroup A such that Q = is cyclic by cylic-p. Then

HO(Q, A) = 0 = H1 (Q, A). Applying Lemma 2 we conclude that G
splits over A. However this forces G to contain an element of order 2.

5. Polycyclic complete groups.

W’e have seen that a supersoluble complete group is finite. Poly-
cyclic groups, however, behave quite differently and can easily be
complete and infinite, as a simple example shows.

Let Q be the subgroup of G.~(2, Z) generated by
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Thus Q is a dihedral group of order 12. Let A be the natural module.
It is easy to prove that Q is self-normalizing in Aut A ~ GL(2, Z).
Also A = [A, x] where is an element of order 6 in Q ; therefore

H’(Q, A) = 0. It now follows (as in the proof of Lemma 4) that the
semidirect product G = AQ is complete.

Of course this group is not metabelian. To construct an infinite

polycyclic group which is complete and metabelian one looks for a
self-normalizing abelian subgroup of GL(n, Z). These can only be
found if n &#x3E; 2. The existence of such subgroups may be deduced
from the following lemma.

LEMMA 5. Suppose that F is an algebraic number field with trivial
Galois group. Let U be the group of algebraic units of F and let A
be the additive group generated by Z7. If U acts on A as a group of

automorphisms via the field multiplication, then 

PROOF. Let T: be the natural embedding and suppose
that Choose u from U and let f be its minimal poly-
nomial. Now = v1: for some v in U. Also u1:, and hence v1:, is
a root of f ; consequently v is a root of f . We deduce that there is a
field automorphism mapping u to v. Of course this means that u = w
and 

For any a E A and u E U we have (au) a = (aa) u. Setting a = 1
we obtain ua = vu where v = 1 a. Since oc-1 egists, v E U. Therefore
a==v1:EUr.

For example consider the irreducible polynomial

which has exactly one real root, say a. Let .F’ be the field Q(a) ;
then F has trivial Galois group. Hence the group of units U is self-

normalizing in Aut A. Note that A has a basis {1, ac, and by the
Dirichlet Units Theorem In fact a is a fundamental unit
of F (see [2], p. 3), so that

Consider the semidirect product
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Since we see that It follows as in
Lemma 4 that G is complete. Thus

THEOREM 7. There exists a metabelian polycyclic group which is
complete and has Hirsch length 4.

6. A torsion-free polycyclic complete group.

We shall employ the example just discussed to construct a non-
trivial torsion-free polycyclic complete group. Notice that such a

group cannot be abelian by nilpotent in view of Theorem 3.

THEOREM 8. There exists a torsion-free polycyclic group of Hirsch
length 7 that is complete.

PROOF. Let N be a free nilpotent group of class 2 and rank 3 gen-
erated by at, a2, a3. Then Nab = NIN’ and N’ are free abelian groups
with respective bases

and

We define an automorphism ~ of N by the rules

Thus the effect of ~ on Nab with respect to the given basis is de-
scribed by the matrix

The point of this choice is that the normalizer of $&#x3E; considered as a
subgroup of Aut Nab is just ~x~2013l), as we see from the action
of a on A in the number field F above.
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The effect of $ on N’ is given by the matrix (adj that is, by

The two minimal polynomials of $ are, then,

Now define G to be the semidirect product

Obviously G is a torsion-free polycyclic group with Hirsch length 7
and it has trivial centre. We shall show that Out G = 1.

Assume that a is an outer automorphism of G. Now’ N is the Fit-
ting subgroup of G, so it is characteristic. Also Ca(N) == ~(N) = N’.
Clearly a normalizes ~&#x3E; as a subgroup of Aut Nab . Consequently oc

must induce in Nab an automorphism of the form ± ~r. Therefore
we may assume that a induces in Nab either the identity or the mapping
0153 ~ x-1. In both cases $« == ~0153 for some x E N.

Now [~, Nab] = Nab because det (X -1 ) _ -1. Thus we can find

and z E N’ such that x = [~, xl] z ; then ~a = ~x = Modi-

fying a by the inner automorphism induced by xl we can assume that
~a = ~z. In addition [~, N’] = N’, so by a similar argument we can
suppose that

Thus (0153ç)0153 == (xa)~ for all x E N.
Suppose that a acts non-trivially on Nab. Then there exist ele-

ments such that

Now (a$)" = (a’)~. From this one obtains the equations
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Solving for d1 one finds that

Recall that ~~~2_~ on N’; thus the above becomes 
- [a1, a2]. VVriting d~ ~ _ (u, v, w), we have (u, v, ~~) (~ -~-1 ) = (o, 0, 1)
in additive notation, which yields the contradiction 3u + 1 = 0.

We conclude that a acts trivially on so that there are ele-

ents di of N’ such that

Now - yields the linear system

The determinant of the coeincient matrix acts on N’ like

Since det (~ + 1) = 3, it follows that dl = d2 = d3 = 1. Thus we arrive
at the contradiction a = 1.
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