RENDICONTI del Seminario Matematico della Università di Padova

JURGEN BIERBRAUER

On a certain class of 2-local subgroups in finite simple groups

Rendiconti del Seminario Matematico della Università di Padova, tome 62 (1980), p. 137-163

http://www.numdam.org/item?id=RSMUP_1980__62__137_0

© Rendiconti del Seminario Matematico della Università di Padova, 1980, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ REND. SEM. MAT. UNIV. PADOVA, Vol. 62 (1980)

On a Certain Class of 2-Local Subgroups in Finite Simple Groups.

JURGEN BIERBRAUER (*)

The object of this paper is to study a class of special 2-groups which occur as the maximal normal 2-subgroups in 2-local subgroups of finite simple groups.

Among these simple groups are the Chevalleygroups $D_n(2)$, $n \ge 4$ and the Steinberg groups ${}^{2}D_n(2)$, $n \ge 4$ as well as the sporadic groups J_4 and M(24)'.

We consider a special group Q_0 of order 2° with elementary abelian center of order 8, which admits $\Sigma_3 \times L_3(2)$ as an automorphism group. Let Q^n , $n \ge 1$ denote the automorphism type of the central product of *n* copies of Q_0 . We determine the automorphism group of Q^n and we show, that J_4 contains a maximal 2-local subgroup of the form $Q^2(\Sigma_5 \times L_3(2))$ and that M(24)' contains a maximal 2-local subgroup of the form $Q^2(A_6 \times L_3(2))$. The groups $D_n(2)$ resp. ${}^{2}D_n(2)$ contain parabolic subgroups of the form $Q^{n-3}(D_{n-3}(2) \times L_3(2))$ resp. $Q^{n-3}({}^{2}D_{n-3}(2) \times X_{L_3}(2))$, which are maximal with the exception of the case $D_4(2)$.

These results and several characterizations of the groups Q^n by properties of groups of automorphisms are collected in the first part of the paper. The second part contains a characterization of M(24)'by the 2-local subgroup mentioned above. In [19] Tran van Trung gives an analogous characterization of Janko's group J_4 .

Standard notation is like in [6]. In addition D_8 resp. Q_8 denotes the dihedral resp. quaternion group of order 8 and D_8^n resp. Q_8^n the

(*) Indirizzo dell'A.: Mathematisches Institut der Universität Heidelberg -69 Heidelberg, Im Neuenheimer Feld 288, W. Germany. central product of *n* copies of D_8 resp. Q_8 . The central product with amalgamated centers of groups *H* and *K* is denoted H * K.

For a regular matrix A, the transposed-inverse of A shall be written A^* .

If an element g of the group G operates on some vectorspace V with fixed basis, the symbol g_v denotes the matrix giving the operation of g with respect to the fixed basis.

1. Properties of some 2-groups.

(1.1) LEMMA. Let Q be a p-group of class 2 and let N be an automorphism-group of Q such that (|Q|, |N|) = 1. Assume further [Q', N] = 1. Set $A = C_0(N)$ and B = [Q, N]. Then we have Q = A * (BZ(Q)).

PROOF. This follows from the 3-subgroup-lemma like in the case that Q is an extraspecial 2-group and N a cyclic group of odd order [12, prop. 4].

(1.2) LEMMA. Let Q be a special group of order 2° with center Z of order 8. Let n be an element of order 7, which operates fixed-point-freely on Q. Assume further, that $\tilde{Q} = Q/Z$ is the direct sum of two isomorphic irreducible $\langle n \rangle$ -modules. Then Q is isomorphic to one of the following groups:

(1) a Suzuki-2-group of type (B);

(2) a central product of two Suzuki-2-groups of type (A) and order $2^{\mathfrak{s}}$.

(3) a group of type $L_3(8)$;

(4) a group Q_0 which has the following structure:

 $Q_0 = AB$, $A \cong B \cong E_{64}$, $A = A_0 \oplus Z$ and $B = B_0 \oplus Z$

as $\langle n \rangle$ -modules,

 $Z=\langle z_1,z_2,z_3
angle\,,\quad A_0=\langle x_1,x_2,x_3
angle\,,\quad B_0=\langle y_1,y_2,y_3
angle$

and

$$[x_i, y_j] = \left\{egin{array}{ll} 1 & ext{ for } i=j \ z_r & ext{ for } \{i,j,r\} = \{1,2,3\} \end{array}
ight.$$

138

 Q_0 contains exactly 3 elementary abelian subgroups of order 64, namely A, B and $A + B = Z\langle x_1y_1, x_2y_2, x_3y_3 \rangle$.

PROOF. If Z is isomorphic as an $\langle n \rangle$ -module to the irreducible submodules of Q, then it follows from [9, (2.5)], that Q is of type $L_3(8)$. So we shall assume, that Z is not isomorphic to a submodule of Q.

(1) Assume, that Q - Z doesn't contain involutions. Then Q is a Suzuki-2-group of type (B) or (C) in the sense of [7].

If $49||\operatorname{Aut}(Q)|$, there is an element *m* of order 7 in Aut (Q), which centralizes Z. Because of (1.1), we have $C_Q(m) = Z$. This contradicts a result of Beisiegel [1]. So we have $49 \not\mid |\operatorname{Aut}(Q)|$ for every Suzuki-2-group of type (B) or (C) and order 2⁹.

It follows now from [7], that the Suzuki-2-groups of type (B) and order 2⁹ possess an automorphism n with the required properties, whereas the groups of type (C) and order 2⁹ don't.

(2) Assume, that Q = Z contains exactly 7×8 involutions. Let H < Z, |H| = 4. The number of cosets in $\tilde{Q}^{\#}$, which contain elements with square in H, is then $7 + 3 \times 56/7 = 31$.

It follows $Q/H \cong Z_2 \times Z_4 * (Q_8)^2$ or $Q/H \cong E_8 \times Z_4 * Q_8$. Let A denote the unique elementary abelian subgroup of order 2⁶ of Q.

Assume $Q/H \cong E_8 \times Z_4 * Q_8$. The maximal elementary abelian subgroups of Q/H have order 32 and we have $|A/H \cap Z(Q/H)| \ge 8$. It follows, that |[x, Q]| = 2 for every $x \in A - Z$. This shows, that $\tilde{A} \cong Z$, a contradiction. We have $Q/H \cong Z_2 \times Z_4 * Q_8 * Q_8$.

Set $Q/H = \langle x_1 \rangle \times \langle v_1 \rangle * Q_1 * Q_2 H/H$, where $Q_1 \cong Q_2 \cong Q_8$.

Then $x_1 \in A - Z$, $v_1^2 \notin H$. Set $B = \langle v_1^Q \rangle$. Then B is isomorphic to the Suzuki-2-group of type (A) and order 2⁶. As $[v_1, Q] \subseteq H$, we have $[v_1, Q] = [v_1, B] = H$.

Assume $[x_1, y_1] \neq 1$. Set $[x_1, y_1] = z_1$. We can choose bases $\{\tilde{x}_1, \tilde{x}_2, \tilde{x}_3\}, \{\tilde{y}_1, \tilde{y}_2, \tilde{y}_3\}$ and $\{z_1, z_2, z_3\}$ of \tilde{A}, \tilde{B} resp. Z, such that

	Γ0	1	0		<u>[0</u>	1	07	
$n_{\tilde{A}} = n_{\tilde{B}} =$	0	0	1	and $n_z =$	0	0	1	
	1	1	0		1	0	1	

We have $[x_1, y_1] = z_1$ and further commutator relations follow by application of the automorphism n. Especially

$$z_1 z_3 = [x_1 x_2, y_1 y_2] = z_1 z_2 [x_1, y_2] [x_2, y_1]$$

Jürgen Bierbrauer

and thus $z_2 z_3 \in H$. It follows $H = \langle z_1, z_2 z_3 \rangle$. On the other hand

$$z_2 z_3 = [x_1 x_3, y_1 y_3] = z_1 z_3 [x_1, y_3] [x_3, y_1]$$

and thus $z_1 z_2 \in H$, a contradiction. We have $[x_1, y_1] = 1$. If |[x, Q]| = 2 for $x \in A - Z$, we get the contradiction $\tilde{A} \cong Z$ again. It follows

$$[x_1, Q] = [x_1, B] = H = [y_1, Q] = [y_1, B]$$

Set $x_2 = x_1^n$, $x_3 = x_2^n$, $y_2 = y_1^n$, $y_3 = y_2^n$. Then we can assume

$$n_{\tilde{s}} = n_{\tilde{s}} = egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 1 & 0 \end{bmatrix}$$

and we have $[x_i, y_i] = [x_i x_j, y_i y_j] = 1$ and thus $[x_i, y_j] = [x_j, y_i]$ for $i, j \in \{1, 2, 3\}$. Set $[x_1, y_2] = [x_2, y_1] = z_1$ and $z_1^n = z_2, z_2^n = z_3$. Then

$$n_z = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

with respect to the basis $\{z_1, z_2, z_3\}$ and

$$[x_1x_3, y_1] = [x_1, y_2]^{n^{-1}} = z_1^{n^{-1}} = z_2z_3.$$

Thus $[x_1, y_3] = z_2 \cdot z_3$ and $H = \langle z_1, z_2 z_3 \rangle$. Further $[x_2, y_3] = z_2$. We have $y_1 \notin H = \langle z_1, z_2 z_3 \rangle$. Assume $y_1^2 = z_1 z_2$. Then $y_3^2 = z_1$, $(y_1 y_3)^2 = z_1 z_2 z_3$ and $[y_1, y_3] = y_1^2 y_3^2 (y_1 y_3)^2 = z_1 z_3 \notin H$, a contradiction.

Similar calculations show $y_1^2 \neq z_3$ and $y_1^2 \neq z_1 z_3$. It follows $y_1^2 = z_2$, $y_2^2 = z_3$, $y_3^2 = z_1 z_3$ and the group-table of Q is determined. We have $Q = \langle y_1, y_2, y_3 \rangle * \langle x_2 \cdot y_2, x_3 y_3, x_1 x_2 y_1 y_2 \rangle$ and Q is a central product of two Suzuki-2-groups of type (A) and order 2⁶.

(3) Assume, that Q = Z contains exactly 14×8 involutions. Then Q = AB, where A and B are the only subgroups of Q isomorphic to E_{64} . Let $A = A_0 \oplus Z$ and $B = B_0 \oplus Z$ as $\langle n \rangle$ -modules. Choose $x_1 \in A_0^{\sharp}, y_1 \in B_0^{\sharp}$ and set $z_1 = [x_1, y_1]$. Then $z_1 \neq 1$. Set further $x_2 = x_1^n$,

140

 $x_3 = x_2^n, y_2 = y_1^n, y_3 = y_2^n, z_2 = z_1^n, z_3 = z_2^n$. We can assume, that

$$n_{A_0} = n_{B_0} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \ n_Z = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

with respect to the bases $\{x_1, x_2, x_3\}$, $\{y_1, y_2, y_3\}$, $\{z_1, z_2, z_3\}$ resp. As $C_q(a) = A$ and $C_q(b) = B$ for elements $a \in A - Z$, $b \in B - Z$,

we have $[x_1, y_2] \notin \{1, z_1, z_2\} \not \ni [x_2, y_1]$. As

$$z_1 z_3 = [x_1 x_2, y_1 y_2] = z_1 z_2 [x_1, y_2] [x_2, y_1],$$

we have $[x_1, y_2] = z_2 z_3[x_2, y_1]$ and thus $[x_1, y_2] \notin \{z_2 z_3, z_1 z_2 z_3, z_3\}$. It follows

$$\{[x_1, y_2], [x_2, y_1]\} = \{z_1 z_2, z_1 z_3\}.$$

Assume first, that $[x_1, y_2] = z_1 z_2$, $[x_2, y_1] = z_1 z_3$. Then $[x_2, y_3] = z_2 z_3$, $[x_3, y_2] = z_1 z_2 z_3$. As $z_1 = [x_3, y_1 y_2] = [x_3, y_1] [x_3, y_2]$, we have $[x_3, y_1] = z_2 z_3$. From $[x_3, y_2] = z_1 z_2 z_3$ if follows $[x_1 x_2, y_3] = z_1 z_2$. Thus $[x_1, y_3] = z_1 z_3$. Identify A_0 , B_0 and Z with the additive group of GF(8), i.e. $A_0 = \{x(\alpha) | \alpha \in GF(8)\}$, $B_0 = \{y(\alpha) | \alpha \in GF(8)\}$, $Z = \{z(\alpha) | \alpha \in GF(8)\}$ with the obvious multiplication. Let λ be a generator of $GF(8)^{x}$. Interpret the operation of n on A_0 , B_0 resp. Z as multiplication with λ , λ^4 resp. λ^5 . Choose $x_1 = x(1)$, $y_1 = y(1)$, $z_1 = z(1)$. It is then easy to check, that $[x(\alpha), y(\beta)] = z(\alpha\beta)$ for every $\alpha, \beta \in GF(8)$. Thus Q is of type $L_3(8)$ in this case.

If $[x_1, x_2] = z_1 z_3$, $[x_2, y_1] = z_1 z_2$, we get the same result by a similar calculation. In this case, the operation of n on A_0 , B_0 resp. Z has to be interpreted as multiplication with λ , λ^2 resp. λ^3 .

(4) Assume, that Q - Z contains exactly 21×8 involutions. Like under (3), let Q = AB, where $A \simeq B \simeq E_{64}$, let $A = A_0 \oplus Z$, $B = B_0 \oplus Z$ be the decompositions as $\langle n \rangle$ -modules, $A_0 = \langle x_1, x_2, x_3 \rangle$, $B_0 = \langle y_1, y_2, y_3 \rangle$, where $C_{B_0}(x_1) = \langle y_1 \rangle$ and

$$n_{A_0} = n_{B_0} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

with respect to the bases $\{x_1, x_2, x_3\}$ resp. $\{y_1, y_2, y_3\}$.

Assume $|[x_1, Q]| = 2$, let $[v_1, w_1] = z_1 \neq 1$ and $[v_2, w_2] = z_2 \neq 1$ for $w_1, w_2 \in B$, $v_1, v_2 \in A_0$, $v_1Z \neq v_2Z$. Then $z_1 \neq z_2$. Further $[v_1v_2, w_1] \in c_1(z_2)$ and thus $[v_1v_2, w_1] = z_1z_2$. This shows $\tilde{A} \simeq Z$, a contradiction. We have |[x, Q]| = 4 for every $x \in Q - Z$, $x^2 = 1$. Set $[x_1, y_2] = z_3$ and $[x_1, y_3] = z_2$. It follows

$$1 = [x_1x_2, y_1y_2] = [x_1, y_2][x_2, y_1], \quad 1 = [x_1, y_3][x_3, y_1],$$

and thus $[x_2, y_1] = z_3$, $[x_3, y_1] = z_2$. Further

$$m{z}_2^n = [x_3,y_1]^n = [x_1x_2,y_2] = m{z}_3\,, \quad m{z}_3^n = [x_2x_3,y_3] = [x_2,y_3] \, \notin \, \langle m{z}_2,m{z}_3
angle\,.$$

Set $[x_2, y_3] = z_1$. With respect to the basis $\{z_1, z_2, z_3\}$ we have

	[1	1	07	
$n_z =$	0	0	1	
	1	0	0	

The structure of Q is now uniquely determined. Let H < Z, |H| = 4. Then Q contains exactly $21 + 3 \times 42/7 = 39$ cosets which contain elements with square in H. It follows $Q/H \cong E_4 \times (Q_8)^2$.

(5) Assume Q - Z contains more than 21×8 involutions. Then $Q = AB, A \cong B \cong E_{64}$ and for $x \in A - Z$ we have $|C_{g}(x)| = 2^{5}$. It follows |[x, Q]| = 2 and $\tilde{A} \cong Z$ as $\langle n \rangle$ -modules, a contradiction.

(1.3) LEMMA. Let Q be a special 2-group of order 2° with elementary abelian center Z of order 8. Let F be a Frobenius-group of order 21 operating on Q, $F = \langle n, r \rangle$, $n^7 = r^3 = 1$, $n^r = n^2$. Assume, that n operates fixed-point-freely on Q and that $C_Q(r) \cong E_s$. Then Q is isomorphic to the group Q_0 in (1.2) (4) and the operation of F on Q is uniquely determined.

PROOF. Let \tilde{V} be an irreducible *F*-submodule of $\tilde{Q} = Q/Z$. The operation of *r* shows, that V - Z contains involutions. Thus $\tilde{V} = E_{64}$. We have Q = AB, $A \cong B \cong E_{64}$, $A \cap B = Z$ and *F* normalizes *A* and *B*.

$$\begin{array}{l} \text{Set} \ \boldsymbol{C}_{\boldsymbol{z}}(r) = \langle \boldsymbol{z}_1 \rangle, \ \boldsymbol{C}_{\boldsymbol{A}}(r) = \langle \boldsymbol{z}_1, \, \boldsymbol{x}_1 \rangle, \ \boldsymbol{C}_{\boldsymbol{B}}(r) = \langle \boldsymbol{y}_1, \, \boldsymbol{z}_1 \rangle. \\ \text{Assume} \ \tilde{A} \underset{\langle \boldsymbol{n} \rangle}{\cong /\cong} \tilde{B}. \ \text{Then we can choose bases} \ \{\tilde{x}_1, \, \tilde{x}_2, \, \tilde{x}_3\}, \ \{\tilde{y}_1, \, \tilde{y}_2, \, \tilde{y}_3\}, \end{array}$$

On a certain class of 2-local subgroups in finite simple groups 143 $\{z_1, z_2, z_3\}$ of \tilde{A}, \tilde{B} resp. Z such that

$$n_{\tilde{A}} = n_{z} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \ n_{\tilde{B}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

It follows

$$r_{\tilde{\textbf{a}}} = r_{ extbf{z}} = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 1 \end{bmatrix}, \ \ r_{ ilde{ extbf{b}}} = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 1 & 1 & 1 \end{bmatrix}.$$

We have

$$[x_1, y_1] = 1$$
, $[x_1, \langle y_1 y_2, y_1 y_3 \rangle] = [y_1, \langle x_1, x_2 \rangle] = \langle z_2, z_3 \rangle$.

Assume $[x_1, y_1y_2] = z_2$. Then

$$[x_1, \cdot y_1y_3] = z_3$$
, $[x_2, y_1] = [x_1, y_2y_3]^n = (z_2z_3)^n = z_1z_2z_3$,

a contradiction. The same calculation shows $[x_1, y_1y_2] \neq z_2z_3$. Thus $[x_1, y_1y_2] = z_3$, $[x_1, y_1y_3] = z_2z_3$, $[x_2, y_1] = z_2^n = z_3$. On the other hand

$$[x_1, y_2]^n = [x_1x_3, y_1] = z_3^{n-1} = z_2,$$

 $[x_1, y_3]^{n-3} = [x_1x_2x_3, y_1] = (z_2z_3)^{n-3} = z_3$

and thus $[x_2, y_1] = z_2 z_3$, a contradiction. We have $\tilde{A} \simeq \tilde{q_n} \tilde{B}$. It follows from (1.2), that Q is isomorphic to the group Q_0 of (1.2) (4) and that the operation of n on Q is uniquely determined. Choose notation for Q_0 and for the operation of n line in (1.2) (4).

Then

$$r_{\tilde{a}} = r_{\tilde{b}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \quad r_{z} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} = (r_{\tilde{a}})^{*}.$$

(1.4) EXAMPLE. Let D be the Dempwolffgroup, i.e. the unique nonsplit extension of E_{32} by $L_5(2)$ [3]. For a description of D see [11]. Let $V = O_2(D) \cong E_{32}$, X < V, |X| = 4. Then $N_D(X)/V$ has the structure $E_{64}(\Sigma_3 \times L_3(2))$. Let $R_1 = O_2(N_D(X))$. Then $\tilde{R}_1 = R_1/X$ is isomorphic to Q_0 and $N_D(X)/X$ is a split extension of \tilde{R}_1 by $\Sigma_3 \times L_3(2)$

From now on Q_0 denotes the group given in (1.2) (4). We shall now describe the automorphism group of Q_0 .

(1.5) COROLLARY. Let $A = \operatorname{Aut}(Q_0)$, $B = \{a | a \in A, [a, Z] = 1\}$, $C = \{a | a \in A, [a, Q_0] \subseteq Z\}$. Then B and C are normal subgroups of A. We have C < B, $C \cong E_2 18$, $B/C \cong \Sigma_3$, $A/B \cong L_3(2)$, $A/C \cong \Sigma_3 \times L_3(2)$.

PROOF. It follows from (1.4), that $A/B \cong L_3(2)$. An automorphism of Q_0 , which induces the identity on Z and operates on each of the three E_{64} -subgroups of Q_0 has to lie in C. Thus $B/C \cong \Sigma_3$ and C is the kernel of the representation of B on the set of E_{64} -subgroups of Q_0 : Clearly $C \cong E_2 18$.

The following is probably well known

(1.6) LEMMA. Let $V \cong E_{64}$, $L \cong L_3(2)$. Let L operate on V, Z an irreducible L-submodule of V. Assume, that Z and V/Z are non-isomorphic natural L-modules. Then either V is a completely reducible L-module or V is a uniquely determined indecomposable L-module. Choose $\langle n, r \rangle < L$ such that $n^7 = r^3 = 1$, $n^r = n^2$, $Z = \langle z_1, z_2, z_3 \rangle$ and let $V = Z \oplus V_0$ as an $\langle n, r \rangle$ -module. We can choose a basis $\{v_1, v_2, v_3\}$ of V_0 , such that

$$n_{r_0} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \ r_{r_0} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

and for every $x \in L$ we have $x_z = (x_{r/z})^*$. Choose $t \in L$ such that

$$t_z = egin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix}.$$

Then $t_z = t_{r/z}$. If V is an indecomposable L-module we have $v_1^t = v_1$, $v_2^t = v_3 z_2$, $v_3^t = v_2 z_3$. Then $C_r(t) > C_r(r)$ and thus $|C_r(t)| = 16$.

(1.7) Let *L* operate on Q_0 , where $L \simeq L_3(2)$. Fix F < L, $F \simeq F_{21}$. $F = \langle n, r \rangle$, $n^7 = r^3 = 1$, $n^r = n^2$. Then $C_{Q_0}(r) \simeq E_s$ and one of the following holds:

(1) L operates completely reducibly on two of the E_{64} -subgroups of Q_0 and indecomposably on the third.

(2) L operates indecomposably on all of the E_{64} -subgroups of Q_0 .

We shall refer to the operations under (1) resp. (2) as operations of « dihedral » resp. « quaternion » type.

PROOF. Clearly *n* operates fixed-point-freely on Q_0 and $C_{Q_0}(r) \simeq E_8$. We choose notation like in (1.3). Let $t \in L$ such that

$$t_{\tilde{\mathtt{A}}} = t_{\tilde{\mathtt{B}}} = t_{\mathtt{Z}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Then $(tr)^2 = (tn)^3 = 1$.

(a) Assume, that L operates completely reducibly on A, i.e. L operates on $A_0 = \langle x_1, x_2, x_3 \rangle$.

 (α_1) Assume, that *L* operates on $B_0 = \langle y_1, y_2, y_3 \rangle$. The *F*-complement of *Z* in *A* + *B* is $(A + B)_0 = \langle x_1y_1z_1, x_2y_2z_1z_2, x_3y_3z_1z_2z_3 \rangle$. We have $(x_1y_1z_1)^i = x_1y_1z_1$, $(x_2y_2z_1z_2)^i = (x_3y_3z_1z_2z_3)z_2$ and $(x_3y_3z_1z_2z_3)^i = x_2y_2z_1z_2 \cdot z_3$. Thus *A* + *B* is an indecomposable *L*-module.

 (α_2) Assume, that B is an indecomposable L-module. Then we see like above, that A + B is a completely reducible L-module.

(β) Let *L* operate indecomposably on *A*, *B* and *A* + *B*. With respect to the basis $\{x_1, x_2, x_3, z_1, z_2, z_3\}$ resp. $\{y_1, y_2, y_3, z_1, z_2, z_3\}$ we have then

$$t_A = t_B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Set $t_1 = t^{r^{-1}n^3}$, $t_2 = t^{r^{-1}n^3}$. Then

$$(t_1)_A = (t_1)_B = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

We note, that in both cases, (α) and (β), $C_{Q_0}(t) \cong Z_2 \times (D_8)^2$, $C_{Q_0}(t, t_2) \cong \cong (D_8)^2$ and $C_{Q_0}(t, t_1) \cong E_{16}$.

The following is easily verified:

(1.8) Lemma. Let the operation of L on Q_0 be of dihedral type, where $L \simeq L_3(2)$. Choose notation like in (1.7) (α_1). Then $\langle F, x_1y_2t \rangle \cdot \cdot Z/Z \simeq L_3(2)$ and the operation of $\langle F, x_1y_1t \rangle Z/Z$ on Q_0 is of quaternion type.

(1.9) NOTATION. Let Q^n denote the isomorphism-type of the central product (with amalgamated centers) of n copies of Q_0 and let Q_i , $1 \le i \le n$ be groups which are isomorphic to Q_0 . Further φ_i , $1 \le i \le n$ are isomorphisms from Q_0 on Q_i . Consider $Q = Q_1 * Q_2 * ... * Q_n \cong Q^n$. We can assume $Z = Z(Q_0) = Z(Q_i) = Z(Q)$, $1 \le i \le n$, $\varphi_i|_Z = 1_Z$ and we set $\varphi_i(x_j) = v_i^{(j)}$, $\varphi_i(y_j) = v_{-i}^{(j)}$, $1 \le i \le n$, j = 1, 2, 3. Set $A = \operatorname{Aut}(Q)$, $B = \{a|a \in A, [a, Z] = 1\}$, $C = \{a|a \in A, [a, Q] \subseteq Z\}$. Here the index $(n * i \text{ is omitted as no confusion will occur. We set <math>\tilde{Q} = Q/Z$ and identify \tilde{Q} with a subgroup of A. Then $\tilde{Q} < C < B < A$ and the groups B, C are normal subgroups of A. Further $A/B \cong L_3(2)$.

 \mathbf{Set}

$$V_i = arphi_i(A) \,, \quad V_i^{(0)} = arphi_i(A_0) \,, \quad V_{-i} = arphi_i(B) \,, \quad V_{-i}^{(0)} = arphi_i(B_0) \,, \quad 1 \leq i \leq n \;.$$

On a certain class of 2-local subgroups in finite simple groups 147 For elements α_i , α_{-i} of GF(2), not all zero, set

$$\sum_{1}^{n} lpha_{i} \, V_{i} + lpha_{-i} \, V_{-i} = Z \Big\langle \prod_{1}^{n} (v_{i}^{(k)lpha_{i}} \cdot v_{i}^{(k)lpha_{-i}}), \, k = 1, 2, 3 \Big
angle \cong E_{64} \, .$$

 $\begin{array}{l} \text{Set } \sum\limits_{1}^{n} OV_{i} + OV_{-i} = 0.\\ \text{Consider the set } \boldsymbol{\mathfrak{B}} = \left\{ V | V = \sum\limits_{1}^{n} (\alpha_{i} V_{i} + \alpha_{-i} V_{-i}) | \alpha_{i}, \, \alpha_{-i} \in GF(2) \right\}. \end{array}$ Then \mathfrak{B} is a GF(2)-vectorspace with respect to the addition

$$ig(\sum_{1}^{n}lpha_{i}\,V_{i}+lpha_{-i}\,V_{-i}ig)+ig(\sum_{1}^{n}eta_{i}\,V_{i}+eta_{-i}\,V_{-i}ig)=\ =\sum_{1}^{n}\left(lpha_{i}+eta_{i}
ight)V_{i}+\left(lpha_{-i}+eta_{-i}
ight)V_{-i}\ .$$

The set $\{V_i | 1 \leq i \leq n\} \cup \{V_{-i} | 1 \leq i \leq n\}$ is a basis of **3**. We consider further the non-singular scalar product (,) on \mathfrak{B} given by (V, W) = 0if V = 0 or W = 0 or $[V, W] = \langle 1 \rangle$ and (V, W) = 1 otherwise.

For $x \in A_0 = \langle x_1, x_2, x_3 \rangle$ set $E_x = Z \langle \varphi_i(x), \varphi_i(C_{B_0}(x)) | 1 \leq i \leq n \rangle$. Then $E_x \cong E_2 2n + 3.$ Set $E_j = E_{x_j} = Z\langle v_1^{(j)}, v_{-1}^{(j)}, ..., v_n^{(j)}, v_{-n}^{(j)} \rangle$, j = 1, 2, 3.We have $[E_j, E_k] = \langle z_r \rangle$, where $\{j, k, r\} = \{1, 2, 3\}.$ Set $E_{i}^{(0)} = \langle v_{1}^{(j)}, v_{-1}^{(j)}, ..., v_{n}^{(j)}, v_{-n}^{(j)} \rangle, \ j = 1, 2, 3$ and

$$E_1^{(1)} = E_1^{(0)} \langle z_1
angle \,, \quad E_2^{(1)} = E_2^{(0)} \langle z_1 z_2
angle \,, \quad E_3^{(1)} = E_3^{(0)} \langle z_1 z_2 z_3
angle \,.$$

For $i \in \{1, 2, ..., n\}$ let $B_i = \langle b_i, b_{-i} \rangle < B$ with $[B_i, Q_i] = 1$ for $j \neq i$, $[b_i, V_{-i}] = 1 = [b_{-i}, V_i]$ and

$$\begin{split} & v_i^{(1)b_i} = v_i^{(1)} v_{-i}^{(1)} z_1 \;, \quad v_i^{(2)b_i} = v_i^{(2)} v_{-i}^{(2)} z_1 z_2 \;, \quad v_i^{(3)b_i} = v_i^{(3)} v_{-i}^{(3)} z_1 z_2 z_3 \;, \\ & v_{-i}^{(1)b_{-i}} = v_i^{(1)} v_{-i}^{(1)} z_1 \;, \quad v_{-i}^{(2)b_{-i}} = v_i^{(2)} v_{-i}^{(2)} z_1 z_2 \;, \quad v_{-i}^{(3)b_{-i}} = v_i^{(3)} v_{-i}^{(3)} z_1 z_2 z_3 \;, \end{split}$$

Then $b_i^2 = b_{-i}^2 = 1$, $B_i \simeq \Sigma_3$ and $[B_i, B_j] = 1$ for $i \neq j$. Let L be a complement of B in $A = \operatorname{Aut}(Q)$.

(1.10) LEMMA. Let $q \in Q - Z$. Then $[q, Q] \neq Z$ is equivalent to $q \in E_x$ for an $x \in A_0^{\#}$. Especially, $\bigcup E_x$, $x \in A_0$, is a characteristic subset of Q. We have $[E_x, Q] = [q, Q]$ for every $q \in E_x - Z$. It follows $B \leq N(E_x)$ for every $x \in A_0^{\#}$.

PROOF. Let $q \in Q - Z$, $\tilde{q} = \tilde{q}_1 \dots \tilde{q}_n$, $\tilde{q}_i \in \tilde{Q}_i$. If $q_i^2 = 1$ for an inverse image q_i of \tilde{q}_i , we have $Z = [q_i, Q_i] \subseteq [q, Q_i] \subseteq [q, Q]$.

Assume $[q, Q] \neq Z$. Then $q_i^2 \neq 1$, $1 \leq i \leq n$ and $[q_i, Q_i] = [q_j, Q_j]$ wherever $q_i \notin Z$ and $q_j \notin Z$. This shows $q_j \in E_x$ for an $x \in A_0^i$.

(1.11) LEMMA. $C \cong E_2 18n$, $B = CB_0$, $B_0 \cong Sp(2n, 2)$, $B_0 \cap C = 1$, $A/B \cong L_3(2)$.

PROOF. It is clear, that $C \simeq E_2 18n$ and $A/B \simeq L_3(2)$. Let $X \in \mathfrak{S} - \{0\}$. Then X satisfies the following conditions:

- $(\alpha) \ Z < X \simeq E_{64}.$
- (β) $C_q(X) = X_0 \times R$, where $X \supset X_0 \simeq E_8$, $R \simeq Q^{n-1}$.
- $(\gamma) \ Q = R_1 * R$, where $X \subset R_1 \cong Q_0$.
- (δ) $|E_x: E_x \cap C(X)| = 2$ for each $x \in A_0^{\#}$.
- (c) For every $x_1, x_2 \in X Z$ such that $x_1 Z \neq x_2 Z$, we have

$$\boldsymbol{C}_{\boldsymbol{Q}}(X) = \boldsymbol{C}_{\boldsymbol{Q}}(x_1) \cap \boldsymbol{C}_{\boldsymbol{Q}}(x_2) \neq \boldsymbol{C}_{\boldsymbol{Q}}(x_1) \ .$$

Consider the set $M = \{X | X < Q, X \text{ satisfies conditions } (\alpha) - (\varepsilon)\}.$

(1) $M = \mathfrak{V} - \{0\}$: let $X \in M$. For $x \in X$ write $xZ = \prod_{i=1}^{n} x_i Z$,

 $x_i \in Q_i$. Assume [x, Q] = Z. Then $|Q: C_Q(x)| = 8$ and $C_Q(x) = C_Q(X)$ by (β) , a contradiction to (ε) . Thus $x \in E_y$, $y \in A_0^*$ by (1.10). It follows from (γ) , that we can write $X = Z \times X_0$, $X_0 = \langle q, r, s \rangle = E_s$, $q \in E_1$, $r \in E_2$, $s \in E_3$. By (δ) we have $C(X) \cap \langle v_i^{(j)}, v_{-i}^{(j)} \rangle \neq \langle 1 \rangle$ for every $j \in \{1, 2, 3\}$. Choose $i \in \{1, 2, ..., n\}$.

Assume $\langle v_i^{(i)}, v_{-i}^{(i)} \rangle \leq C_q(X)$ for a $j \in \{1, 2, 3\}$. Without restriction we can choose j = 1. It follows $\langle r_i, s_i \rangle < Z$ and from (ε) we get $Q_i < C_q(r) \cap C_q(s) = C_q(X)$ and thus $q_i \in Z$. We now choose $i \in \{1, 2, ..., n\}$ such that $\langle q_i, r_i, s_i \rangle \leq Z$. By the above we have $|\langle v_i^{(i)}, v_{-i}^{(i)} \rangle \cap C(X)| = 2$ for every $j \in \{1, 2, 3\}$ and $\langle x, y \rangle \leq Z$ for every $\{x, y\} \subseteq \{q_i, r_i, s_i\}$ such that $x \neq y$. Without loss $v_i^{(1)} \in C(V)$. It follows $r_i \in \langle v_i^{(2)} \rangle Z$, $s_i \in \langle v_i^{(3)} \rangle Z$. Assume $s_i \in Z$. Then $C_{q_i}(X) = C_{q_i}(r_i) =$ $= C_{q_i}(q_i)$ by (ε). It follows $\langle r_i, q_i \rangle < Z$, a contradiction.

We have $r_i \in v_i^{(2)}Z$ $s_i \in v_i^{(3)}Z$. It follows $q_i \in \langle v_i^{(1)} \rangle Z$ and by the same operation as above $q_i \in v_i^{(1)}Z$. This holds for every $i \in \{1, 2, ..., n\}$ such that $\langle q_i, r_i, s_i \rangle \leq Z$. This shows $X \in \mathfrak{V} - \{0\}$. We have shown $M = \mathfrak{V} - \{0\}$.

148

(2) It follows from (1), that the automorphism-group *B* operates on **3**. Further *B* respects the linear structure and the symplectic scalar product of **3**. The kernel of this representation of *B* is exactly *C*, as $\langle X|X \in \mathbf{3} - \{0\} \rangle = Q$ and $A/B \cong L_3(2)$. Hence B/C is isomorphic to a subgroup of Sp(2n, 2).

(3) Define a symplectic non-singular scalar-product on $E_i^{(0)}$ over GF(2) by $(v_k^{(i)}, v_r^{(i)}) = 1$ exactly if k = -r (and 0 otherwise). Let $B_0 \cong Sp(2n, 2)$ and let B_0 be represented in the natural way on $E_1^{(0)}, E_2^{(0)}$ and $E_3^{(0)}$. Let $q \in Q$. Then q possesses a unique representation of the form $q = q_1q_2q_3z$, $q_i \in E_i^{(0)}$, $z \in Z$, i = 1, 2, 3. We extend the operation of B_0 on Q by setting $q^b = q_1^b q_2^b q_3^b z$ for $b \in B_0$. It is now easy to see, that B_0 is a group of automorphisms of Q.

(1.12) LEMMA. Let Q be a special 2-group, $Z(Q) = Z \simeq E_s$ and let a group L, $L \simeq L_3(2)$, operate nontrivially on Q. Suppose $\tilde{Q} = Q/Z = \tilde{V}_1 \oplus ... \oplus \tilde{V}_m$ as an L-module such that $\tilde{V}_i \simeq \tilde{V}_j \simeq Z$ for $i, j \in \{1, ..., n\}$. Here \tilde{V}_i and Z are natural L-modules.

Then m = 2n and $Q \simeq Q^n$. If r is an element of order 3 in L, then $C_Q(r) \simeq E_2 2n + 1$.

PROOF. (1) Let $\tilde{V} \subset \tilde{Q}$ be an irreducible *L*-submodule and *V* be the inverse image of \tilde{V} . Then *V* cannot be a Suzuki-2-group of (*A*)-type as $L_3(2)$ operates on *V*. As $\tilde{V} \rightleftharpoons Z$ as an *L*-module, we must have $V \cong E_{64}$. It follows $C_Q(r) \cong E_2m + 1$, when *r* is an element of order 3 in *L*.

(2) Consider \tilde{Q} as a GF(2)-vectorspace. Then it is easy to see, that $X = C(L) \cap \operatorname{Aut}(\tilde{Q}) \cong L_m(2)$ and $|\{\tilde{V}_1^x | x \in X\}| = 2^m - 1$. Set $\mathfrak{B}' = \{V_1^x | x \in X\}.$

(3) $\mathfrak{B}' = \{V | V < Q, \ \tilde{V} \text{ is an irreducible } L\text{-submodule of } \tilde{Q}\}.$ Let $\mathfrak{B}' = \{V | V < Q, \ \tilde{V} \text{ an irreducible } L\text{-submodule of } \tilde{Q}\}.$

Clearly $\mathfrak{B}' \subseteq \mathfrak{B}'$. Let $V \in \mathfrak{B}'$ and let τ be an *L*-isomorphism of \tilde{V} on \tilde{V}_1 . Then τ can be extended to an *L*-isomorphism of \tilde{Q} , that is $\tau \in X$.

(4) Set $\mathfrak{B} = \mathfrak{B}' \cup \{0\}$. Then \mathfrak{B} is an GF(2)-vectorspace by the following definition: 0 + V = V + 0 = V, V + V = 0 for $V \in \mathfrak{B}$. Let $V, W \in \mathfrak{B}'$ such that $V \neq W$. Then V + W is defined as the unique irreducible *L*-submodule of $\langle \tilde{V}, \tilde{W} \rangle$ which is different from \tilde{V} and \tilde{W} . Then clearly V + W = W + V. The associativity of the so defined addition is easily proved with the help of the fact, that a 9-dimensional *L*-invariant subspace of \tilde{Q} contains exactly 7 irreducible *L*-submodules. (5) We define a symplectic non-singular GF(2)-scalar product (,) on \mathfrak{B} by (0,0) = (0, V) = (V,0) = 0 and, for $V, W \in \mathfrak{B}', (V,W) = 0$ if and only if [V, W] = 1.

Clearly (V, W) = (W, V) and (V, V) = 0. We show (A + B, C) = (A, C) + (B, C) for all $A, B, C \in \mathfrak{A}$. We can assume $0 \notin \{A, B, C\}$ and $A \neq B$.

If [A, C] = 1 = [B, C], we have [A + B, C] = 1, as $A + B \le \le (A, B)$. If $[A, C] = 1 \neq [B, C]$, we have $[A + B, C] \neq 1$.

So we can assume $[A, C] \neq 1 \neq [B, C]$, and we have to show [A + B, C] = 1. This however follows directly from the structure of Q_0 , as $\langle A, C \rangle \cong \langle B, C \rangle \cong Q_0$. As $Q = \langle V | V \in \mathfrak{B}' \rangle$, it is clear that (,) is non-singular.

(6) It follows $m = \dim \mathfrak{B} = 2n$. Let $\mathfrak{B} = \mathfrak{B}_1 \oplus \mathfrak{B}_2 \oplus ... \oplus \mathfrak{B}_n$ be a decomposition of \mathfrak{B} in hyperbolic planes with respect to (,). Then $Q = Q_1 * Q_2 * ... * Q_n$, where $Q_i = \langle V | V \in \mathfrak{B}_i - \{0\} \rangle$. The group Q_i is special of order 2° with center Z. The operation of an element of order 7 and (1.2) show $Q_i \simeq Q_0$, $1 \le i \le n$. Thus $Q \simeq Q^n$.

The following lemma gives further motivation for the term « dihedral type » resp. « quaternion type ». introduced in (1.7).

(1.13) LEMMA. Let $Q = Q_1 * Q_2 \simeq Q^2$ like in (1.9) for n = 2. Let $L \simeq L_3(2)$ and assume the operation of L on Q_1 and Q_2 is of quaternion type like in (1.7) (2). Then we can choose $R_1, R_2 < Q, R_1 \simeq R_2 \simeq Q_0, Q = R_1 * R_2$, such that L operates on R_i , i = 1, 2, and the operation of L on R_i is of dihedral type.

PROOF. Let φ_i be the isomorphism from Q_0 on Q_i , i = 1, 2, and let the operation of L on Q_i be like in (1.7) (2).

Set $R_1 = \langle V_1, V_{-1} + V_{-2} \rangle$, $R_2 = \langle V_1 + V_2, V_{-2} \rangle$. From (1.12) and (1.13) we get the following

(1.14) COROLLARY. Let L be a complement of B in $A = \operatorname{Aut}(Q)$ such that the operation of L on Q satisfies the hypothesis of (1.12). Then L is conjugate in A to one of the following two automorphismgroups of Q (notation like in (1.9)).

(1) L_+ , where the operation of L_+ on Q_i , $1 \le i \le n$ is of dihedral type like given in (1.7) (1).

(2) L_{-} , where the operation of L_{-} on Q_{i} is of dihedral type like above for $2 \le i \le n$ and of quaternion type like in (1.7) (2) for i = 1,

(1.15) LEMMA. Consider the subgroups L_+ and L_- of A as introduced in (1.14). Then $L_+ \cap L_- = F \simeq F_{21}$ and $F = \langle n, r \rangle$, where $n^7 = r^3 = 1$, $n^r = n^2$ and the operation of F on Q_i is described in (1.7), $1 \leq i \leq n$. We have $C_B(F) = C_B(n) = B^* \simeq Sp(2n, 2)$ and B^* is a complement of C in B.

PROOF. It follows from (1.7), that $L_+ \cap L_- = F \simeq F_{21}$. As it is easy to see, that *n* operates fixed-point-freely on *C*, we have that $C_B(n)$ is isomorphic to a subgroup of Sp(2n, 2). The group B/C is represented in the natural way on the vector-space E_1/Z and the complement B_0 of *C* in *B* is represented on the complement $E_1^{(0)}$ of *Z* in E_1 (1.11). Fix the basis $\{v_1^{(1)}, v_2^{(1)}, \dots, v_n^{(1)}, v_{-1}^{(1)}, \dots, v_{-n}^{(1)}\}$ for $E_1^{(0)}$ and the analogous basis for E_1/Z . Identify each element of B/C resp. B_0 with the matrix representing the operation of the element with respect to the above basis. Then B/C resp. B_0 is generated by the matrices of the following form (see [15]):

- (1) $I + e_{ij} + e_{-i,-i}$ (2) $I + e_{-i,-j} + e_{ji}$
- (3) $I + e_{i,-j} + e_{j,-i}$ (4) $I + e_{-i,j} + e_{-j,i}$
- (5) $I + e_{i,-i}$ (6) $I + e_{-i,i}$, 0 < i < j < n.

Here *I* denotes the (2n, 2n)-unit matrix and e_{kr} denotes the matrix with entry 1 at the intersection of row *k* and column *r* and 0 otherwise. Let $B_{+}^{*'}$ be the subgroup of B_0 generated by the elements which correspond to the matrices of forms (1)-(4). Then $B_{+}^{*'} \cong \Omega^+(2n, 2)$. Set $B^* = \langle B_{+}^{*'}, B_1 \times B_2 \times \ldots \times B \rangle$. The involutoric generators of B_i , $1 \leq i \leq n$ (1.9) are elements of *B*, which are not contained in B_0 . They correspond to the matrices of forms (5) and (6). It follows from (1.9), that B^* operates on $E_i^{(1)}$. This operation is clearly indecomposable. Further it is a matter of direct calculation, that $B^* \leq C(F)$. As $C_c(n) = 1$, we have $C_B(n) = C_B(F) = B^* \cong Sp(2n, 2)$.

Let q_{ε} , $\varepsilon \in \{+,-\}$ be defined on the vector space **3** with values in GF(2) by $q_{\varepsilon}(0) = 0$ and $q_{\varepsilon}(V) = 0$ if and only if L_{ε} operates completely reducibly on V for $V \in \mathfrak{B}'$.

It is then easy to see with the help of (1.7), that q_s are quadratic forms on \mathfrak{B} with respect to the scalar product (,). Let $V \in \mathfrak{B}$, $V = \sum_{1}^{n} (x_i V_i + x_{-i} V_{-i})$. Then $q_+(V) = \sum_{1}^{n} x_i x_{-i}$ and $q_-(V) = \sum_{2}^{n} (x_i x_{-i}) + \sum_{1}^{n} (x_i V_i + x_{-i} V_{-i})$.

Jürgen Bierbrauer

 $+x_1 + x_1x_{-1} + x_{-1}$. Thus the indices of q_+, q_- are *n* resp. n-1. Let B_s^* be the subgroup of B^* respecting the form q_s . Then B_s^* is isomorphic to $O^s(2n, 2)$. Clearly $C_B(L_s) \subseteq B_s^*$. The equality $C_A(L_s) = B_s^*$ will follow from the examples (1.15) (i) and (ii).

(1.15) EXAMPLES.

(i) Consider the Chevalleygroup $D_i(2)$, $l \ge 4$. We use the notation of [2]. So let e_1, \ldots, e_l be an orthonormal basis for an euclidean vector space. Then $\Phi = \{\pm e_i \pm e_j | i \ne j; i, j = 1, 2, \ldots l\}$ is a root-system of type D_1 . The vectors $r_i, 1 \le i \le l$ with $r_i = e_i - e_{i+1}$ for $i \le l$ and $r_i = e_{i-1} + e_i$ form a system of fundamental roots. This choice corresponds to the following labelling of the Dynkin-diagram

Let $P = P_3$ for l > 4 and $P = P_{\{3,4\}}$ for l = 4. Then P is a parabolic subgroup of $D_l(2)$. Set $Q = O_2(P)$. Then

$$egin{aligned} Q &= \langle X_{\epsilon_i - \epsilon_j}, X_{\epsilon_i + \epsilon_j} | 0 < i < 3, \, 4 < j < l
angle \, , \ Z &= oldsymbol{Z}(Q) = \langle X_{\epsilon_i + \epsilon_i} | 0 < i < j < 3
angle \, . \end{aligned}$$

For $4 \leq j \leq l$ set

$$Q_{j-3} = \langle X_{e_i-e_j}, X_{e_i+e_j} | 0 < i < 3
angle$$
 .

Then $Q_i \cong Q_0$ with $Z(Q_i) = Z$ for $1 \le i \le l-3$. Further

$$L = \langle X_{+\epsilon_i+\epsilon_i} | i
eq j, 0 < i, j < 3
angle$$

is isomorphic to $L_3(2)$ and

$$X = \langle X_{\pm {\it e}_{t} \pm {\it e}_{j}} | i
eq j, \, 4 \! < \! i, j \! < \! l
angle \, \simeq D_{{\it l} - \! {\it s}}(2) \, .$$

Then [L, X] = 1 and $P = Q(X \times L)$. The group L operates on each of the subgroups $\langle X_{e_i+e_j} | 0 < i < 3 \rangle$ and $\langle X_{e_i-e_j} | 0 < i < 3 \rangle$, 4 < j < l. Set n = l-3. Then $Q \simeq Q^n$ and the operation of L on each of the subgroups Q_i of Q, $1 \le i \le n$ is of dihedral type. The group P is a maximal parabolic subgroup of $D_i(2)$ with the exception of the case l = 4, where P is contained in a maximal parabolic subgroup, which is a split extension of E_{64} by $\Omega^+(6, 2)$.

(ii) Consider the Steinberg group ${}^{2}D_{l}(2)$ for $l \ge 4$. Let ϱ be the symmetry of the Dynkin diagram for D_{l} interchanging r_{l-1} and r_{l} and fixing the fundamental roots r_{i} , $1 \le i \le l-2$. The Dynkin-diagram for ${}^{2}D_{l}(2)$ is then

Let $P = P_3$ be a maximal parabolic subgroup of ${}^2D_1(2)$, $Q = O_2(P)$. If r is a root and $r \neq r^{\varrho}$, set $D_{r,r^{\varrho}} = \{x_r(\alpha)x_{r^{\varrho}}(\alpha^{\sigma}) | \alpha \in K\}$, where K = GF(4) and σ is the non-trivial field-automorphism of K. Then $D_{r,r^{\varrho}} \cong E_4$. If $r = r^{\varrho}$, set $X_r = \{x_r(\alpha) | \alpha \in K_0\}$, where K_0 is the prime field of K. Then

$$egin{aligned} Q &= \langle X_{e_i - e_j}, X_{e_i + e_j}, D_{e_i - e_l, e_i + e_l} | 0 < i < 3, \, 4 < j < l
angle \, , \ Z &= oldsymbol{Z}(Q) = \langle X_{e_i + e_j} | 0 < i < j < 3
angle \cong E_{8} \, . \end{aligned}$$

Set

$$Q_1 = \langle D_{e_i - e_i, e_i + e_i} | 0 < i \leq 3
angle \,, \quad Q_{j-2} = \langle X_{e_i - e_j, e_i + e_j} | 0 < i \leq 3
angle$$

for $4 \le j \le l-1$. Then $Q = Q_1 * Q_2 * ... * Q_n$, where

$$n=l-3\,,\quad Q_1\!\simeq\!Q_2\!\simeq\!\dots\simeq\!Q_n\!\simeq\!Q_0\,,\quad {old Z}(Q_i)=Z\,,\quad 1\!<\!i\!<\!n\,.$$

 $\text{Let } L = \langle X_{\pm \epsilon_i \pm \epsilon_j} | i \neq j, \, 0 < i, j \leq 3 \rangle \simeq L_{\mathbf{3}}(2),$

$$X = \langle X_{e_i \pm e_j}, D_{e_k - e_i, e_k + e_i} | i \neq j, 4 \leq i, j \leq l-1, 4 \leq k \leq l-1 \rangle \cong {}^2D_n(2)$$

We have [L, X] = 1, $P = Q(X \times L)$, $Q \simeq Q^n$ and the operation of L on Q_i is of dihedral type for $i \ge 2$, of quaternion type for i = 1.

(iii) Janko has shown [8, Prop. 13], that J_4 contains an elementary abelian subgroup V of order 8 such that $L = O_2(N(V))$ is a special group of order 2¹⁵ with center V, $\overline{N(V)} = N(V)/L = \overline{J} \times \overline{C}$, where $\overline{J} \simeq \Sigma_5$ and $\overline{C} \simeq L_3(2)$. Here J = C(V), an element of order 5 of \overline{J} operates fixed-point-freely on L/V and an element of order 7 in C operates fixed-point-freely on L. Further an element of order 3 in J operates fixed-point-freely on L/V. Tran Van Trung has characterized the simple group J_4 by a maximal 2-local subgroup having the above structure [19]. It is easy to see and follows from Tran Van Trung's proof, that the operation of \overline{C} on L/V and V satisfies the conditions of (1.12). It follows then from (1.12), that $L \simeq Q^2$.

It should be noted, that $O^{-}(10, 2)$ possesses a maximal 2-local subgroup M such that $O_2(M) \cong Q^2$ and $M/O_2(M) = \overline{J} \times \overline{C}, \ \overline{J} \cong \Sigma_5, \ \overline{C} \cong L_3(2)$, where an element of order 5 in M operates fixed-point-freely on $O_2(M)/O_2(M)'$ and an element of order 7 operates fixed-point-freely on $O_2(M)$. In this case, however, an element d of order 3 in J will not operate fixed-point-freely on $O_2(M)/O_2(M)'$ and an element of $O_2(M)/O_2(M)'$. In fact we have $O_2(M) = (C(d) \cap O_2(M)) * [d, O_2(M)]$, where

$$C(d) \cap O_2(M) \simeq [d, O_2(M)] \simeq Q_0$$
.

(iv) Let G = M(24)' be one of the Fischer-groups, let z be a 2-central involution of G and set $H = C_G(z), K = H', J = O_2(H)$ like in [13]. Then $J \simeq (D_8)^6$, $|O_{2,3}(H)/J| = 3$, $K/O_{2,3}(H) \simeq U_4(3)$ and |H:K|=2. Let j_2 be an involution in $J-\langle z \rangle$ such that $C_{\kappa}(j_2)/C_J(j_2) \cong$ $\simeq E_{16}/A_6$. Then $C_H(j_2)/C_J(j_2) \simeq E_{32}A_6$. Let $R = O_2(C_K(j_2)), \ \overline{H} = H/J,$ $ilde{H}=H/\langle z
angle$ and use the « bar convention ». Then $ilde{F}=C_7(ar{R})\cong E_{64}$ and $F \cong E_{128}$. Further $V = C_{g}(F) \subseteq R$, $V \cong E_{2} 11$ and $N_{g}(V)/V \cong M_{24}$. Set $M = N_{g}(V)$. Like in [8, Prop. 13] consider the inverse image U in M of a maximal 2-local-subgroup of M/V, which is a faithful and splitting extension of E_{64} by $\Sigma_3 \times L_3(2)$. Set $Z = Z(O_2(U))$, let P be a subgroup of order 3 in $O_{2,3}(U)$ and let C be a subgroup of order 7 in U. Similarly like in [8, Prop 13], we get $C_v(P) = Z \simeq E_s$. Further $Z - \langle 1 \rangle$ consists of 2-central involutions of G. We can choose $\langle z, j_2 \rangle < Z$. Set $B = C_H(Z)$ and $Q = O_2(B)$. The operation of Pshows Z < F. Further $Q = C_R(Z)$, $|Q| = 2^{15}$ and R operates fixedpoint-freely on Q/Z. We have $B/Q \cong A_6$ and $N_G(Z)/Q \cong A_6 \times L_3(2)$. As elements of order 7 of $L_3(2)$ and elements of order 5 in A_6 operate fixed-point-freely on Q/Z, the group Q has to be special with center Z. Let S be an element of order 3 in B, which doesn't operate fixedpoint-freely on Q/Z. Then by (1.1) we have $Q = Q_1 * Q_2$, where $Q_1 = C_Q(S), \ Q_2 = Z[Q, S] \text{ and } Q_1, \ Q_2 \text{ are } L_3(2)\text{-admissible special groups}$ of order 2° with center Z. It follows from (1.2), that $Q_1 \cong Q_2 \cong Q_0$ and thus $Q \simeq Q^2$. Obviously, $N_q(Z)$ is a maximal 2-local subgroup of M(24)'. Further

$$N(Z) \cap M(24)/Q \cong \Sigma_6 \times L_3(2)$$
.

4

(1.16) LEMMA. For every $n \ge 1$ there is a group X with the following properties:

(i) $\boldsymbol{O}_2(X) = Q \cong Q^n$.

(ii) $C_{\mathbf{x}}(Q) = \mathbf{Z}(Q) = \mathbf{Z}$.

(iii) $X/Q = (B/Q) \times (L/Q)$, where $B = C_x(Z)$, $B/Q \cong \text{Sp}(2n, 2)$, $L/Q \cong L_3(2)$.

(iv) The operation of L/Q on Q/Z and Z satisfies the hypothesis of (1.12).

Then the sequence $0 \rightarrow Q/Z \rightarrow X/Z \rightarrow X/Q \rightarrow 0$ is non-split for n > 1, split for n = 1. Further the structure of X/Z is uniquely determined.

PROOF. It follows from (1.14), (1.8) and (1.5), that there is a group X satisfying (i)-(iv). Further X/Z is isomorphic to a subgroup of Aut (Q) and its structure is uniquely determined by the same lemmas mentioned above. It follows from (1.15), that the above sequence splits only for n = 1.

2. A 2-local characterization of Fischer's simple group M(24)'.

THEOREM. Let G be a finite simple group possessing a 2-local subgroup M with the following properties:

(i) $Q = O_2(M)$ is a special group of order 2¹⁵ with elementary abelian center Z of order 8.

(ii)
$$M = N_G(Z), Z(M) = \langle 1 \rangle.$$

(iii)
$$\boldsymbol{Z} = \boldsymbol{C}_{\boldsymbol{G}}(\boldsymbol{Q}).$$

(iv)
$$\overline{M} = M/Q = \overline{B} \times \overline{L}, \ \overline{B} \simeq A_6, \ \overline{L} \simeq L_3(2).$$

Then G has a 2-local subgroup of the form $E_2 11 \cdot M_{24}$.

COROLLARY. Under the additional assumption, that $O(C_G(z)) = 1$ for a 2-central involution z in G, it follows from [16] and [14], that G is isomorphic to M(24)'.

PROOF. Let G be a group which satisfies the assumptions of the theorem. Set $\overline{M} = M/Q$, $\widetilde{M} = M/Z$ and use the «bar convention». Let B resp. L be the inverse images of \overline{B} resp. \overline{L} . Then B = C(Z). Let $F = \langle n, r \rangle$ be a Frobeniusgroup of order 21 contained in L,

where $n^7 = r^3 = 1$, $n^r = n^2$. Clearly, elements of order 5 and 7 of M have to operate fixed-point-freely on \tilde{Q} . As n operates fixed-point-freely on Q, we have $B_1 = C_B(n) = C_B(F) \simeq A_6$.

We use the symbol \leftrightarrow to denote the correspondence of elements in the isomorphism $B_1 \cong A_6$. Let $D \in Syl_3(B_1)$, $D = \langle d_1, d_2 \rangle$, where $d_1 \leftrightarrow (1, 2, 3)$, $d_2 \mapsto (4, 5, 6)$. As d_1 and $d_1 d_2$ are conjugate under Aut (A_6) , we can assume $|C_{\overline{o}}(d_1)| = |C_{\overline{o}}(d_2)| = 2^6$.

Assume $C_{\tilde{\mathfrak{g}}}(d_1) = C_{\tilde{\mathfrak{g}}}(d_2)$. Then $[d_1, \tilde{Q}] = [d_2, \tilde{Q}]$. As $\tilde{Q} = \langle C_{\tilde{\mathfrak{g}}}(d) | d \in D \rangle$, there is $\varepsilon \in \{+1, -1\}$ such that $C_{\tilde{\mathfrak{g}}}(d_1d_2^{\varepsilon}) \cap [d_1, Q] \neq 1$. The operation of \overline{n} shows then $[d_1d_2^{\varepsilon}, \tilde{Q}] = 1$, a contradiction. Thus $C_{\tilde{\mathfrak{g}}}(d_1) = [d_2, \tilde{Q}], C_{\tilde{\mathfrak{g}}}(d_2) = [d_1, \tilde{Q}]$, the elements d_1d_2 and $d_1d_2^{-1}$ operate fixed-point-freely on \tilde{Q} .

Set $Q_1 = C_Q(d_2) = Z[d_1, Q]$ and $Q_2 = C_Q(d_1) = Z[d_2, Q]$. It follows from (1.1), that $Q = Q_1 * Q_2$. Further $Z = Z(Q_1) = Z(Q_2)$ and the groups Q_i are special groups of order 2°, i = 1, 2.

As B_1 operates on $C_Q(r)$, we have $C_Q(r) \simeq E_{32}$. By (1.3) $Q_1 \simeq \simeq Q_2 \simeq Q_0$ and thus $Q \simeq Q^2$. Further $L < N(Q_i)$, i = 1, 2.

Set $L_0 = C_L(d_1d_2)$. Then $L_0/Z \simeq L_3(2)$ and it follows from the structure of Aut (Q^2) , that L_0 is conjugate to L_+ as a subgroup of Aut (Q^2) in the sense of (1.14). Especially, \tilde{L}_0 is a uniquely determined subgroup of Aut (Q) and thus \tilde{M} is uniquely determined. It follows, that M has the structure given in the following lemma:

(2.1). LEMMA. $Q = Q_1 * Q_2 \simeq Q^2$. For elements of Q we use the notation of (1.9). $L = QL_0$, $L_0 = Z \langle F, t \rangle$, $L_0/Z \simeq L_3(2)$. With respect to the bases $\{v_i^{(1)}, v_i^{(2)}, v_i^{(3)}\}$ of $V_i^{(0)}$, $i \in \{\pm 1, \pm 2\}$ and $\{z_1, z_2, z_3\}$ of Z we have

$$\begin{split} n_{v_i^{(0)}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \quad r_{v_i^{(0)}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \\ \vdots \qquad \vdots \qquad t_{v_i^{(0)}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \end{split}$$

and $g_z = (g_{v_i^0})^*$ for every $g \in L_0 - Z$.

Further $C_B(F) = B_1 \cong \operatorname{Sp}_4(2)'$ and the elements of B_1 are represented in the natural way on the elementary abelian groups \tilde{E}_i , i = 1, 2, 3. The operation of B_1 on $E_i^{(1)}$ has been given in (1.15) with respect to the bases $\{v_1^{(i)}, v_2^{(i)}, v_{-1}^{(i)}, v_{-2}^{(i)}, z\}$, where $z = z_1$ for i = 1, $z = z_1 z_2$ for i = 2 and $z = z_1 z_2 z_3$ for i = 3. We have $C_B(L_0) = K \langle v \rangle = N(K) \cap B_1$, where $K = \langle k_1, k_2 \rangle \in Syl_3(B_1), k_1 \to (1, 3, 5), k_2 \leftrightarrow (2, 4, 6), v \leftrightarrow (1, 2)(3, 6, 5, 4)$ and

$$k_1|_{\mathbf{F}_i^{(1)}} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \qquad k_2|_{\mathbf{F}_i^{(1)}} = \begin{bmatrix} 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$
$$v|_{\mathbf{F}_i^{(1)}} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Set $v_0 \in B_1$ such that $v_0 \leftrightarrow (3, 4)(5, 6)$. Then

$$v_{0}|_{E_{i}^{(1)}} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

$$\langle v, v_0
angle \in Syl_2(B_1), \quad C_q(v) = C_q(v, v_0) = V_{-1} \cong E_{64},$$

 $C_{q}(v^{2}) = V_{-1}(V_{2} + V_{-2}) \simeq E_{2}^{9}$. B_{1} contains exactly two conjugacyclasses of elementary abelian groups of order 4 with representatives X_{1} and X_{2} , where

$$\begin{split} X_1 &= \langle v^2, v_0 \rangle \iff \langle (3, 5)(4, 6), (3, 4)(5, 6) \rangle , \\ X_2 &= \langle v^2, vv_0 \rangle \leftrightarrow \langle (3, 5)(4, 6), (1, 2)(3, 5) \rangle . \end{split}$$

We have $C_0(X_1) = V_{-1} \simeq E_{64}$ and $C_0(X_2) = V_{-1}(V_2 + V_{-2}) \simeq E_2^0$. Set $V = X_2 C_0(X_2)$. Then $V \simeq E_2^{11}$.

Jürgen Bierbrauer

PROOF. The bulk of the lemma follows from the fact, that we can choose Q_1, Q_2 so, that $Q = Q_1 * Q_2 \cong Q^2$ and that the operation of L_0 on Q_1 and Q_2 is of dihedral type in the sense of (1.7). It is a matter of direct calculation, that $C(\tilde{L}_0) \cap \tilde{B} = \tilde{K}\langle \tilde{v} \rangle$. It follows from the 3-subgroup-lemma, that $[(K\langle v \rangle)', L_0] = [K, L_0]$. As v centralizes L_0/Z and Z, we get $[K\langle v \rangle, L_0] = 1$.

(2.2) LEMMA. Let $V \subset T \in Syl_2(M)$. Then V is the only elementary abelian subgroup of order 2^{11} of T.

PROOF. We have $T/Q = \overline{D}_1 \times \overline{D}_2$, where $\overline{D}_1 \in \operatorname{Syl}_2(\overline{B})$, $\overline{D}_2 \in \operatorname{Syl}_2(\overline{L})$. Denote by D_i the inverse image in T of \overline{D}_i , i = 1, 2. Let A < T, $A \cong E_2^{11}$.

(1) $A \cap D_2 \subseteq Q$: Assume $A \cap D_2 \notin Q$, let $a \in (A \cap D_2) - Q$. Then $A \cap Q$ is contained in the inverse image U of $C_{\tilde{\varrho}}(\bar{a})$. But $\bar{a} \sim \bar{t}$ and so $U \sim Z\langle v_j^{(1)}, v_j^{(2)}, v_j^{(3)} | j \in \{\pm 1, \pm 2\}\rangle$, $U \cong E_4 \times (D_8)^4$ and Z(U) = Z. Further $C(a) \ge Z$. Thus $C_Q(a)$ doesn't contain an elementary abelian subgroup of order 2⁷. It follows $|\overline{A}| \ge 32$, a contradiction.

(2) $A \subseteq D_1$: If $A \notin D_1$, there is an involution $a \in A - Q$ such that $a \notin D_1$, $a \notin D_2$. As \overline{a} inverts an element of order 5 in \overline{B} , we have $|C_{\overline{q}}(\overline{a})| = 2^6$. Further $Z \leq C(a)$ and thus $|C_Q(a)| \leq 2^8$. It follows $|\overline{A}| \geq 8$ and $\overline{A} \cap \overline{D}_2 \neq \langle 1 \rangle$, a contradiction to (1).

We have $A \subseteq D_1$, $A \cap Q \cong E_2^{9}$, $|\overline{A}| = 4$. All the involutions in the coset v^2Q are contained in $v^2C_Q(v^2) = v^2(V \cap Q)$. Thus $V \cap Q \subset A$ and $A = C(V \cap Q) \cap D_1 = V$.

$$(2.3) Syl_2(M) \subseteq Syl_2(G) .$$

PROOF. Set $J = \{x | x \in Q, x^2 = 1, |Q: \boldsymbol{C}_Q(x)| = 4\}$. We have $W = V \cap Q = \langle W \cap J \rangle$. Assume $T \in \boldsymbol{Syl}_2(M), T \notin \boldsymbol{Syl}_2(G)$. Then $T < T_1$, $|T_1/T| = 2$. Choose $x \in T_1 - T$. Then $Q^x \neq Q, Z^x \neq Z$, but $Z^x < Q$, as $|\boldsymbol{C}_T(z)| \ge 2^{19}$ for $z \in Z$. Thus \bar{Q}^x is elementary abelian and $|\bar{Q}^x| \le 16$.

(1) $\overline{Q}^x \cap \overline{V} = \langle 1 \rangle$: Assume the contrary. We have $Q^x \cap V = (Q \cap V)^x = W^x$. So there is an element $y \in J \cap W$ such that $y^x \in (Q^x \cap V) - Q$. As $y^x \in V - Q$, we have $C_Q(y^x) = W \cong E_2^{9}$. On the other hand $|Q \cap Q^x| \ge 2^{11}$ and so $|C(y^x) \cap Q \cap Q^x| \ge 2^{9}$, as $y^x \in J^x$. So $C(y^x) \cap Q \cap Q^x = W \subseteq Q$ and $1 = \overline{W} = \overline{Q}^x \cap V \neq 1$, a contradiction. Clearly $|\overline{Q}^x| < 16$.

(2) Assume $|\bar{Q}^x| = 8$. Then $\bar{Q}^x \cap D_1 \neq 1$. But $\bar{Q}^x \triangleleft \bar{T}$ and $Z(\bar{D}_1) < < \bar{Q}^x$. It follows $\bar{Q}^x \cap \bar{V} \neq \langle 1 \rangle$, a contradiction.

(3) We have $|\overline{Q}^x| \leq 4$, $|Q \cap Q^x| \geq 2^{13}$. Let $y^x \in (J^x \cap Q^x) - Q$. Then $|C(y^x) \cap Q \cap Q^x| \geq 2^{11}$, another contradiction.

We consider now the involutions contained in M-Q.

(2.4) We may and will take t to be an involution in L-Q. Let t' be an involution in L-Q. Then $C_Q(t') \cong Z_2 \times (Q_8)^4$. Further $t' \sim t'z$ if and only if $z \in \langle z_2 z_3 \rangle$.

PROOF. As $L_3(2)$ contains only one class of involutions, all the involutions in L-Q are conjugate to an involution in the coset tQ. If L_0 is a non-split extension of E_8 by $L_3(2)$, the Sylow-2-subgroup of L_0 is of type M_{12} . Thus in any case $L_0 - Z$ contains involutions and we can take t to be an involution. We have

$$egin{aligned} m{C}_{m{0}}(t) &= \langle z_1
angle \, \langle v_1^{(1)}, \, v_{-1}^{(2)} v_{-1}^{(3)}
angle \, \langle v_{-1}^{(1)}, \, v_1^{(2)} v_1^{(3)}
angle \, \cdot \\ & \cdot \langle v_2^{(1)}, \, v_{-2}^{(2)} v_{-2}^{(3)}
angle \, \langle v_{-1}^{(1)}, \, v_2^{(2)} v_2^{(3)}
angle \, \simeq Z_2 imes (Q_8)^4 \, . \end{aligned}$$

Let U be the inverse image of $C_{\tilde{q}}(t)$. Then $U \cong E_4 \times (D_8)^4$. Thus tQ contains exactly 2^{10} involutions. They have one of the following forms:

(1) $tx, x \in C_Q(t), x^2 = 1.$

(2)
$$tz_2y, y \in C_Q(t), y^2 = z_2z_3$$
.

By direct calculation we see $C_{\varrho}(t') \cong Z_2 \times (D_8)^4$ for every involution $t' \in tQ$. Obviously $t' \gtrsim t' z_2 z_3$ for all these involutions t'.

Assume t' = tx, $x \in C_Q(t)$, $x^2 = 1$, $t'^q = t'z_1$, $q \in Q$. Then $\langle q, x \rangle < U$, $t^q \in tz_1 \langle z_2 z_3 \rangle$, a contradiction.

Assume

$$t' = t z_2 y$$
, $y \in C_Q(t)$, $y^2 = z_2 z_3$, $t'^q = t' z_1$, $q \in Q$.

Then $\langle q, z_2 y \rangle < U$, $t^q = tz_1$, a contradiction like above.

(2.5) LEMMA. All the involutions in B-Q are conjugate to v^2 or to $v^2 z_1$. We have $C_Q(v^2) = W = V \cap Q \cong E_2^9$.

PROOF. We have $C_{Q}(v^{2}) = W \cong E_{2}^{9}$ and $[v^{2}, Q] < W$, $|[v^{2}, Q]| = 2^{6}$. It follows, that the involutions in $v^{2}Q$ are all contained in $v^{2}W$. As $|C_{Q}(\bar{v}^{2})| = 2^{6}$, there are exactly 8 classes of involutions in B - Q under the operation of Q and the elements $v^{2}z$, $z \in Z$, are representatives of these classes. If $z, z' \in Z - \{1\}$, we have $v^{2}z \sim v^{2}z'$ under L_{0} , as $[v^{2}, L_{0}] = 1$. But $v^{2} \not\cong v^{2}z$ if $z \in Z - \{1\}$. (2.6) LEMMA. All the involutions in M-Q, which are not contained in B or L, are conjugate to $v^2 t$. We have $C_Q(v^2 t) \cong E_{16} \times Q_8$:

PROOF. By (2.1) $v^2 t$ is an involution. Clearly all the involutions in $M - (B \cup L)$ are conjugate to an involution in $v^2 t Q$. Let U be the inverse image of $C_{\overline{c}}(\overline{v}^2 \overline{t})$. Then $U = Z\langle x_1, x_2, ..., x_6 \rangle$, where

$$\begin{split} &x_1 = v_{-1}^{(1)}, \ x_2 = v_2^{(1)} v_{-2}^{(\lambda)}, \\ &x_3 = v_1^{(2)} v_1^{(3)} v_2^{(3)} v_{-1}^{(3)} v_{-2}^{(3)}, \quad x_4 = v_2^{(2)} v_2^{(3)} v_{-1}^{(3)}, \\ &x_5 = v_{-1}^{(2)} v_{-1}^{(3)}, \quad x_6 = v_{-2}^{(2)} v_{-1}^{(3)} v_{-2}^{(3)}, \\ &|U| = 2^9, \ x_i^2 = 1 \ \text{for} \ i \neq 3, \ x_3^2 = z_1, \\ &\boldsymbol{C}_{\boldsymbol{Q}}(v^2 t) = \langle z_1, x_1, x_5, x_4 x_6 \rangle \times \langle x_2, x_4 \rangle \cong \boldsymbol{E}_{16} \times \boldsymbol{D}_8, \quad \boldsymbol{C}_{\boldsymbol{Q}}(v^2 t)' = \langle z_2 z_3 \rangle \,. \end{split}$$

Set $U_1 = C_q(v^2 t)$. We have $z_2^{v^2 t} = z_3, \ x_3^{v^2 t} = x_3^{-1} = x_3 z_1$.

By direct calculation we see, that v^2tQ contains exactly 2⁸ involutions, namely 96 in v^2tU_1 , 32 in $v^2tz_2U_1$, 64 in $v^2tx_3U_1$ and 64 in $v^2tx_3z_2U_1$. As $|Q:U_1| = 2^8$, the lemma is proved.

(2.7) LEMMA. Every involution in Q is conjugate under M to an involution contained in V.

PROOF. There are exactly $3 \times 5 \times 7^2$ nontrivial cosets in \tilde{Q} , which consist of involutions. Consider the operation of \overline{M} on \tilde{Q} . Let $\bar{t}_1 \in \overline{L}$ like in (1.7). Then $C_{\tilde{Q}}(\bar{t}, \bar{t}_1) \cong E_{16}$ and \overline{B} induces a natural representation as $\operatorname{Sp}(4,2)'$ on $C_{\tilde{Q}}(\bar{t}, \bar{t}_1)$. Let $\tilde{q}_1 \in C_{\tilde{Q}}(\bar{t}, \bar{t}_1)$. Then $q_1^2 = 1$ and $C_{\overline{M}}(\tilde{q}_1) = C_{\overline{B}}(\tilde{q}_1) \times N_{\overline{L}}(\langle \bar{t}, \bar{t}_1 \rangle) \cong \Sigma_4 \times \Sigma_4$, $|\tilde{q}_1^{\overline{M}}| = 3 \times 5 \times 7$. Let $\tilde{q}_2 \in \tilde{Q}$ $q_2^2 = 1$, $\tilde{q}_2 \notin \tilde{q}_1^{\overline{M}}$. Then $2^{\mathfrak{s}} \not\mid |C_{\overline{M}}(\tilde{q}_2)|$.

Assume $9||C_{\overline{u}}(\tilde{q}_2)|$. Then \tilde{q}_2 has to be centralized by an element of order 3 in \overline{B} . We can assume $q_2 \in Q_2$, where $Q = Q_1 * Q_2$. But then \tilde{q}_2 is centralized by an element of order 3 in \overline{L} . It follows $\tilde{q}_2 \simeq \widetilde{q}_1$, a contradiction. We have $9 \not\mid |C_{\overline{u}}(\tilde{q}_2)|$ and thus $|\tilde{q}_2^{\overline{M}}| \ge 2 \times 3^2 \times 5 \times 7$. It follows $|\tilde{q}_2^{\overline{M}}| = 2 \times 3^2 \times 5 \times 7$.

So there are exactly two conjugacy-classes of nontrivial cosets in Q/Z, which contain involutions. These classes then have to consist of those cosets which contain involutions $q \in Q - Z$ such that $|Q: C_Q(q)| = 4$ resp. $|Q: C_Q(q)| = 8$. As W - Z contains involutions of both types, the lemma is proved.

(2.8) LEMMA. $N_{G}(V) \notin M$.

PROOF. (1) If $N_G(V) \subseteq M$, then Z is strongly closed in B with respect to G: Let $z \in Z - \{1\}, z^g \in Q, g \in G$. Then $z^{gm} \in W \subset V, m \in M$. By (2.2), (2.3) we can assume $gm \in N(V)$. By assumption $gm \in M$, $g \in M$ and thus $z^g \in Z$.

Assume $z^{g} \in B - Q$, $g \in G$. Then $z^{gm} \in xQ$, $m \in B$, $x \in V$. As $z^{2} = 1$, we have $z^{gm} \in xC_{Q}(x) \subset V$. Thus we can assume $gm \in N(V)$, $g \in M$, a contradiction.

(2) If $N_{G}(V) \subseteq M$, then no element of Z is conjugate in G to an involution $x \in M - (B \cup L)$: Assume $x^{g} = z, g \in G$. We have $C_{Q}(x) \cong$ $\cong E_{16} \times D_{8}$ by (2.6). Let $E < C_{Q}(x), E \cong E_{64}$. Then, by (2.6), x is conjugate under Q to all of the elements of the coset xE. Choose $g \in G$ such that $C_{T}(x)^{g} \subseteq T$. Then $E^{g} \cong E_{64}, E^{g} < T, z \notin E^{g}$ and z is conjugate to every element of the coset zE^{g} . We have $|E^{g}/E^{g} \cap D_{1}| < 4$, a contradiction to (1).

(3) If $N_{\sigma}(V) \subseteq M$, then Z is strongly closed in $N_{\sigma}(V)$ with respect to G: assume the contrary. Then by (1), (2) $z^{\sigma} \in L - Q$, $g \in G$, $z \in Z$. We can choose $z^{\sigma} \in tQ \subset N(W)$. Set $X = [z^{\sigma}, W]$. By (2.4) either |X| = 8, $|X \cap Z| = 2$ or |X| = 16, $|X \cap Z| = 4$. Set $Z_0 = X \cap Z$. Again, z^{σ} is conjugate to every element of the coset $z^{\sigma}X$, but $X \cap z^{\sigma} = Z_0 - \{1\}$ by (1), (2). We have $X^{\sigma^{-1}} < C(z)$ and we can assume $X^{\sigma^{-1}} < T$. Further $z \notin X^{\sigma^{-1}}$, $z \sim zx^{\sigma^{-1}}$ for all $x \in X$. It follows $X^{\sigma^{-1}} \cap Z = Z_0^{\sigma^{-1}}$. Let $x \in X - Z_0$. Then $C_z(x^{\sigma^{-1}}) \ge \langle Z_0^{\sigma^{-1}}, z \rangle$. Thus $Z_0 = \langle z_0 \rangle$, $|Z_0| = 2$, |X| = 8, $C_z(x^{\sigma^{-1}}) = \langle z, z_0^{\sigma^{-1}} \rangle$ for every $x \in X - \langle z_0 \rangle$. There is then an $y \in X - \langle z_0 \rangle$ such that $y^{\sigma^{-1}} \subset y^{\sigma^{-1}} \cdot z \subset z$, a contradiction to $X \cap z^{\sigma} = \{z_0\}$.

We have proved, that Z is strongly closed in T, where $T \in Syl_2(G)$, in case $N_G(V) \subseteq M$. This contradicts Goldschmidt's result [5].

(2.9) LEMMA. Set $N = N_G(V)$, $\overline{N} = N/V$. Then $\overline{N} \simeq M_{24}$ and the lengths of the orbits of V^{\sharp} under the operation of N are 1771 and 276.

PROOF. We have O(N) < C(V) < V and so $O(N) = \langle 1 \rangle$. As $C_G(V) = V$, the group \overline{N} is isomorphic to a subgroup of GL(11, 2). Further $|\overline{N}|_2 = 2^{10}$ and $\overline{N} > N \cap M/V$. It is clear from the structure of GL(11, 2), that $O(\overline{N}) = \langle 1 \rangle$. We have $V < O_2(N) < < O_2(N \cap M) = VQ$. As Z char $Q = \langle x | x \in VQ, x^2 = 1, |C_{VQ}(x)| > 2^{11} \rangle$ char VQ, we get $O_2(N) \neq VQ$. Because of the irreducibility of $N \cap M/VQ$ on VQ/V, we have $O_2(N) = V$ and $O_2(\overline{N}) = \langle 1 \rangle$.

Let \overline{X} be a minimal normal subgroup of \overline{N} . Then $\overline{X} = \overline{X}_1 \times ... \times \overline{X}_s$, where the \overline{X}_i are isomorphic non-abelian simple groups. Further $O_2(\overline{N \cap M}) < \overline{X} \text{ and } \overline{N \cap M}/\overline{VQ} \simeq \Sigma_3 \times L_3(2).$ It follows $\overline{L} < \overline{X}$ and $|\widetilde{X}|_2 \in \{2^9, 2^{10}\}.$ Assume s > 1.

If s = 2, then $|\overline{X}|_2 = 2^{10}$, but the center of a Sylow-2-subgroup of $\overline{N \cap M}$ has order 2, a contradiction.

If $s \ge 3$, the center of a Sylow-2-subgroup of \overline{X} has order at least 8, but this is impossible for the same reason.

Hence s = 1, \overline{X} is a simple group and $\overline{N} \leq \operatorname{Aut}(\overline{X})$.

The lengths of the orbits of $V - \{1\}$ under the operation of $N \cap M$ are 7/336-84-84/1344-192. Here, the orbit of length 7 is $Z - \{1\}$, the orbits of lengths 336 and 84 are contained in W - Z.

(1) $N(V) \notin N(W)$: Assume $W \lhd N$. Let X be the inverse image of \overline{X} in N, set $\widetilde{X} = X/W$. Then $\widetilde{X} = \widetilde{V} \times \widetilde{Y}$, where $\widetilde{Y} \simeq \overline{X}$. The simple group \widetilde{Y} is isomorphic to a subgroup of GL(9,2) and is generated by involutions of type J_2 in the sense of [4]. Further \widetilde{Y} operates irreducibly on W. The length of the Y-orbit containing $Z - \{1\}$ is $5^2 \times 7$ or 7^3 . We get then a contradiction from [4, Theorem A], [10] and [18].

(2) The lengths of the orbits of $V - \{1\}$ under N and under X are 1771 and 276: We use (1) and the fact, that $N \notin M$. The only other possibility for the lengths of orbits under N is 1519-528. Here $1519 = 7 + 1344 + 84 + 84 = 7^2 \times 31$,

$$528 = 336 + 192 = 2^4 imes 3 imes 11$$
 .

Consider $V/\langle z \rangle$, where $1 \neq z \in \mathbb{Z}$. We see then, that the homomorphic images in $V/\langle z \rangle$ of the elements in V contained in the $N \cap M$ -orbits of length 336 are the only ones which don't contain an involution conjugate to z under N. Thus $W \triangleleft C_N(z)$. This contradicts the fact, that $11 \mid |C_N(z)|$.

We have

$$1771 = 7 + 1344 + 336 + 84 = 7 \times 11 \times 23$$
,
 $276 = 192 + 84 = 2^2 \times 3 \times 23$.

Obviously, a Sylow-23-normalizer has to be a Frobenius group of order 23×11 in \overline{X} as well as in \overline{N} . It follows from the Frattiniar gument, that $\overline{N} = \overline{X}$ and \overline{N} is a simple group.

Further \overline{N} possesses a 2-local subgroup, which is an extension of E_{64} by $\Sigma_3 \times L_3(2)$. The element of order 3 in Σ_3 operates fixed-point-freely

and so the extension is split. As $L_3(2)$ operates completely reducibly on E_{64} , this 2-local subtroup is uniquely determined and a Sylow-2 subgroup of \overline{N} is isomorphic to a Sylow-2-subgroup of M_{24} . It follows from [17], that \overline{N} is isomorphic to M_{24} .

REFERENCES

- [1] B. BEISIEGEL, Semi-extraspezielle p-Gruppen, Math. Z., 156 (1977).
- [2] R. W. CARTER, Simple Groups of Lie-Type, Wiley, 1972.
- [3] U. DEMPWOLFF, On extensions of an elementary abelian group of order 2^5 by $GL_5(2)$, Rend. Sem. Mat. Univ. Padova, **48** (1973).
- [4] U. DEMPWOLFF, Some subgroups of $GL_n(2)$ generated by involutions I, J. Algebra, 54 (1978).
- [5] D. GOLDSCHMIDT, 2-fusion in finite groups, Ann. Math., 99 (1974).
- [6] D. GORENSTEIN, Finite Groups, Harper and Row, New York, 1968.
- [7] G. HIGMAN, Suzuki-2-groups, Ill. J. of Math. (1963).
- [8] Z. JANKO, A new finite simple group of order 86.775.571.046.077.562.880,
 J. Algebra, 42 (1976).
- [9] P. LANDROCK, Finite groups with a quasisimple component of type $PSU(3, 2^n)$ on elementary abelian form, Ill. J. of Math., **19** (1975).
- [10] J. MCLAUGHLIN, Some subgroups of $SL_n(F_2)$, Ill. J. of Math., 13 (1969).
- [11] R. MARKOT, A 2-local characterization of the simple group E, J. Algebra, 40 (1976).
- [12] D. PARROTT, On Thompson's simple group, J. Algebra, 46 (1977).
- [13] D. PARROTT, Characterizations of the Fischer groups II, to appear.
- [14] D. PARROTT, Characterization of the Fischer groups III, to appear.
- [15] R. REE, On some simple groups defined by C. Chevalley, Trans. Amer. Math. Soc., 84 (1957).
- [16] A. REIFARDT, A 2-local characterization of M(24)', .1 and J_4 , J. Algebra, 50 (1978).
- [17] U. SCHÖNWÄLDER, Finite groups with a Sylow-2-subgroup of type M₂₄ II, J. Algebra, 28 (1974).
- [18] B. STELLMACHER, Einige Gruppen, die von einer Konjugiertenklasse von Elementen der Ordnung 3 erzeugt werden, J. Algebra, 30 (1974).
- [19] TRAN VAN TRUNG, Eine Kennzeichnung der endlichen einfachen Gruppe J. von Janko durch eine 2-lokale Untergruppe, to appear.

Manoscritto pervenuto in redazione il 9 maggio 1979.