Rendiconti

del
 SEMINARIO MATEMATICO della Università di Padova

JURGEN BIERBRAUER

On a certain class of 2-local subgroups in finite simple groups

Rendiconti del Seminario Matematico della Università di Padova, tome 62 (1980), p. 137-163
http://www.numdam.org/item?id=RSMUP_1980__62__137_0
© Rendiconti del Seminario Matematico della Università di Padova, 1980, tous droits réservés.
L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On a Certain Class of 2-Local Subgroups in Finite Simple Groups.

Jurgen Bierbrauer (*)

The object of this paper is to study a class of special 2 -groups which occur as the maximal normal 2 -subgroups in 2 -local subgroups of finite simple groups.

Among these simple groups are the Chevalleygroups $D_{n}(2), n \geqslant 4$ and the Steinberg groups ${ }^{2} D_{n}(2), n \geqslant 4$ as well as the sporadic groups J_{4} and $M(24)^{\prime}$.

We consider a special group Q_{0} of order 2^{9} with elementary abelian center of order 8 , which admits $\Sigma_{3} \times L_{3}(2)$ as an automorphism group. Let $Q^{n}, n \geqslant 1$ denote the automorphism type of the central product of n copies of Q_{0}. We determine the automorphism group of Q^{n} and we show, that J_{4} contains a maximal 2-local subgroup of the form $Q^{2}\left(\Sigma_{5} \times L_{3}(2)\right)$ and that $M(24)^{\prime}$ contains a maximal 2 -local subgroup of the form $Q^{2}\left(A_{6} \times L_{3}(2)\right)$. The groups $D_{n}(2)$ resp. ${ }^{2} D_{n}(2)$ contain parabolic subgroups of the form $Q^{n-3}\left(D_{n-3}(2) \times L_{3}(2)\right)$ resp. $Q^{n-3}\left({ }^{2} D_{n-3}(2) \times\right.$ $\times L_{3}(2)$), which are maximal with the exception of the case $D_{4}(2)$.

These results and several characterizations of the groups Q^{n} by properties of groups of automorphisms are collected in the first part of the paper. The second part contains a characterization of $M(24)^{\prime}$ by the 2-local subgroup mentioned above. In [19] Tran van Trung gives an analogous characterization of Janko's group $\cdot J_{4}$.

Standard notation is like in [6]. In addition D_{8} resp. Q_{8} denotes the dihedral resp. quaternion group of order 8 and D_{8}^{n} resp. Q_{8}^{n} the
(*) Indirizzo dell'A.: Mathematisches Institut der Universität Heidelberg 69 Heidelberg, Im Neuenheimer Feld 288, W. Germany.
central product of n copies of D_{8} resp. Q_{8}. The central product with amalgamated centers of groups H and K is denoted $H * K$.

For a regular matrix A, the transposed-inverse of A shall be written A^{*}.

If an element g of the group G operates on some vectorspace V with fixed basis, the symbol g_{v} denotes the matrix giving the operation of g with respect to the fixed basis.

1. Properties of some 2 -groups.

(1.1) Lemma. Let Q be a p-group of class 2 and let N be an auto-morphism-group of Q such that $(|Q|,|N|)=1$. Assume further $\left[Q^{\prime}, N\right]=1$. Set $A=C_{Q}(N)$ and $B=[Q, N]$.

Then we have $Q=A *(B Z(Q))$.
Proof. This follows from the 3 -subgroup-lemma like in the case that Q is an extraspecial 2 -group and N a cyclic group of odd order [12, prop. 4].
(1.2) Lemma. Let Q be a special group of order 2^{9} with center Z of order 8 . Let n be an element of order 7, which operates fixed-pointfreely on Q. Assume further, that $\widetilde{Q}=Q / Z$ is the direct sum of two isomorphic irreducible $\langle n\rangle$-modules. Then Q is isomorphic to one of the following groups:
(1) a Suzuki-2-group of type (B);
(2) a central product of two Suzuki-2-groups of type (A) and order 2^{6}.
(3) a group of type $L_{3}(8)$;
(4) a group Q_{0} which has the following structure:

$$
Q_{0}=A B, \quad A \cong B \cong E_{64}, \quad A=A_{0} \oplus Z \quad \text { and } \quad B=B_{0} \oplus Z
$$

as $\langle n\rangle$-modules,

$$
Z=\left\langle z_{1}, z_{2}, z_{3}\right\rangle, \quad A_{0}=\left\langle x_{1}, x_{2}, x_{3}\right\rangle, \quad B_{0}=\left\langle y_{1}, y_{2}, y_{3}\right\rangle
$$

and

$$
\left[x_{i}, y_{j}\right]= \begin{cases}1 & \text { for } i=j \\ z_{r} & \text { for }\{i, j, r\}=\{1,2,3\}\end{cases}
$$

Q_{0} contains exactly 3 elementary abelian subgroups of order 64, namely A, B and $A+B=Z\left\langle x_{1} y_{1}, x_{2} y_{2}, x_{3} y_{3}\right\rangle$.

Proof. If Z is isomorphic as an $\langle n\rangle$-module to the irreducible submodules of Q, then it follows from [9, (2.5)], that Q is of type $L_{3}(8)$. So we shall assume, that Z is not isomorphic to a submodule of Q.
(1) Assume, that $Q-Z$ doesn't contain involutions. Then Q is a Suzuki-2-group of type (B) or (C) in the sense of [7].

If $49||\operatorname{Aut}(Q)|$, there is an element m of order 7 in $\operatorname{Aut}(Q)$, which centralizes Z. Because of (1.1), we have $C_{Q}(m)=Z$. This contradicts a result of Beisiegel [1]. So we have $49 \nmid|\operatorname{Aut}(Q)|$ for every Suzuki2 -group of type (B) or (C) and order 2^{9}.

It follows now from [7], that the Suzuki-2-groups of type (B) and order 2^{9} possess an automorphism n with the required properties, whereas the groups of type (C) and order 2^{9} don't.
(2) Assume, that $Q-Z$ contains exactly 7×8 involutions.

Let $H<Z,|H|=4$. The number of cosets in $\widetilde{Q}^{\#}$, which contain elements with square in H, is then $7+3 \times 56 / 7=31$.

It follows $Q / H \cong Z_{2} \times Z_{4} *\left(Q_{8}\right)^{2}$ or $Q / H \cong E_{8} \times Z_{4} * Q_{8}$. Let A denote the unique elementary abelian subgroup of order 2^{6} of Q.

Assume $Q / H \cong E_{8} \times Z_{4} * Q_{8}$. The maximal elementary abelian subgroups of Q / H have order 32 and we have $|A / H \cap Z(Q / H)| \geqslant 8$. It follows, that $|[x, Q]|=2$ for every $x \in A-Z$. This shows, that $\tilde{A} \underset{\langle n\rangle}{\widetilde{\langle n\rangle}}$, a contradiction. We have $Q / H \cong Z_{2} \times Z_{4} * Q_{8} * Q_{8}$.

Set $Q / H=\left\langle x_{1}\right\rangle \times\left\langle v_{1}\right\rangle * Q_{1} * Q_{2} H / H$, where $Q_{1} \cong Q_{2} \cong Q_{8}$.
Then $x_{1} \in A-Z, v_{1}^{2} \notin H$. Set $B=\left\langle v_{1}^{Q}\right\rangle$. Then B is isomorphic to the Suzuki-2-group of type (A) and order 2^{6}. As $\left[v_{1}, Q\right] \subseteq H$, we have $\left[v_{1}, Q\right]=\left[v_{1}, B\right]=H$.

Assume $\left[x_{1}, y_{1}\right] \neq 1$. Set $\left[x_{1}, y_{1}\right]=z_{1}$. We can choose bases $\left\{\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\},\left\{\tilde{y}_{1}, \tilde{y}_{2}, \tilde{y}_{3}\right\}$ and $\left\{z_{1}, z_{2}, z_{3}\right\}$ of \tilde{A}, \tilde{B} resp. Z, such that

$$
n_{\tilde{A}}=n_{\tilde{B}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \text { and } n_{z}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

We have $\left[x_{1}, y_{1}\right]=z_{1}$ and further commutator relations follow by application of the automorphism n. Especially

$$
z_{1} z_{3}=\left[x_{1} x_{2}, y_{1} y_{2}\right]=z_{1} z_{2}\left[x_{1}, y_{2}\right]\left[x_{2}, y_{1}\right]
$$

and thus $z_{2} z_{3} \in H$. It follows $H=\left\langle z_{1}, z_{2} z_{3}\right\rangle$. On the other hand

$$
z_{2} z_{3}=\left[x_{1} x_{3}, y_{1} y_{3}\right]=z_{1} z_{3}\left[x_{1}, y_{3}\right]\left[x_{3}, y_{1}\right]
$$

and thus $z_{1} z_{2} \in H$, a contradiction. We have $\left[x_{1}, y_{1}\right]=1$. If $|[x, Q]|=2$ for $x \in A-Z$, we get the contradiction $\tilde{A} \cong Z$ again. It follows

$$
\left[x_{1}, Q\right]=\left[x_{1}, B\right]=H=\left[y_{1}, Q\right]=\left[y_{1}, B\right]
$$

Set $x_{2}=x_{1}^{n}, x_{3}=x_{2}^{n}, y_{2}=y_{1}^{n}, y_{3}=y_{2}^{n}$. Then we can assume

$$
n_{\tilde{A}}=n_{\tilde{B}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

and we have $\left[x_{i}, y_{i}\right]=\left[x_{i} x_{i}, y_{i} y_{j}\right]=1$ and thus $\left[x_{i}, y_{j}\right]=\left[x_{j}, y_{i}\right]$ for $i . j \in\{1,2,3\}$. Set $\left[x_{1}, y_{2}\right]=\left[x_{2}, y_{1}\right]=z_{1}$ and $z_{1}^{n}=z_{2}, z_{2}^{n}=z_{3}$. Then

$$
n_{z}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

with respect to the basis $\left\{z_{1}, z_{2}, z_{3}\right\}$ and

$$
\left[x_{1} x_{3}, y_{1}\right]=\left[x_{1}, y_{2}\right]^{n^{-1}}=z_{1}^{n^{-1}}=z_{2} z_{3}
$$

Thus $\left[x_{1}, y_{3}\right]=z_{2} \cdot z_{3}$ and $H=\left\langle z_{1}, z_{2} z_{3}\right\rangle$. Further $\left[x_{2}, y_{3}\right]=z_{2}$. We have $y_{1} \notin H=\left\langle z_{1}, z_{2} z_{3}\right\rangle$. Assume $y_{1}^{2}=z_{1} z_{2}$. Then $y_{3}^{2}=z_{1},\left(y_{1} y_{3}\right)^{2}=$ $=z_{1} z_{2} z_{3}$ and $\left[y_{1}, y_{3}\right]=y_{1}^{2} y_{3}^{2}\left(y_{1} y_{3}\right)^{2}=z_{1} z_{3} \notin H$, a contradiction.

Similar calculations show $y_{1}^{2} \neq z_{3}$ and $y_{1}^{2} \neq z_{1} z_{3}$. It follows $y_{1}^{2}=z_{2}$, $y_{2}^{2}=z_{3}, y_{3}^{2}=z_{1} z_{3}$ and the group-table of Q is determined. We have $Q=\left\langle y_{1}, y_{2}, y_{3}\right\rangle *\left\langle x_{2} \cdot y_{2}, x_{3} y_{3}, x_{1} x_{2} y_{1} y_{2}\right\rangle$ and Q is a central product of two Suzuki-2-groups of type (A) and order 2^{6}.
(3) Assume, that $Q-Z$ contains exactly 14×8 involutions. Then $Q=A B$, where A and B are the only subgroups of Q isomorphic to E_{64}. Let $A=A_{0} \oplus Z$ and $B=B_{0} \oplus Z$ as $\langle n\rangle$-modules. Choose $x_{1} \in A_{0}^{\#}, y_{1} \in B_{0}^{\#}$ and set $z_{1}=\left[x_{1}, y_{1}\right]$. Then $z_{1} \neq 1$. Set further $x_{2}=x_{1}^{n}$,
$x_{3}=x_{2}^{n}, y_{2}=y_{1}^{n}, y_{3}=y_{2}^{n}, z_{2}=z_{1}^{n}, z_{3}=z_{2}^{n}$. We can assume, that

$$
n_{A_{0}}=n_{B_{0}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], \quad n_{z}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

with respect to the bases $\left\{x_{1}, x_{2}, x_{3}\right\},\left\{y_{1}, y_{2}, y_{3}\right\},\left\{z_{1}, z_{2}, z_{3}\right\}$ resp.
As $C_{Q}(a)=A$ and $C_{Q}(b)=B$ for elements $a \in A-Z, b \in B-Z$, we have $\left[x_{1}, y_{2}\right] \notin\left\{1, z_{1}, z_{2}\right\} \nexists\left[x_{2}, y_{1}\right]$. As

$$
z_{1} z_{3}=\left[x_{1} x_{2}, y_{1} y_{2}\right]=z_{1} z_{2}\left[x_{1}, y_{2}\right]\left[x_{2}, y_{1}\right]
$$

we have $\left[x_{1}, y_{2}\right]=z_{2} z_{3}\left[x_{2}, y_{1}\right]$ and thus $\left[x_{1}, y_{2}\right] \notin\left\{z_{2} z_{3}, z_{1} z_{2} z_{3}, z_{3}\right\}$. It follows

$$
\left\{\left[x_{1}, y_{2}\right],\left[x_{2}, y_{1}\right]\right\}=\left\{z_{1} z_{2}, z_{1} z_{3}\right\}
$$

Assume first, that $\left[x_{1}, y_{2}\right]=z_{1} z_{2},\left[x_{2}, y_{1}\right]=z_{1} z_{3}$. Then $\left[x_{2}, y_{3}\right]=z_{2} z_{3}$, $\left[x_{3}, y_{2}\right]=z_{1} z_{2} z_{3}$. As $z_{1}=\left[x_{3}, y_{1} y_{2}\right]=\left[x_{3}, y_{1}\right]\left[x_{3}, y_{2}\right]$, we have $\left[x_{3}, y_{1}\right]=$ $=z_{2} z_{3}$. From $\left[x_{3}, y_{2}\right]=z_{1} z_{2} z_{3}$ it follows $\left[x_{1} x_{2}, y_{3}\right]=z_{1} z_{2}$. Thus $\left[x_{1}, y_{3}\right]=$ $=z_{1} z_{3}$. Identify A_{0}, B_{0} and Z with the additive group of $G F(8)$, i.e. $A_{0}=\left\{x(\alpha) \mid \alpha \in G F^{\prime}(8)\right\}, \quad B_{0}=\{y(\alpha) \mid \alpha \in G F(8)\}, \quad Z=\{z(\alpha) \mid \alpha \in G F(8)\}$ with the obvious multiplication. Let λ be a generator of $G F(8)^{x}$. Interpret the operation of n on A_{0}, B_{0} resp. Z as multiplication with λ, λ^{4} resp. λ^{5}. Choose $x_{1}=x(1), y_{1}=y(1), z_{1}=z(1)$. It is then easy to check, that $[x(\alpha), y(\beta)]=z(\alpha \beta)$ for every $\alpha, \beta \in G F(8)$. Thus Q is of type $L_{3}(8)$ in this case.

If $\left[x_{1}, x_{2}\right]=z_{1} z_{3},\left[x_{2}, y_{1}\right]=z_{1} z_{2}$, we get the same result by a similar calculation. In this case, the operation of n on A_{0}, B_{0} resp. Z has to be interpreted as multiplication with λ, λ^{2} resp. λ^{3}.
(4) Assume, that $Q-Z$ contains exactly 21×8 involutions. Like under (3), let $Q=A B$, where $A \cong B \cong E_{64}$, let $A=A_{0} \oplus Z, B=$ $=B_{0} \oplus Z$ be the decompositions as $\langle n\rangle$-modules, $A_{0}=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, $B_{0}=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$, where $\boldsymbol{C}_{B_{0}}\left(x_{1}\right)=\left\langle y_{1}\right\rangle$ and

$$
n_{A_{0}}=n_{B_{0}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

with respect to the bases $\left\{x_{1}, x_{2}, x_{3}\right\}$ resp. $\left\{y_{1}, y_{2}, y_{3}\right\}$.

Assume $\left|\left[x_{1}, Q\right]\right|=2$, let $\left[v_{1}, w_{1}\right]=z_{1} \neq 1$ and $\left[v_{2}, w_{2}\right]=z_{2} \neq 1$ for $w_{1}, w_{2} \in B, v_{1}, v_{2} \in A_{0}, v_{1} Z \neq v_{2} Z$. Then $z_{1} \neq z_{2}$. Further $\left[v_{1} v_{2}, w_{1}\right] \in$ $\in z_{1}\left\langle z_{2}\right\rangle$ and thus $\left[v_{1} v_{2}, w_{1}\right]=z_{1} z_{2}$. This shows $\tilde{A} \underset{\langle n\rangle}{\cong} Z$, a contradiction. We have $|[x, Q]|=4$ for every $x \in Q-Z, x^{2}=1$. Set $\left[x_{1}, y_{2}\right]=z_{3}$ and $\left[x_{1}, y_{3}\right]=z_{2}$. It follows

$$
1=\left[x_{1} x_{2}, y_{1} y_{2}\right]=\left[x_{1}, y_{2}\right]\left[x_{2}, y_{1}\right], \quad 1=\left[x_{1}, y_{3}\right]\left[x_{3}, y_{1}\right]
$$

and thus $\left[x_{2}, y_{1}\right]=z_{3},\left[x_{3}, y_{1}\right]=z_{2}$. Further

$$
z_{2}^{n}=\left[x_{3}, y_{1}\right]^{n}=\left[x_{1} x_{2}, y_{2}\right]=z_{3}, \quad z_{3}^{n}=\left[x_{2} x_{3}, y_{3}\right]=\left[x_{2}, y_{3}\right] \notin\left\langle z_{2}, z_{3}\right\rangle
$$

Set $\left[x_{2}, y_{3}\right]=z_{1}$. With respect to the basis $\left\{z_{1}, z_{2}, z_{3}\right\}$ we have

$$
n_{z}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

The structure of Q is now uniquely determined. Let $H<Z,|H|=4$. Then Q contains exactly $21+3 \times 42 / 7=39$ cosets which contain elements with square in H. It follows $Q / H \cong E_{4} \times\left(Q_{8}\right)^{2}$.
(5) Assume $Q-Z$ contains more than 21×8 involutions. Then $Q=A B, A \cong B \cong E_{64}$ and for $x \in A-Z$ we have $\left|C_{B}(x)\right|=2^{5}$. It follows $|[x, Q]|=2$ and $\tilde{A} \cong Z$ as $\langle n\rangle$-modules, a contradiction.
(1.3) Lemma. Let Q be a special 2 -group of order 2^{9} with elementary abelian center Z of order 8 . Let F be a Frobenius-group of order 21 operating on $Q, F=\langle n, r\rangle, n^{7}=r^{3}=1, n^{r}=n^{2}$. Assume, that n operates fixed-point-freely on Q and that $C_{Q}(r) \cong E_{8}$. Then Q is isomorphic to the group Q_{0} in (1.2) (4) and the operation of F on Q is uniquely determined.

Proof. Let \tilde{V} be an irreducible F-submodule of $\tilde{Q}=Q / Z$. The operation of r shows, that $V-Z$ contains involutions. Thus $\tilde{V}=E_{64}$. We have $Q=A B, A \cong B \cong E_{64}, A \cap B=Z$ and F normalizes A and B.

Set $\boldsymbol{C}_{\boldsymbol{z}}(r)=\left\langle z_{1}\right\rangle, \boldsymbol{C}_{\boldsymbol{A}}(r)=\left\langle z_{1}, x_{1}\right\rangle, \boldsymbol{C}_{B}(r)=\left\langle y_{1}, z_{1}\right\rangle$.
Assume $\tilde{A} \underset{\langle\overline{\bar{n}}}{\cong} \tilde{B}$. Then we can choose bases $\left\{\tilde{x}_{1}, \tilde{x}_{2}, \tilde{x}_{3}\right\},\left\{\tilde{y}_{1}, \tilde{y}_{2}, \tilde{y}_{3}\right\}$,
$\left\{z_{1}, z_{2}, z_{3}\right\}$ of \tilde{A}, \tilde{B} resp. Z such that

$$
n_{\tilde{A}}=n_{z}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], n_{\tilde{B}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] .
$$

It follows

$$
r_{\tilde{A}}=r_{z}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right], r_{\tilde{B}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right] .
$$

We have

$$
\left[x_{1}, y_{1}\right]=1, \quad\left[x_{1},\left\langle y_{1} y_{2}, y_{1} y_{3}\right\rangle\right]=\left[y_{1},\left\langle x_{1}, x_{2}\right\rangle\right]=\left\langle z_{2}, z_{3}\right\rangle
$$

Assume $\left[x_{1}, y_{1} y_{2}\right]=z_{2}$. Then

$$
\left[x_{1}, y_{1} y_{3}\right]=z_{3}, \quad\left[x_{2}, y_{1}\right]=\left[x_{1}, y_{2} y_{3}\right]^{n}=\left(z_{2} z_{3}\right)^{n}=z_{1} z_{2} z_{3}
$$

a contradiction. The same calculation shows $\left[x_{1}, y_{1} y_{2}\right] \neq z_{2} z_{3}$.
Thus $\left[x_{1}, y_{1} y_{2}\right]=z_{3},\left[x_{1}, y_{1} y_{3}\right]=z_{2} z_{3},\left[x_{2}, y_{1}\right]=z_{2}^{n}=z_{3}$.
On the other hand

$$
\begin{gathered}
{\left[x_{1}, y_{2}\right]^{n}=\left[x_{1} x_{3}, y_{1}\right]=z_{3}^{n^{-1}}=z_{2},} \\
{\left[x_{1}, y_{3}\right]^{n^{-2}}=\left[x_{1} x_{2} x_{3}, y_{1}\right]=\left(z_{2} z_{3}\right)^{n^{-2}}=z_{3}}
\end{gathered}
$$

and thus $\left[x_{2}, y_{1}\right]=z_{2} z_{3}$, a contradiction. We have $\tilde{A} \underset{\langle n\rangle}{\simeq} \tilde{B}$. It follows from (1.2), that Q is isomorphic to the group Q_{0} of (1.2) (4) and that the operation of n on Q is uniquely determined. Choose notation for Q_{0} and for the operation of n line in (1.2) (4).

Then

$$
r_{\tilde{A}}=r_{\tilde{B}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right], \quad r_{z}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 1 & 0
\end{array}\right]=\left(r_{\tilde{A}}\right)^{*}
$$

(1.4) Example. Let D be the Dempwolffgroup, i.e. the unique nonsplit extension of E_{32} by $L_{5}(2)$ [3]. For a description of D see [11]. Let $V=O_{2}(D) \cong E_{32}, X<V,|X|=4$. Then $N_{D}(X) / V$ has the structure $E_{64}\left(\Sigma_{3} \times L_{3}(2)\right)$. Let $R_{1}=O_{2}\left(N_{D}(X)\right)$. Then $\tilde{R}_{1}=R_{1} / X$ is isomorphic to Q_{0} and $N_{D}(X) / X$ is a split extension of \widetilde{R}_{1} by $\Sigma_{3} \times L_{3}(2)$

From now on Q_{0} denotes the group given in (1.2) (4). We shall now describe the automorphism group of Q_{0}.
(1.5) Corollary. Let $A=\operatorname{Aut}\left(Q_{0}\right), B=\{a \mid a \in A,[a, Z]=1\}$, $C=\left\{a \mid a \in A,\left[a, Q_{0}\right] \subseteq Z\right\}$. Then B and C are normal subgroups of A. We have $C<B, C \cong E_{2} 18, B / C \cong \Sigma_{3}, A / B \cong L_{3}(2), A / C \cong \Sigma_{3} \times L_{3}(2)$.

Proof. It follows from (1.4), that $A / B \cong L_{3}(2)$. An automorphism of Q_{0}, which induces the identity on Z and operates on each of the three E_{64}-subgroups of Q_{0} has to lie in C. Thus $B / C \cong \Sigma_{3}$ and C is the kernel of the representation of B on the set of E_{64}-subgroups of Q_{0} : Clearly $C \cong E_{2} 18$.

The following is probably well known
(1.6) Lemma. Let $V \cong E_{64}, L \cong L_{3}(2)$. Let L operate on V, Z an irreducible L-submodule of V. Assume, that Z and V / Z are nonisomorphic natural L-modules. Then either V is a completely reducible L-module or V is a uniquely determined indecomposable L-module. Choose $\langle n, r\rangle<L$ such that $n^{7}=r^{3}=1, n^{r}=n^{2}, Z=\left\langle z_{1}, z_{2}, z_{3}\right\rangle$ and let $V=Z \oplus V_{0}$ as an $\langle n, r\rangle$-module. We can choose a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ of V_{0}, such that

$$
n_{V_{0}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], \quad r_{V_{0}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

and for every $x \in L$ we have $x_{z}=\left(x_{V / Z}\right)^{*}$. Choose $t \in L$ such that

$$
t_{z}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Then $t_{z}=t_{V / Z}$. If V is an indecomposable L-module we have $v_{1}^{t}=v_{1}$, $v_{2}^{t}=v_{3} z_{2}, v_{3}^{t}=v_{2} z_{3}$. Then $\boldsymbol{C}_{V}(t)>\boldsymbol{C}_{V}(r)$ and thus $\left|C_{V}(t)\right|=16$.
(1.7) Let L operate on Q_{0}, where $L \cong L_{3}(2)$. Fix $F<L, F \cong F_{21}$. $F=\langle n, r\rangle, n^{7}=r^{3}=1, n^{r}=n^{2}$. Then $C_{Q_{0}}(r) \cong E_{8}$ and one of the following holds:
(1) L operates completely reducibly on two of the E_{64}-subgroups of Q_{0} and indecomposably on the third.
(2) L operates indecomposably on all of the E_{64}-subgroups of Q_{0}.

We shall refer to the operations under (1) resp. (2) as operations of «dihedral» resp. «quaternion» type.

Proof. Clearly n operates fixed-point-freely on Q_{0} and $C_{Q_{0}}(r) \cong E_{8}$. We choose notation like in (1.3). Let $t \in L$ such that

$$
t_{\tilde{A}}=t_{\tilde{B}}=t_{z}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

Then $(t r)^{2}=(t n)^{3}=1$.
(α) Assume, that L operates completely reducibly on A, i.e. L operates on $A_{0}=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$.
$\left(\alpha_{1}\right)$ Assume, that L operates on $B_{0}=\left\langle y_{1}, y_{2}, y_{3}\right\rangle$. The F-complement of Z in $A+B$ is $(A+B)_{0}=\left\langle x_{1} y_{1} z_{1}, x_{2} y_{2} z_{1} z_{2}, x_{3} y_{3} z_{1} z_{2} z_{3}\right\rangle$. We have $\left(x_{1} y_{1} z_{1}\right)^{t}=x_{1} y_{1} z_{1}, \quad\left(x_{2} y_{2} z_{1} z_{2}\right)^{t}=\left(x_{3} y_{3} z_{1} z_{2} z_{3}\right) z_{2}$ and $\left(x_{3} y_{3} z_{1} z_{2} z_{3}\right)^{t}=$ $=x_{2} y_{2} z_{1} z_{2} \cdot z_{3}$. Thus $A+B$ is an indecomposable L-module.
$\left(\alpha_{2}\right)$ Assume, that B is an indecomposable L-module. Then we see like above, that $A+B$ is a completely reducible L-module.
(β) Let L operate indecomposably on A, B and $A+B$. With respect to the basis $\left\{x_{1}, x_{2}, x_{3}, z_{1}, z_{2}, z_{3}\right\}$ resp. $\left\{y_{1}, y_{2}, y_{3}, z_{1}, z_{2}, z_{3}\right\}$ we have then

$$
t_{A}=t_{B}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

Set $t_{1}=t^{r^{-1} n^{2}}, t_{2}=t^{r^{-1} n^{5}}$. Then

$$
\begin{aligned}
&\left(t_{1}\right)_{A}=\left(t_{1}\right)_{B}=\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right], \\
&\left(t_{2}\right)_{A}=\left(t_{2}\right)_{B}=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

We note, that in both cases, (α) and $(\beta), C_{Q_{0}}(t) \cong Z_{2} \times\left(D_{8}\right)^{2}, C_{Q_{0}}\left(t, t_{2}\right) \cong$ $\cong\left(D_{8}\right)^{2}$ and $C_{Q_{0}}\left(t, t_{1}\right) \cong E_{16}$.

The following is easily verified:
(1.8) Lemma. Let the operation of L on Q_{0} be of dihedral type, where $L \cong L_{3}(2)$. Choose notation like in (1.7) $\left(\alpha_{1}\right)$. Then $\left\langle F, x_{1} y_{2} t\right\rangle$. $\cdot Z / Z \cong L_{3}(2)$ and the operation of $\left\langle F, x_{1} y_{1} t\right\rangle Z / Z$ on Q_{0} is of quaternion type.
(1.9) Notation. Let Q^{n} denote the isomorphism-type of the central product (with amalgamated centers) of n copies of Q_{0} and let Q_{i}, $1 \leqslant i \leqslant n$ be groups which are isomorphic to Q_{0}. Further $\varphi_{i}, 1 \leqslant i \leqslant n$ are isomorphisms from Q_{0} on Q_{i}. Consider $Q=Q_{1} * Q_{2} * \ldots * Q_{n} \cong Q^{n}$. We can assume $\boldsymbol{Z}=\boldsymbol{Z}\left(Q_{0}\right)=\boldsymbol{Z}\left(Q_{i}\right)=\boldsymbol{Z}(Q), 1 \leqslant i \leqslant n,\left.\varphi_{i}\right|_{z}=1_{z}$ and we set $\varphi_{i}\left(x_{j}\right)=v_{i}^{(j)}, \varphi_{i}\left(y_{j}\right)=v_{-i}^{(j)}, 1 \leqslant i \leqslant n, j=1,2,3$. Set $A=\operatorname{Aut}(Q)$, $B=\{a \mid a \in A,[a, Z]=1\}, C=\{a \mid a \in A,[a, Q] \subseteq Z\}$. Here the index « n » is omitted as no confusion will occur. We set $\tilde{Q}=Q / Z$ and identify \widetilde{Q} with a subgroup of A. Then $\widetilde{Q}<C<B<A$ and the groups B, C are normal subgroups of A. Further $A / B \cong L_{3}(2)$.

Set
$V_{i}=\varphi_{i}(A), \quad V_{i}^{(0)}=\varphi_{i}\left(A_{0}\right), \quad V_{-i}=\varphi_{i}(B), \quad V_{-i}^{(0)}=\varphi_{i}\left(B_{0}\right), \quad 1 \leqslant i \leqslant n$,

For elements α_{i}, α_{-i} of $G F(2)$, not all zero, set

$$
\sum_{1}^{n} \alpha_{i} V_{i}+\alpha_{-i} V_{-i}=Z\left\langle\prod_{1}^{n}\left(v_{i}^{(k) \alpha_{i}} \cdot v_{i}^{(k) \alpha_{-i}}\right), k=1,2,3\right\rangle \cong E_{64}
$$

Set $\sum_{1}^{n} O V_{i}+O V_{-i}=0$.
Consider the set $\mathbf{3}=\left\{V\left|V=\sum_{1}^{n}\left(\alpha_{i} V_{i}+\alpha_{-i} V_{-i}\right)\right| \alpha_{i}, \alpha_{-i} \in G F(2)\right\}$. Then \mathfrak{B} is a $G F(2)$-vectorspace with respect to the addition

$$
\begin{aligned}
\left(\sum_{1}^{n} \alpha_{i} V_{i}+\alpha_{-i} V_{-i}\right)+\left(\sum_{1}^{n} \beta_{i} V_{i}+\beta_{-i} V_{-i}\right) & = \\
= & \sum_{1}^{n}\left(\alpha_{i}+\beta_{i}\right) V_{i}+\left(\alpha_{-i}+\beta_{-i}\right) V_{-i}
\end{aligned}
$$

The set $\left\{V_{i} \mid 1 \leqslant i \leqslant n\right\} \cup\left\{V_{-i} \mid 1 \leqslant i \leqslant n\right\}$ is a basis of $\mathfrak{2}$. We consider further the non-singular scalar product (,) on \mathfrak{B} given by $(V, W)=0$ if $V=0$ or $W=0$ or $[V, W]=\langle 1\rangle$ and $(V, W)=1$ otherwise.

For $x \in A_{0}=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ set $E_{x}=Z\left\langle\varphi_{i}(x), \varphi_{i}\left(C_{B_{0}}(x)\right) \mid 1 \leqslant i \leqslant n\right\rangle$. Then $E_{x} \cong E_{2} 2 n+3 . \quad$ Set $\quad E_{j}=E_{x_{j}}=Z\left\langle v_{1}^{(j)}, v_{-1}^{(j)}, \ldots, v_{n}^{(j)}, v_{-n}^{(j)}\right\rangle, \quad j=1,2,3$. We have $\left[E_{j}, \boldsymbol{E}_{k}\right]=\left\langle z_{r}\right\rangle$, where $\{j, k, r\}=\{1,2,3\}$.

Set $E_{j}^{(0)}=\left\langle v_{1}^{(j)}, v_{-1}^{(j)}, \ldots, v_{n}^{(j)}, v_{-n}^{(j)}\right\rangle, j=1,2,3$ and

$$
E_{1}^{(1)}=E_{1}^{(0)}\left\langle z_{1}\right\rangle, \quad E_{2}^{(1)}=E_{2}^{(0)}\left\langle z_{1} z_{2}\right\rangle, \quad E_{3}^{(1)}=E_{3}^{(0)}\left\langle z_{1} z_{2} z_{3}\right\rangle .
$$

For $i \in\{1,2, \ldots, n\}$ let $B_{\imath}=\left\langle b_{i}, b_{-i}\right\rangle<B$ with $\left[B_{i}, Q_{i}\right]=1$ for $j \neq i$, $\left[b_{\imath}, V_{-i}\right]=1=\left[b_{-i}, V_{i}\right]$ and

$$
\begin{array}{lll}
v_{i}^{(1) b_{i}}=v_{i}^{(1)} v_{-i}^{(1)} z_{1}, & v_{i}^{(2) b_{i}}=v_{i}^{(2)} v_{-i}^{(2)} z_{1} z_{2}, & v_{i}^{(3) b_{i}}=v_{i}^{(3)} v_{-i}^{(3)} z_{1} z_{2} z_{3} \\
v_{-i}^{(1) b_{i}}=v_{i}^{(1)} v_{-i}^{(1)} z_{1}, & v_{-i}^{(2) b_{i}}=v_{i}^{(2)} v_{-i}^{(2)} z_{1} z_{2}, & v_{-i}^{(3) b_{i}}=v_{i}^{(3)} v_{-i}^{(3)} z_{1} z_{2} z_{3} .
\end{array}
$$

Then $b_{i}^{2}=b_{-i}^{2}=1, B_{i} \cong \Sigma_{3}$ and $\left[B_{i}, B_{j}\right]=1$ for $i \neq j$.
Let L be a complement of B in $A=\operatorname{Aut}(Q)$.
(1.10) Lemma. Let $q \in Q-Z$. Then $[q, Q] \neq Z$ is equivalent to $q \in E_{x}$ for an $x \in A_{0}^{\#}$. Especially, $\bigcup E_{x}, x \in A_{0}$, is a characteristic subset of Q. We have $\left[E_{x}, Q\right]=[q, Q]$ for every $q \in E_{x}-Z$. It follows $B \leqslant N\left(E_{x}\right)$ for every $x \in A_{0}^{\#}$.

Proof. Let $q \in Q-Z, \tilde{q}=\tilde{q}_{1} \ldots \tilde{q}_{n}, \tilde{q}_{i} \in \widetilde{Q}_{i}$. If $q_{i}^{2}=1$ for an inverse image q_{i} of \tilde{q}_{i}, we have $Z=\left[q_{i}, Q_{i}\right] \subseteq\left[q, Q_{i}\right] \subseteq[q, Q]$.

Assume $[q, Q] \neq Z$. Then $q_{i}^{2} \neq 1,1 \leqslant i \leqslant n$ and $\left[q_{i}, Q_{i}\right]=\left[q_{j}, Q_{j}\right]$ wherever $q_{i} \notin Z$ and $q_{j} \notin Z$. This shows $q_{j} \in E_{x}$ for an $x \in A_{0}^{\#}$.
(1.11) Lemma. $C \cong E_{2} 18 n, B=C B_{0}, B_{0} \cong S p(2 n, 2), B_{0} \cap C=1$, $A / B \cong L_{3}(2)$.

Proof. It is clear, that $C \cong E_{2} 18 n$ and $A / B \cong L_{3}(2)$. Let $X \in$ $\in \mathfrak{B}-\{0\}$. Then X satisfies the following conditions:
(α) $Z<X \cong E_{64}$.
(β) $C_{0}(X)=X_{0} \times R$, where X כ $X_{0} \cong E_{8}, R \cong Q^{n-1}$.
(γ) $Q=R_{1} * R$, where $X \subset R_{1} \cong Q_{0}$.
(δ) $\left|E_{x}: E_{x} \cap C(X)\right|=2$ for each $x \in A_{0}^{\#}$.
(ε) For every $x_{1}, x_{2} \in X-Z$ such that $x_{1} Z \neq x_{2} Z$, we have

$$
\boldsymbol{C}_{Q}(X)=C_{Q}\left(x_{1}\right) \cap C_{0}\left(x_{2}\right) \neq C_{Q}\left(x_{1}\right)
$$

Consider the set $\boldsymbol{M}=\{X \mid X<Q, X$ satisfies conditions $(\alpha)-(\varepsilon)\}$.
(1) $\boldsymbol{M}=\mathfrak{2}-\{0\}:$ let $X \in M$. For $x \in X$ write $x Z=\prod_{1}^{n} x_{i} Z$, $x_{i} \in Q_{i}$. Assume $[x, Q]=Z$. Then $\left|Q: C_{Q}(x)\right|=8$ and $C_{Q}(x)=\boldsymbol{C}_{Q}(X)$ by (β), a contradiction to (ε). Thus $x \in E_{v}, y \in A_{0}^{*}$ by (1.10). It follows from (γ), that we can write $X=Z \times X_{0}, X_{0}=\langle q, r, s\rangle=E_{8}$, $q \in E_{1}, \quad r \in E_{2}, s \in E_{3} . \quad B y(\delta)$ we have $C(X) \cap\left\langle v_{i}^{(j)}, v_{-i}^{(j)}\right\rangle \neq\langle 1\rangle$ for every $j \in\{1,2,3\}$. Choose $i \in\{1,2, \ldots, n\}$.

Assume $\left\langle v_{i}^{(j)}, v_{-i}^{(j)}\right\rangle \leqslant C_{0}(X)$ for a $j \in\{1,2,3\}$. Without restriction we can choose $j=1$. It follows $\left\langle r_{i}, s_{i}\right\rangle<Z$ and from (ε) we get $Q_{i} \leqslant C_{0}(r) \cap C_{Q}(s)=C_{Q}(X)$ and thus $q_{i} \in Z$. We now choose $i \in$ $\in\{1,2, \ldots, n\}$ such that $\left\langle q_{i}, r_{i}, s_{i}\right\rangle \not \approx Z$. By the above we have $\left|\left\langle v_{i}^{(j)}, v_{-i}^{(i)}\right\rangle \cap C(X)\right|=2$ for every $j \in\{1,2,3\}$ and $\langle x, y\rangle \$ Z$ for every $\{x, y\} \subseteq\left\{q_{i}, r_{i}, s_{i}\right\}$ such that $x \neq y$. Without loss $v_{i}^{(1)} \in \boldsymbol{C}(V)$. It follows $r_{i} \in\left\langle v_{i}^{(2)}\right\rangle Z, s_{i} \in\left\langle v_{i}^{(3)}\right\rangle Z$. Assume $s_{i} \in \boldsymbol{Z}$. Then $\boldsymbol{C}_{Q_{i}}(X)=\boldsymbol{C}_{Q_{i}}\left(r_{i}\right)=$ $=\boldsymbol{C}_{Q_{i}}\left(q_{i}\right)$ by (ε). It follows $\left\langle r_{i}, q_{i}\right\rangle \leqslant Z$, a contradiction.

We have $r_{i} \in v_{i}^{(2)} Z s_{i} \in v_{i}^{(3)} Z$. It follows $q_{i} \in\left\langle v_{i}^{(1)}\right\rangle Z$ and by the same operation as above $q_{i} \in v_{i}^{(1)} Z$. This holds for every $i \in\{1,2, \ldots, n\}$ such that $\left\langle q_{i}, r_{i}, s_{i}\right\rangle \neq Z$. This shows $X \in \mathfrak{B}-\{0\}$. We have shown $\boldsymbol{M}=\mathbf{B}-\{0\}$.
(2) It follows from (1), that the automorphism-group B operates on $\mathfrak{3}$. Further B respects the linear structure and the symplectic scalar product of \mathfrak{B}. The kernel of this representation of B is exactly C, as $\langle X \mid X \in \mathfrak{3}-\{0\}\rangle=Q$ and $A / B \cong L_{3}(2)$. Hence B / C is isomorphic to a subgroup of $S p(2 n, 2)$.
(3) Define a symplectic non-singular scalar-product on $E_{i}^{(0)}$ over $G F(2)$ by $\left(v_{k}^{(i)}, v_{r}^{(i)}\right)=1$ exactly if $k=-r$ (and 0 otherwise). Let $B_{0} \cong S p(2 n, 2)$ and let B_{0} be represented in the natural way on $E_{1}^{(0)}, E_{2}^{(0)}$ and $E_{3}^{(0)}$. Let $q \in Q$. Then q possesses a unique representation of the form $q=q_{1} q_{2} q_{3} z, q_{i} \in E_{i}^{(0)}, z \in Z, i=1,2,3$. We extend the operation of B_{0} on Q by setting $q^{b}=q_{1}^{b} q_{2}^{b} q_{3}^{b} z$ for $b \in B_{0}$. It is now easy to see, that B_{0} is a group of automorphisms of Q.
(1.12) Lemma. Let Q be a special 2 -group, $Z(Q)=Z \cong E_{8}$ and let a group $L, L \cong L_{3}(2)$, operate nontrivially on Q. Suppose $\widetilde{Q}=\boldsymbol{Q} / \boldsymbol{Z}=\tilde{V}_{1} \oplus \ldots \oplus \tilde{\bar{V}}_{m}$ as an L-module such that $\tilde{\nabla}_{i} \cong \tilde{V}_{j} \nleftarrow \boldsymbol{Z}$ for $i, j \in\{1, \ldots, n\}$. Here \tilde{V}_{i} and Z are natural L-modules.

Then $m=2 n$ and $Q \cong Q^{n}$. If r is an element of order 3 in L, then $C_{Q}(r) \cong E_{2} 2 n+1$.

Proof. (1) Let $\tilde{V} \subset \widetilde{Q}$ be an irreducible L-submodule and V be the inverse image of \tilde{V}. Then V cannot be a Suzuki-2-group of (A)-type as $L_{3}(2)$ operates on V. As $\tilde{V} \nsucc Z$ as an L-module, we must have $V \cong E_{64}$. It follows $C_{Q}(r) \cong E_{2} m+1$, when r is an element of order 3 in L.
(2) Consider \widetilde{Q} as a $G F(2)$-vectorspace. Then it is easy to see, that $X=C(L) \cap \operatorname{Aut}(\widetilde{Q}) \cong L_{m}(2)$ and $\left|\left\{\widetilde{V}_{1}^{x} \mid x \in X\right\}\right|=2^{m}-1$. Set $\boldsymbol{\mathfrak { B }}^{\prime}=\left\{V_{\mathbf{1}}^{\boldsymbol{x}} \mid \boldsymbol{x} \in X\right\}$.
(3) $\mathfrak{B}^{\prime}=\{V \mid V<Q, \tilde{V}$ is an irreducible L-submodule of $\widetilde{Q}\}$. Let $\mathfrak{B}^{\prime}=\{V \mid V<Q, \tilde{V}$ an irreducible L-submodule of $\tilde{Q}\}$.

Clearly $\mathfrak{B}^{\prime} \subseteq \mathfrak{B}^{\prime}$. Let $V \in \mathfrak{B}^{\prime}$ and let τ be an L-isomorphism of \tilde{V} on \tilde{V}_{1}. Then τ can be extended to an L-isomorphism of \widetilde{Q}, that is $\tau \in X$.
(4) Set $\mathfrak{B}=\mathfrak{B}^{\prime} \cup\{0\}$. Then \mathfrak{B} is an $G F(2)$-vectorspace by the following definition: $0+V=V+0=V, V+V=0$ for $V \in \mathbf{B}$. Let $V, W \in \mathfrak{B}^{\prime}$ such that $V \neq W$. Then $\widetilde{V+W}$ is defined as the unique irreducible L-submodule of $\langle\tilde{V}, \tilde{W}\rangle$ which is different from \tilde{V} and \tilde{W}. Then clearly $V+W=W+V$. The associativity of the so defined addition is easily proved with the help of the fact, that a 9 -dimensional L-invariant subspace of \widetilde{Q} contains exactly 7 irreducible L-submodules.
(5) We define a symplectic non-singular $G F(2)$-scalar product $($,$) on \mathfrak{B}$ by $(0,0)=(0, V)=(V, 0)=0$ and, for $V, W \in \mathfrak{B}^{\prime},(V, W)=0$ if and only if $[V, W]=1$.

Clearly $(V, W)=(W, V)$ and $(V, V)=0$. We show $(A+B, C)=$ $=(A, C)+(B, C)$ for all $A, B, C \in \mathfrak{A}$. We can assume $0 \notin\{A, B, C\}$ and $A \neq B$.

If $[A, C]=1=[B, C]$, we have $[A+B, C]=1$, as $A+B \leqslant$ $\leqslant\langle A, B\rangle$. If $[A, C]=1 \neq[B, C]$, we have $[A+B, C] \neq 1$.

So we can assume $[A, C] \neq 1 \neq[B, C]$, and we have to show $[A+B, C]=1$. This however follows directly from the structure of Q_{0}, as $\langle A, C\rangle \cong\langle B, C\rangle \cong Q_{0}$. As $Q=\left\langle V \mid V \in \mathfrak{B}^{\prime}\right\rangle$, it is clear that $($,$) is non-singular.$
(6) It follows $m=\operatorname{dim} \mathfrak{B}=2 n$. Let $\mathfrak{B}=\mathfrak{B}_{1} \oplus \mathfrak{B}_{2} \oplus \ldots \oplus \mathfrak{B}_{n}$ be a decomposition of \mathfrak{B} in hyperbolic planes with respect to (,). Then $Q=Q_{1} * Q_{2} * \ldots * Q_{n}$, where $Q_{i}=\left\langle V \mid V \in \mathfrak{B}_{i}-\{0\}\right\rangle$. The group Q_{i} is special of order 2^{9} with center Z. The operation of an element of order 7 and (1.2) show $Q_{i} \cong Q_{0}, 1 \leqslant i \leqslant n$. Thus $Q \cong Q^{n}$.

The following lemma gives further motivation for the term «dihedral type» resp. "quaternion type». introduced in (1.7).
(1.13) Lemma. Let $Q=Q_{1} * Q_{2} \cong Q^{2}$ like in (1.9) for $n=2$. Let $L \cong L_{3}(2)$ and assume the operation of L on Q_{1} and Q_{2} is of quaternion type like in (1.7) (2). Then we can choose $R_{1}, R_{2}<Q, R_{1} \cong R_{2} \cong Q_{0}$, $Q=R_{1} * R_{2}$, such that L operates on $R_{i}, i=1,2$, and the operation of L on R_{i} is of dihedral type.

Proof. Let φ_{i} be the isomorphism from Q_{0} on $Q_{i}, i=1,2$, and let the operation of L on Q_{i} be like in (1.7) (2).

Set $R_{1}=\left\langle V_{1}, V_{-1}+V_{-2}\right\rangle, R_{2}=\left\langle V_{1}+V_{2}, V_{-2}\right\rangle$.
From (1.12) and (1.13) we get the following
(1.14) Corollary. Let L be a complement of B in $A=\operatorname{Aut}(Q)$ such that the operation of L on Q satisfies the hypothesis of (1.12). Then L is conjugate in A to one of the following two automorphismgroups of Q (notation like in (1.9)).
(1) L_{+}, where the operation of L_{+}on $Q_{i}, 1 \leqslant i \leqslant n$ is of dihedral type like given in (1.7) (1).
(2) L_{-}, where the operation of L_{-}on Q_{i} is of dihedral type like above for $2 \leqslant i \leqslant n$ and of quaternion type like in (1.7) (2) for $i=1$,
(1.15) Lemma. Consider the subgroups L_{+}and L_{-}of A as introduced in (1.14). Then $L_{+} \cap L_{-}=F \cong F_{21}$ and $F=\langle n, r\rangle$, where $n^{7}=$ $=r^{3}=1, n^{r}=n^{2}$ and the operation of F on Q_{i} is described in (1.7), $1 \leqslant i \leqslant n$. We have $\boldsymbol{C}_{B}(F)=\boldsymbol{C}_{B}(n)=B^{*} \cong S p(2 n, 2)$ and B^{*} is a complement of C in B.

Further $E_{i}^{(1)}$ is an indecomposable B^{*}-module, $i=1,2,3$ and $\boldsymbol{C}_{A}\left(L_{\varepsilon}\right)=\boldsymbol{C}_{B}\left(L_{\varepsilon}\right)=B_{\varepsilon}^{*} \cong O^{\varepsilon}(2 n, 2)$, where $\varepsilon \in\{+,-\}$.

Proof. It follows from (1.7), that $L_{+} \cap L_{-}=F \cong F_{21}$. As it is easy to see, that n operates fixed-point-freely on C, we have that $C_{B}(n)$ is isomorphic to a subgroup of $S p(2 n, 2)$. The group B / C is represented in the natural way on the vector-space E_{1} / Z and the complement B_{0} of C in B is represented on the complement $E_{1}^{(0)}$ of Z in E_{1} (1.11). Fix the basis $\left\{v_{1}^{(1)}, v_{2}^{(1)}, \ldots, v_{n}^{(1)}, v_{-1}^{(1)}, \ldots, v_{-n}^{(1)}\right\}$ for $E_{1}^{(0)}$ and the analogous basis for E_{1} / Z. Identify each element of B / C resp. B_{0} with the matrix representing the operation of the element with respect to the above basis. Then B / C resp. B_{0} is generated by the matrices of the following form (see [15]):
(1) $I+e_{i j}+e_{-j,-i}$
(2) $I+e_{-,,-j}+e_{j i}$
(3) $I+e_{i,-j}+e_{j,-,}$
(4) $I+e_{-\imath, j}+e_{-j, i}$
(5) $I+e_{i,-i}$
(6) $I+e_{-\iota, i}, \quad 0<i<j \leqslant n$.

Here I denotes the $(2 n, 2 n)$-unit matrix and $e_{k r}$ denotes the matrix with entry 1 at the intersection of row k and column r and 0 otherwise. Let $B_{+}^{* \prime}$ be the subgroup of B_{0} generated by the elements which correspond to the matrices of forms (1)-(4). Then $B_{+}^{* \prime} \cong \Omega^{+}(2 n, 2)$. Set $B^{*}=\left\langle B_{+}^{* \prime}, B_{1} \times B_{2} \times \ldots \times B\right\rangle$. The involutoric generators of B_{i}, $1 \leqslant i \leqslant n$ (1.9) are elements of B, which are not contained in B_{0}. They correspond to the matrices of forms (5) and (6). It follows from (1.9), that B^{*} operates on $E_{i}^{(1)}$. This operation is clearly indecomposable. Further it is a matter of direct calculation, that $B^{*} \leqslant \boldsymbol{C}(F)$. As $C_{C}(n)=1$, we have $C_{B}(n)=C_{B}(F)=B^{*} \cong S p(2 n, 2)$.

Let $q_{\varepsilon}, \varepsilon \in\{+,-\}$ be defined on the vector space $\mathfrak{2}$ with values in $G F(2)$ by $q_{\varepsilon}(0)=0$ and $q_{\varepsilon}(V)=0$ if and only if L_{ε} operates completely reducibly on V for $V \in \mathbf{B}^{\prime}$.

It is then easy to see with the help of (1.7), that q_{ε} are quadratic forms on $\mathbf{N z}$ with respect to the scalar product (,). Let $V \in \mathbf{B}$, $V=\sum_{7}^{n}\left(x_{i} V_{i}+x_{-i} V_{-i}\right)$. Then $q_{+}(V)=\sum_{7}^{n} x_{i} x_{-i}$ and $q_{-}(V)=\sum_{3}^{n}\left(x_{2} x_{-i}\right)+$
$+x_{1}+x_{1} x_{-1}+x_{-1}$. Thus the indices of q_{+}, q_{-}are n resp. $n-1$. Let B_{ε}^{*} be the subgroup of B^{*} respecting the form q_{ε}. Then B_{ε}^{*} is isomorphic to $O^{\varepsilon}(2 n, 2)$. Clearly $C_{B}\left(L_{\varepsilon}\right) \subseteq B_{\varepsilon}^{*}$. The equality $C_{A}\left(L_{\varepsilon}\right)=B_{\varepsilon}^{*}$ will follow from the examples (1.15) (i) and (ii).

(1.15) Examples.

(i) Consider the Chevalleygroup $D_{l}(2), l \geqslant 4$. We use the notation of [2]. So let $e_{1}, \ldots, e_{\imath}$ be an orthonormal basis for an euclidean vector space. Then $\Phi=\left\{ \pm e_{i} \pm e_{j} \mid i \neq j ; i, j=1,2, \ldots l\right\}$ is a rootsystem of type D_{1}. The vectors $r_{i}, 1 \leqslant i \leqslant l$ with $r_{i}=e_{i}-e_{i+1}$ for $i<l$ and $r_{l}=e_{l-1}+e_{l}$ form a system of fundamental roots. This choice corresponds to the following labelling of the Dynkin-diagram

Let $P=P_{3}$ for $l>4$ and $P=P_{\{3,4\}}$ for $l=4$. Then P is a parabolic subgroup of $D_{l}(2)$. Set $Q=\boldsymbol{O}_{2}(P)$. Then

$$
\begin{aligned}
& Q=\left\langle X_{e_{i}-e_{j}}, X_{e_{i}+e_{j}} \mid 0<i \leqslant 3,4 \leqslant j \leqslant l\right\rangle \\
& Z=\boldsymbol{Z}(Q)=\left\langle X_{e_{i}+e_{j}} \mid 0<i<j \leqslant 3\right\rangle
\end{aligned}
$$

For $4 \leqslant j \leqslant l$ set

$$
Q_{j-3}=\left\langle X_{e_{i}-e_{j}}, X_{e_{i}+e_{j}} \mid 0<i \leqslant 3\right\rangle .
$$

Then $Q_{i} \cong Q_{0}$ with $\boldsymbol{Z}\left(Q_{i}\right)=Z$ for $1 \leqslant i \leqslant l-3$. Further

$$
L=\left\langle X_{ \pm e_{i} e_{j}} \mid i \neq j, 0<i, j \leqslant 3\right\rangle
$$

is isomorphic to $L_{3}(2)$ and

$$
X=\left\langle X_{ \pm^{e_{4} \pm e},} \mid i \neq j, 4 \leqslant i, j \leqslant l\right\rangle \cong D_{l-3}(2) .
$$

Then $[L, X]=1$ and $P=Q(X \times L)$. The group L operates on each of the subgroups $\left\langle X_{e_{1}+e_{j}} \mid 0<i \leqslant 3\right\rangle$ and $\left\langle X_{e_{i}-c_{j}} \mid 0<i \leqslant 3\right\rangle, 4 \leqslant j \leqslant l$.

Set $n=l-3$. Then $Q \cong Q^{n}$ and the operation of L on each of
the subgroups Q_{i} of $Q, 1 \leqslant i \leqslant n$ is of dihedral type. The group P is a maximal parabolic subgroup of $D_{l}(2)$ with the exception of the case $l=4$, where P is contained in a maximal parabolic subgroup, which is a split extension of E_{64} by $\Omega^{+}(6,2)$.
(ii) Consider the Steinberg group ${ }^{2} D_{l}(2)$ for $l \geqslant 4$. Let ϱ be the symmetry of the Dynkin diagram for D_{l} interchanging r_{l-1} and r_{l} and fixing the fundamental roots $r_{i}, 1 \leqslant i \leqslant l-2$. The Dynkindiagram for ${ }^{2} D_{l}(2)$ is then

Let $P=P_{3}$ be a maximal parabolic subgroup of ${ }^{2} D_{l}(2), Q=O_{2}(P)$. If r is a root and $r \neq r^{e}$, set $D_{r, r^{e}}=\left\{x_{r}(\alpha) x_{r^{e}}\left(\alpha^{\sigma}\right) \mid \alpha \in K\right\}$, where $K=G F^{\prime}(4)$ and σ is the non-trivial field-automorphism of K. Then $D_{r, r^{r}} \cong E_{4}$. If $r=r^{\varrho}$, set $X_{r}=\left\{x_{r}(\alpha) \mid \alpha \in K_{0}\right\}$, where K_{0} is the prime field of K. Then

$$
\begin{aligned}
& Q=\left\langle X_{e_{i}-e_{j}}, X_{e_{i}+e_{j}}, D_{e_{i}-e_{i}, e_{i}+e_{l}}\right| 0<i \leqslant 3,4 \leqslant j \leqslant l \\
& \boldsymbol{Z}=\boldsymbol{Z}(Q)=\left\langle X_{e_{i}+e_{j}} \mid 0<i<j \leqslant 3\right\rangle \cong E_{8}
\end{aligned}
$$

Set

$$
Q_{1}=\left\langle D_{e_{i}-e_{l}, e_{i}+e_{l}} \mid 0<i \leqslant 3\right\rangle, \quad Q_{j-2}=\left\langle X_{e_{i}-e_{j}, e_{i}+e_{j}} \mid 0<i \leqslant 3\right\rangle
$$

for $4 \leqslant j \leqslant l-1$. Then $Q=Q_{1} * Q_{2} * \ldots * Q_{n}$, where

$$
n=l-3, \quad Q_{1} \cong Q_{2} \cong \cdots \cong Q_{n} \cong Q_{0}, \quad Z\left(Q_{i}\right)=Z, \quad 1 \leqslant i \leqslant n
$$

Let $L=\left\langle X_{ \pm e_{i} \pm e_{j}} \mid i \neq j, 0<i, j \leqslant 3\right\rangle \cong L_{3}(2)$,

$$
X=\left\langle X_{e_{i} \pm e_{j}}, D_{e_{k}-e_{l}, e_{k}+e_{l}} \mid i \neq j, 4 \leqslant i, j \leqslant l-1,4 \leqslant k \leqslant l-1\right\rangle \cong{ }^{2} D_{n}(2)
$$

We have $[L, X]=1, P=Q(X \times L), Q \cong Q^{n}$ and the operation of L on Q_{i} is of dihedral type for $i \geqslant 2$, of quaternion type for $i=1$.
(iii) Janko has shown [8, Prop. 13], that J_{4} contains an elementary abelian subgroup V of order 8 such that $L=\boldsymbol{O}_{2}(\boldsymbol{N}(V))$ is a special group of order 2^{15} with center $V, \overline{N(V)}=N(V) / L=\bar{J} \times \bar{C}$, where $\bar{J} \cong \Sigma_{5}$ and $\bar{C} \cong L_{3}(2)$. Here $J=C(V)$, an element of order 5 of \bar{J} operates fixed-point-freely on L / V and an element of order 7 in C operates fixed-point-freely on L. Further an element of order 3 in J
operates fixed-point-freely on L / V. Tran Van Trung has characterized the simple group J_{4} by a maximal 2 -local subgroup having the above structure [19]. It is easy to see and follows from Tran Van Trung's proof, that the operation of \bar{C} on L / V and V satisfies the conditions of (1.12). It follows then from (1.12), that $L \cong Q^{2}$.

It should be noted, that $O^{-}(10,2)$ possesses a maximal 2 -local subgroup M such that $O_{2}(M) \cong Q^{2}$ and $M / O_{2}(M)=\bar{J} \times \bar{C}, \bar{J} \cong \Sigma_{5}$, $\bar{C} \cong L_{3}(2)$, where an element of order 5 in M operates fixed-pointfreely on $\boldsymbol{O}_{2}(M) / \boldsymbol{O}_{2}(M)^{\prime}$ and an element of order 7 operates fixed-point-freely on $\boldsymbol{O}_{2}(M)$. In this case, however, an element d of order 3 in J will not operate fixed-point-freely on $\boldsymbol{O}_{2}(M) / \boldsymbol{O}_{2}(M)^{\prime}$. In fact we have $\boldsymbol{O}_{2}(M)=\left(C(d) \cap O_{2}(M)\right) *\left[d, O_{2}(M)\right]$, where

$$
C(d) \cap O_{2}(M) \cong\left[d, O_{2}(M)\right] \cong Q_{0}
$$

(iv) Let $G=M(24)^{\prime}$ be one of the Fischer-groups, let z be a 2 -central involution of G and set $H=C_{G}(z), \quad K=H^{\prime}, \quad J=O_{2}(H)$ like in [13]. Then $J \cong\left(D_{8}\right)^{6},\left|\boldsymbol{O}_{2,3}(H) / J\right|=3, K / \boldsymbol{O}_{2,3}(H) \cong U_{4}(3)$ and $|H: K|=2$. Let j_{2} be an involution in $J-\langle z\rangle$ such that $\boldsymbol{C}_{K}\left(j_{2}\right) / \boldsymbol{C}_{J}\left(j_{2}\right) \cong$ $\cong E_{16} / A_{6}$. Then $C_{H}\left(j_{2}\right) / C_{J}\left(j_{2}\right) \cong E_{32} A_{6}$. Let $R=\boldsymbol{O}_{2}\left(C_{K}\left(j_{2}\right)\right), \bar{H}=H / J$, $\tilde{H}=H \mid\langle z\rangle$ and use the «bar convention». Then $\tilde{F}=C_{\tilde{J}}(\bar{R}) \cong E_{64}$ and $F \cong E_{128} . \quad$ Further $\quad V=C_{G}(F) \subseteq R, \quad V \cong E_{2} 11 \quad$ and $\quad N_{G}(V) / V \cong M_{24}$. Set $M=N_{G}(V)$. Like in [8, Prop. 13] consider the inverse image U in M of a maximal 2-local-subgroup of M / V, which is a faithful and splitting extension of E_{64} by $\Sigma_{3} \times L_{3}(2)$. Set $Z=Z\left(O_{2}(U)\right)$, let P be a subgroup of order 3 in $\boldsymbol{O}_{2,3}(U)$ and let C be a subgroup of order 7 in U. Similarly like in [8, Prop 13], we get $\boldsymbol{C}_{V}(\boldsymbol{P})=\boldsymbol{Z} \cong \boldsymbol{E}_{8}$. Further $Z-\langle 1\rangle$ consists of 2 -central involutions of G. We can choose $\left\langle z, j_{2}\right\rangle<Z$. Set $B=C_{H}(Z)$ and $Q=O_{2}(B)$. The operation of P shows $Z<F$. Further $Q=C_{R}(Z),|Q|=2^{15}$ and R operates fixed-point-freely on Q / Z. We have $B / Q \cong A_{6}$ and $N_{G}(Z) / Q \cong A_{6} \times L_{3}(2)$. As elements of order 7 of $L_{3}(2)$ and elements of order 5 in A_{6} operate fixed-point-freely on Q / Z, the group Q has to be special with center Z. Let S be an element of order 3 in B, which doesn't operate fixed-point-freely on Q / Z. Then by (1.1) we have $Q=Q_{1} * Q_{2}$, where $Q_{1}=C_{Q}(S), Q_{2}=Z[Q, S]$ and Q_{1}, Q_{2} are $L_{3}(2)$-admissible special groups of order 2^{9} with center Z. It follows from (1.2), that $Q_{1} \cong Q_{2} \cong Q_{0}$ and thus $Q \cong Q^{2}$. Obviously, $N_{G}(Z)$ is a maximal 2 -local subgroup of $M(24)^{\prime}$. Further

$$
N(Z) \cap M(24) / Q \cong \Sigma_{6} \times L_{3}(2)
$$

(1.16) Lemma. For every $n \geqslant 1$ there is a group X with the following properties:
(i) $\boldsymbol{O}_{2}(X)=Q \cong Q^{n}$.
(ii) $\boldsymbol{C}_{\boldsymbol{X}}(Q)=\boldsymbol{Z}(Q)=\boldsymbol{Z}$.
(iii) $X / Q=(B / Q) \times(L / Q)$, where $B=C_{X}(Z), \quad B / Q \cong \operatorname{Sp}(2 n, 2)$, $L / Q \cong L_{3}(2)$.
(iv) The operation of L / Q on Q / Z and Z satisfies the hypothesis of (1.12).

Then the sequence $0 \rightarrow Q / Z \rightarrow X / Z \rightarrow X / Q \rightarrow 0$ is non-split for $n>1$, split for $n=1$. Further the structure of X / Z is uniquely determined.

Proof. It follows from (1.14), (1.8) and (1.5), that there is a group X satisfying (i)-(iv). Further X / Z is isomorphic to a subgroup of Aut (Q) and its structure is uniquely determined by the same lemmas mentioned above. It follows from (1.15), that the above sequence splits only for $n=1$.
2. A 2-local characterization of Fischer's simple group $M(24)^{\prime}$.

Theorem. Let G be a finite simple group possessing a 2 -local subgroup M with the following properties:
(i) $Q=\boldsymbol{O}_{2}(M)$ is a special group of order 2^{15} with elementary abelian center Z of order 8.
(ii) $M=\boldsymbol{N}_{G}(\boldsymbol{Z}), \boldsymbol{Z}(\boldsymbol{M})=\langle\mathbf{1}\rangle$.
(iii) $Z=\boldsymbol{C}_{G}(Q)$.
(iv) $\bar{M}=M / Q=\bar{B} \times \bar{L}, \bar{B} \cong A_{6}, \bar{L} \cong L_{3}(2)$.

Then G has a 2 -local subgroup of the form $E_{2} 11 \cdot M_{24}$.
Corollary. Under the additional assumption, that $\boldsymbol{O}\left(\boldsymbol{C}_{G}(z)\right)=1$ for a 2 -central involution z in G, it follows from [16] and.[14], that G is isomorphic to $M(24)^{\prime}$.

Proof. Let G be a group which satisfies the assumptions of the theorem. Set $\bar{M}=M / Q, \tilde{M}=M / Z$ and use the «bar convention». Let B resp. L be the inverse images of \bar{B} resp. \bar{L}. Then $B=C(Z)$. Let $F=\langle n, r\rangle$ be a Frobeniusgroup of order 21 contained in L,
where $n^{7}=r^{3}=1, n^{r}=n^{2}$. Clearly, elements of order 5 and 7 of M have to operate fixed-point-freely on \widetilde{Q}. As n operates fixed-pointfreely on Q, we have $B_{1}=C_{B}(n)=C_{B}(F) \cong A_{6}$.

We use the symbol \leftrightarrow to denote the correspondence of elements in the isomorphism $B_{1} \cong A_{6}$. Let $D \in S y l_{3}\left(B_{1}\right), D=\left\langle d_{1}, d_{2}\right\rangle$, where $d_{1} \leftrightarrow(1,2,3), d_{2} \rightarrow(4,5,6)$. As d_{1} and $d_{1} d_{2}$ are conjugate under Aut $\left(A_{6}\right)$, we can assume $\left|C_{\tilde{q}}\left(d_{1}\right)\right|=\left|C_{\tilde{q}}\left(d_{2}\right)\right|=2^{6}$.

Assume $\boldsymbol{C}_{\tilde{Q}}\left(d_{1}\right)=\boldsymbol{C}_{\tilde{\boldsymbol{Q}}}\left(d_{2}\right)$. Then $\left[d_{1}, \tilde{Q}\right]=\left[d_{2}, \tilde{Q}\right]$. As $\widetilde{Q}=\left\langle\boldsymbol{C}_{\tilde{\boldsymbol{Q}}}(d)\right|$ $d \in D\rangle$, there is $\varepsilon \in\{+1,-1\}$ such that $C_{\tilde{Q}}\left(d_{1} d_{2}^{\varepsilon}\right) \cap\left[d_{1}, Q\right] \neq 1$. The operation of \bar{n} shows then $\left[d_{1} d_{2}^{\varepsilon}, \widetilde{Q}\right]=1$, a contradiction. Thus $C_{\tilde{Q}}\left(d_{1}\right)=\left[d_{2}, \tilde{Q}\right], C_{\tilde{Q}}\left(d_{2}\right)=\left[d_{1}, \tilde{Q}\right]$, the elements $d_{1} d_{2}$ and $d_{1} d_{2}^{-1}$ operate fixed-point-freely on \tilde{Q}.

Set $Q_{1}=C_{Q}\left(d_{2}\right)=Z\left[d_{1}, Q\right]$ and $Q_{2}=C_{Q}\left(d_{1}\right)=Z\left[d_{2}, Q\right]$. It follows from (1.1), that $Q=Q_{1} * Q_{2}$. Further $Z=Z\left(Q_{1}\right)=Z\left(Q_{2}\right)$ and the groups Q_{i} are special groups of order $2^{9}, i=1,2$.

As B_{1} operates on $C_{Q}(r)$, we have $C_{Q}(r) \cong E_{32}$. By (1.3) $Q_{1} \cong$ $\cong Q_{2} \cong Q_{0}$ and thus $Q \cong Q^{2}$. Further $L<N\left(Q_{i}\right), i=1,2$.

Set $L_{0}=C_{L}\left(d_{1} d_{2}\right)$. Then $L_{0} / Z \cong L_{3}(2)$ and it follows from the structure of $\operatorname{Aut}\left(Q^{2}\right)$, that L_{0} is conjugate to L_{+}as a subgroup of Aut (Q^{2}) in the sense of (1.14). Especially, \tilde{L}_{0} is a uniquely determined subgroup of Aut (Q) and thus \tilde{M} is uniquely determined. It follows, that M has the structure given in the following lemma:
(2.1). Lemma. $Q=Q_{1} * Q_{2} \cong Q^{2}$. For elements of Q we use the notation of (1.9). $L=Q L_{0}, L_{0}=Z\langle F, t\rangle, L_{0} / Z \cong L_{3}(2)$. With respect to the bases $\left\{v_{i}^{(1)}, v_{i}^{(2)}, v_{i}^{(3)}\right\}$ of $V_{i}^{(0)}, i \in\{ \pm 1, \pm 2\}$ and $\left\{z_{1}, z_{2}, z_{3}\right\}$ of Z we have

$$
\begin{gathered}
n_{v_{i}^{(0)}}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], \quad r_{v_{i}^{(0)}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \\
t_{v_{i}^{(0)}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
\end{gathered}
$$

and $g_{Z}=\left(g_{v_{i}^{0}} *\right.$ for every $g \in L_{0}-Z$.
Further $\boldsymbol{C}_{B}(F)=B_{1} \cong \mathrm{Sp}_{4}(2)^{\prime}$ and the elements of B_{1} are represented in the natural way on the elementary abelian groups $\tilde{E}_{i}, i=1,2,3$. The operation of B_{1} on $E_{i}^{(1)}$ has been given in (1.15) with respect to the bases $\left\{v_{1}^{(i)}, v_{2}^{(i)}, v_{-1}^{(i)}, v_{-2}^{(i)}, z\right\}$, where $z=z_{1}$ for $i=1, z=z_{1} z_{2}$ for $i=2$ and $z=z_{1} z_{2} z_{3}$ for $i=3$.

We have $C_{B}\left(L_{0}\right)=K\langle v\rangle=N(K) \cap B_{1}$, where $K=\left\langle k_{1}, k_{2}\right\rangle \in$ $\in \operatorname{Syl}_{3}\left(B_{1}\right), k_{1^{\prime}} \rightarrow(1,3,5), k_{2} \leftrightarrow(2,4,6), v \leftrightarrow(1,2)(3,6,5,4)$ and

$$
\begin{gathered}
\left.k_{1}\right|_{\mathbb{E}_{i}^{(1)}}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right],\left.\quad k_{2}\right|_{X_{i}^{(1)}}=\left[\begin{array}{lllll}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \\
\\
\end{gathered}
$$

Set $v_{0} \in B_{1}$ such that $v_{0} \leftrightarrow(3,4)(5,6)$. Then

$$
\begin{gathered}
\left.v_{0}\right|_{E_{i}^{(1)}}=\left[\begin{array}{ccccc}
1 & 0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right], \\
\left\langle v, v_{0}\right\rangle \in S \boldsymbol{S} l_{2}\left(B_{1}\right), \quad C_{0}(v)=C_{0}\left(v, v_{0}\right)=V_{-1} \cong E_{64}
\end{gathered}
$$

$C_{0}\left(v^{2}\right)=V_{-1}\left(V_{2}+V_{-2}\right) \cong E_{2}{ }^{9} . \quad B_{1}$ contains exactly two conjugacyclasses of elementary abelian groups of order 4 with representatives X_{1} and X_{2}, where

$$
\begin{aligned}
& X_{1}=\left\langle v^{2}, v_{0}\right\rangle \leftrightarrow\langle(3,5)(4,6),(3,4)(5,6)\rangle, \\
& X_{2}=\left\langle v^{2}, v v_{0}\right\rangle \leftrightarrow\langle(3,5)(4,6),(1,2)(3,5)\rangle .
\end{aligned}
$$

We have $C_{Q}\left(X_{1}\right)=V_{-1} \cong E_{64}$ and $C_{0}\left(X_{2}\right)=V_{-1}\left(V_{2}+V_{-2}\right) \cong E_{2}{ }^{9}$. Set $V=X_{2} C_{0}\left(X_{2}\right)$. Then $V \cong E_{2}{ }^{11}$.

Proof. The bulk of the lemma follows from the fact, that we can choose Q_{1}, Q_{2} so, that $Q=Q_{1} * Q_{2} \cong Q^{2}$ and that the operation of L_{0} on Q_{1} and Q_{2} is of dihedral type in the sense of (1.7). It is a matter of direct calculation, that $\boldsymbol{C}\left(\tilde{L}_{0}\right) \cap \widetilde{B}=\widetilde{K}\langle\tilde{v}\rangle$. It follows from the 3 -subgroup-lemma, that $\left[(K\langle v\rangle)^{\prime}, L_{0}\right]=\left[K, L_{0}\right]$. As v centralizes L_{0} / Z and Z, we get $\left[K\langle v\rangle, L_{0}\right]=1$.
(2.2) Lemma. Let $V \subset T \in S \boldsymbol{S} \boldsymbol{l}_{2}(M)$. Then V is the only elementary abelian subgroup of order 2^{11} of T.

Proof. We have $T / Q=\bar{D}_{1} \times \bar{D}_{2}$, where $\bar{D}_{1} \in \operatorname{Sy} \boldsymbol{l}_{2}(\bar{B}), \bar{D}_{2} \in \boldsymbol{S y l}_{2}(\bar{L})$. Denote by D_{i} the inverse image in T of $\bar{D}_{i}, i=1,2$.

Let $A<T, A \cong E_{2}{ }^{11}$.
(1) $A \cap D_{2} \subseteq Q$: Assume $A \cap D_{2} \nsubseteq Q$, let $a \in\left(A \cap D_{2}\right)-Q$. Then $A \cap Q$ is contained in the inverse image U of $C_{\bar{Q}}(\bar{a})$. But $\bar{a} \sim \bar{t}$ and so $U \sim Z\left\langle v_{j}^{(1)}, v_{j}^{(2)}, v_{j}^{(3)} \mid j \in\{ \pm 1, \pm 2\}\right\rangle, \quad U \cong E_{4} \times\left(D_{8}\right)^{4}$ and $\boldsymbol{Z}(U)=Z$. Further $\boldsymbol{C}(a) \neq \boldsymbol{Z}$. Thus $\boldsymbol{C}_{Q}(a)$ doesn't contain an elementary abelian subgroup of order 2^{7}. It follows $|\bar{A}| \geqslant 32$, a contradiction.
(2) $A \subseteq D_{1}$: If $A \nsubseteq D_{1}$, there is an involution $a \in A-Q$ such that $a \notin D_{1}, a \notin D_{2}$. As \bar{a} inverts an element of order 5 in \bar{B}, we have $\left|\boldsymbol{C}_{\tilde{Q}}(\bar{a})\right|=2^{6}$. Further $Z \leqslant \boldsymbol{C}(a)$ and thus $\left|\boldsymbol{C}_{Q}(a)\right| \leqslant 2^{8}$. It follows $|\bar{A}| \geqslant 8$ and $\bar{A} \cap \bar{D}_{2} \neq\langle 1\rangle$, a contradiction to (1).

We have $A \subseteq D_{1}, A \cap Q \cong E_{2}{ }^{9},|\bar{A}|=4$. All the involutions in the coset $v^{2} Q$ are contained in $v^{2} \boldsymbol{C}_{Q}\left(v^{2}\right)=v^{2}(V \cap Q)$. Thus $V \cap Q \subset A$ and $A=\boldsymbol{C}(V \cap Q) \cap D_{1}=V$.

$$
\begin{equation*}
S y l_{2}(M) \subseteq S y l_{2}(G) \tag{2.3}
\end{equation*}
$$

Proof. Set $J=\left\{x\left|x \in Q, x^{2}=1,\left|Q: C_{Q}(x)\right|=4\right\}\right.$. We have $W=$ $=V \cap Q=\langle W \cap J\rangle$. Assume $T \in \operatorname{Syl}_{2}(M), T \notin \boldsymbol{S y} \boldsymbol{l}_{2}(G)$. Then $T<T_{1}$, $\left|T_{1} / T\right|=2$. Choose $x \in T_{1}-T$. Then $Q^{x} \neq Q, Z^{x} \neq Z$, but $Z^{x}<Q$, as $\left|C_{T}(z)\right| \geqslant 2^{19}$ for $z \in Z$. Thus \bar{Q}^{x} is elementary abelian and $\left|\bar{Q}^{x}\right| \leqslant 16$.
(1) $\bar{Q}^{x} \cap \bar{V}=\langle 1\rangle$: Assume the contrary. We have $Q^{x} \cap V=$ $=(Q \cap V)^{x}=W^{x}$. So there is an element $y \in J \cap W$ such that $y^{x} \in\left(Q^{x} \cap V\right)-Q$. As $y^{x} \in V-Q$, we have $C_{Q}\left(y^{x}\right)=W \cong E_{2}{ }^{9}$. On the other hand $\left|Q \cap Q^{x}\right| \geqslant 2^{11}$ and so $\left|C\left(y^{x}\right) \cap Q \cap Q^{x}\right| \geqslant 2^{9}$, as $y^{x} \in J^{x}$. So $C\left(y^{x}\right) \cap Q \cap Q^{x}=W \subseteq Q$ and $1=\bar{W}=\bar{Q}^{x} \cap V \neq 1$, a contradiction.

Clearly $\left|\bar{Q}^{x}\right|<16$.
(2) Assume $\left|\bar{Q}^{x}\right|=8$. Then $\bar{Q}^{x} \cap D_{1} \neq 1$. But $\bar{Q}^{x} \triangleleft \bar{T}$ and $\boldsymbol{Z}\left(\bar{D}_{1}\right)<$ $<\bar{Q}^{x}$. It follows $\bar{Q}^{x} \cap \bar{V} \neq\langle 1\rangle$, a contradiction.
(3) We have $\left|\bar{Q}^{x}\right| \leqslant 4,\left|Q \cap Q^{x}\right| \geqslant 2^{13}$. Let $y^{x} \in\left(J^{x} \cap Q^{x}\right)-Q$. Then $\left|C\left(y^{x}\right) \cap Q \cap Q^{x}\right| \geqslant 2^{11}$, another contradiction.

We consider ngw the involutions contained in $M-Q$.
(2.4) We may and will take t to be an involution in $L-Q$. Let t^{\prime} be an involution in $L-Q$. Then $C_{Q}\left(t^{\prime}\right) \cong Z_{2} \times\left(Q_{8}\right)^{4}$. Further $t^{\prime} \widetilde{Q} t^{\prime} z$ if and only if $z \in\left\langle z_{2} z_{3}\right\rangle$.

Proof. As $L_{3}(2)$ contains only one class of involutions, all the involutions in $L-Q$ are conjugate to an involution in the coset $t Q$. If L_{0} is a non-split extension of E_{8} by $L_{3}(2)$, the Sylow-2-subgroup of L_{0} is of type M_{12}. Thus in any case $L_{0}-Z$ contains involutions and we can take t to be an involution. We have
$\boldsymbol{C}_{Q}(t)=\left\langle z_{1}\right\rangle\left\langle v_{1}^{(1)}, v_{-1}^{(2)} v_{-1}^{(3)}\right\rangle\left\langle v_{-1}^{(1)}, v_{1}^{(2)} v_{1}^{(3)}\right\rangle$.

$$
\cdot\left\langle v_{2}^{(1)}, v_{-2}^{(2)} v_{-2}^{(3)}\right\rangle\left\langle v_{-2}^{(1)}, v_{2}^{(2)} v_{2}^{(3)}\right\rangle \cong Z_{2} \times\left(Q_{8}\right)^{4} .
$$

Let U be the inverse image of $C_{\tilde{Q}}(\bar{t})$. Then $U \cong E_{4} \times\left(D_{8}\right)^{4}$. Thus $t Q$ contains exactly 2^{10} involutions. They have one of the following forms:
(1) $t x, x \in C_{Q}(t), x^{2}=1$.
(2) $t z_{2} y, y \in C_{0}(t), y^{2}=z_{2} z_{3}$.

By direct calculation we see $C_{Q}\left(t^{\prime}\right) \cong Z_{2} \times\left(D_{8}\right)^{4}$ for every involution $t^{\prime} \in t Q$. Obviously $t^{\prime} \widetilde{Z}_{\mathbf{z}} t^{\prime} z_{2} z_{3}$ for all these involutions t^{\prime}.

Assume $t^{\prime}=t x, x \in C_{Q}(t), x^{2}=1, t^{\prime q}=t^{\prime} z_{1}, q \in Q$. Then $\langle q, x\rangle<U$, $t^{a} \in t z_{1}\left\langle z_{2} z_{3}\right\rangle$, a contradiction.

Assume

$$
t^{\prime}=t z_{2} y, \quad y \in C_{Q}(t), \quad y^{2}=z_{2} z_{3}, \quad t^{\prime q}=t^{\prime} z_{1}, \quad q \in Q
$$

Then $\left\langle q, z_{2} y\right\rangle<U, t^{q}=t z_{1}$, a contradiction like above.
(2.5) Lemma. All the involutions in $B-Q$ are conjugate to v^{2} or to $v^{2} z_{1}$. We have $C_{Q}\left(v^{2}\right)=W=V \cap Q \cong E_{2}{ }^{9}$.

Proof. We have $C_{Q}\left(v^{2}\right)=W \cong E_{2}{ }^{9}$ and $\left[v^{2}, Q\right]<W,\left|\left[v^{2}, Q\right]\right|=2^{6}$. It follows, that the involutions in $v^{2} Q$ are all contained in $v^{2} W$. As $\left|C_{Q}\left(\bar{v}^{2}\right)\right|=2^{6}$, there are exactly 8 classes of involutions in $B-Q$ under the operation of Q and the elements $v^{2} z, z \in Z$, are representatives of these classes. If $z, z^{\prime} \in Z-\{1\}$, we have $v^{2} z \sim v^{2} z^{\prime}$ under L_{0}, as $\left[v^{2}, L_{0}\right]=1$. But $v^{2} \underset{M}{\sim} v^{2} z$ if $z \in Z-\{1\}$.
(2.6) Lemma. All the involutions in $M-Q$, which are not contained in B or L, are conjugate to $v^{2} t$. We have $C_{0}\left(v^{2} t\right) \cong E_{16} \times Q_{8}$:

Proof. By (2.1) $v^{2} t$ is an involution. Clearly all the involutions in $M-(B \cup L)$ are conjugate to an involution in $v^{2} t Q$. Let U be the inverse image of $\boldsymbol{C}_{\overline{\boldsymbol{e}}}\left(\bar{v}^{2} \bar{t}\right)$. Then $U=Z\left\langle x_{1}, x_{2}, \ldots, x_{6}\right\rangle$, where

$$
\begin{aligned}
& x_{1}=v_{-1}^{(1)}, x_{2}=v_{2}^{(1)} v_{-2}^{(1)} \\
& x_{3}=v_{1}^{(2)} v_{1}^{(3)} v_{2}^{(3)} v_{-1}^{(3)} v_{-2}^{(3)}, \quad x_{4}=v_{2}^{(2)} v_{2}^{(3)} v_{-1}^{(3)} \\
& x_{5}=v_{-1}^{(2)} v_{-1}^{(3)}, \quad x_{6}=v_{-2}^{(2)} v_{-1}^{(3)} v_{-2}^{(3)} \\
& |U|=2^{9}, x_{i}^{2}=1 \text { for } i \neq 3, x_{3}^{2}=z_{1} \\
& C_{0}\left(v^{2} t\right)=\left\langle z_{1}, x_{1}, x_{5}, x_{4} x_{6}\right\rangle \times\left\langle x_{2}, x_{4}\right\rangle \cong E_{16} \times D_{8}, \quad C_{Q}\left(v^{2} t\right)^{\prime}=\left\langle z_{2} z_{3}\right\rangle
\end{aligned}
$$

Set $U_{1}=C_{Q}\left(v^{2} t\right)$. We have $z_{2}^{v^{2} t}=z_{3}, x_{3}^{v^{2} t}=x_{3}^{-1}=x_{3} z_{1}$.
By direct calculation we see, that $v^{2} t Q$ contains exactly 2^{8} involutions, namely 96 in $v^{2} t U_{1}, 32$ in $v^{2} t z_{2} U_{1}, 64$ in $v^{2} t x_{3} U_{1}$ and 64 in $v^{2} t x_{3} z_{2} U_{1}$. As $\left|Q: U_{1}\right|=2^{8}$, the lemma is proved.
(2.7) Lemma. Every involution in Q is conjugate under M to an involution contained in V.

Proof. There are exactly $3 \times 5 \times 7^{2}$ nontrivial cosets in \widetilde{Q}, which consist of involutions. Consider the operation of \bar{M} on \widetilde{Q}. Let $\bar{t}_{1} \in \bar{L}$ like in (1.7). Then $C_{\tilde{Q}}\left(\bar{t}, \bar{t}_{1}\right) \cong E_{16}$ and \bar{B} induces a natural representation as $\operatorname{Sp}(4,2)^{\prime}$ on $\boldsymbol{C}_{\tilde{q}}\left(\bar{t}, \bar{t}_{1}\right)$. Let $\tilde{q}_{1} \in \boldsymbol{C}_{\tilde{Q}}\left(\bar{t}_{\boldsymbol{t}}, \bar{t}_{1}\right)$. Then $q_{1}^{2}=1$ and $\boldsymbol{C}_{\overline{\boldsymbol{m}}}\left(\tilde{q}_{1}\right)=\boldsymbol{C}_{\bar{B}}\left(\tilde{q}_{1}\right) \times \boldsymbol{N}_{\bar{L}}\left(\left\langle\bar{t}, \bar{t}_{1}\right\rangle\right) \cong \Sigma_{4} \times \Sigma_{4},\left|\tilde{q}_{1}^{\bar{M}}\right|=3 \times 5 \times 7$. Let $\tilde{q}_{2} \in \widetilde{Q}$ $q_{2}^{2}=1, \tilde{q}_{2} \notin \tilde{q}_{1}^{\bar{M}} . \quad$ Then $2^{6} \nmid\left|C_{\bar{M}}\left(\tilde{q}_{2}\right)\right|$.

Assume $9 \| C_{\overline{\bar{M}}}\left(\tilde{q}_{2}\right) \mid$. Then \tilde{q}_{2} has to be centralized by an element of order 3 in \bar{B}. We can assume $q_{2} \in Q_{2}$, where $Q=Q_{1} * Q_{2}$. But then \tilde{q}_{2} is centralized by an element of order 3 in \bar{L}. It follows $\tilde{q}_{2} \widetilde{\bar{M}}_{1}$, a contradiction. We have $9 \nmid\left|C_{\bar{\mu}}\left(\tilde{q}_{2}\right)\right|$ and thus $\left|\tilde{q}_{2}^{\bar{M}}\right| \geqslant 2 \times 3^{2} \times 5 \times 7$. It follows $\left|\tilde{q}_{2}^{\bar{M}}\right|=2 \times 3^{2} \times 5 \times 7$.

So there are exactly two conjugacy-classes of nontrivial cosets in Q / Z, which contain involutions. These classes then have to consist of those cosets which contain involutions $q \in Q-Z$ such that $\left|Q: \boldsymbol{C}_{Q}(q)\right|=4$ resp. $\left|Q: \boldsymbol{C}_{Q}(q)\right|=8$. As $W-Z$ contains involutions of both types, the lemma is proved.
(2.8) Lemma. $\quad N_{G}(V) \nsubseteq M$.

Proof. (1) If $N_{G}(V) \subseteq M$, then Z is strongly closed in B with respect to G : Let $z \in Z-\{1\}, z^{g} \in Q, g \in G$. Then $z^{g m} \in W \subset V, m \in M$. By (2.2), (2.3) we can assume $g m \in N(V)$. By assumption $g m \in M$, $g \in M$ and thus $z^{g} \in Z$.

Assume $z^{g} \in B-Q, g \in G$. Then $z^{g m} \in x Q, m \in B, x \in V$. As $z^{2}=1$, we have $z^{g m} \in x C_{0}(x) \subset V$. Thus we can assume $g m \in N(V), g \in M$, a contradiction.
(2) If $N_{G}(V) \subseteq M$, then no element of Z is conjugate in G to an involution $x \in M-(B \cup L)$: Assume $x^{g}=z, g \in G$. We have $C_{Q}(x) \cong$ $\cong E_{16} \times D_{8}$ by (2.6). Let $E<C_{Q}(x), E \cong E_{64}$. Then, by (2.6), x is conjugate under Q to all of the elements of the coset $x E$. Choose $g \in G$ such that $C_{T}(x)^{g} \subseteq T$. Then $E^{g} \cong E_{64}, E^{g}<T, z \notin E^{g}$ and z is conjugate to every element of the coset $z E^{q}$. We have $\left|E^{q} / E^{o} \cap D_{1}\right| \leqslant 4$, a contradiction to (1).
(3) If $N_{G}(V) \subseteq M$, then Z is strongly closed in $N_{G}(V)$ with respect to G : assume the contrary. Then by (1), (2) $z^{g} \in L-Q, g \in G, z \in Z$. We can choose $z^{a} \in t Q \subset N(W)$. Set $X=\left[z^{g}, W\right]$. By (2.4) either $|X|=8,|X \cap Z|=2$ or $|X|=16,|X \cap Z|=4$. Set $Z_{0}=X \cap Z$. Again, z^{g} is conjugate to every element of the coset $z^{g} X$, but $X \cap z^{G}=$ $=Z_{0}-\{1\}$ by (1), (2). We have $X^{g^{-1}}<C(z)$ and we can assume $X^{g^{-1}}<T$. Further $z \notin X^{g^{-1}}, z \sim z x^{g^{-1}}$ for all $x \in X$. It follows $X^{g^{-1}} \cap Z=Z_{0}^{g^{-1}}$. Let $x \in X-Z_{0}$. Then $\boldsymbol{C}_{z}\left(x^{g^{-1}}\right) \geqslant\left\langle\boldsymbol{Z}_{0}^{g^{-1}}, z\right\rangle$. Thus $\boldsymbol{Z}_{0}=$ $=\left\langle z_{0}\right\rangle,\left|Z_{0}\right|=2,|X|=8, C_{z}\left(x^{0^{-1}}\right)=\left\langle z, z_{0}^{0^{-1}}\right\rangle$ for every $x \in X-\left\langle z_{0}\right\rangle$. There is then an $y \in X-\left\langle z_{0}\right\rangle$ such that $y^{g^{-1}} \widetilde{\mathbb{z}} y^{g^{-1}} \cdot z \widetilde{G} z$, a contradiction to $X \cap z^{\theta}=\left\{z_{0}\right\}$.

We have proved, that Z is strongly closed in T, where $T \in S y l_{2}(G)$, in case $\boldsymbol{N}_{G}(V) \subseteq M$. This contradicts Goldschmidt's result [5].
(2.9) Lemma. Set $N=N_{G}(V), \bar{N}=N / V$. Then $\bar{N} \cong M_{24}$ and the lengths of the orbits of $V^{\#}$ under the operation of N are 1771 and 276.

Proof. We have $\boldsymbol{O}(N) \leqslant \boldsymbol{C}(V) \leqslant V$ and so $\boldsymbol{O}(N)=\langle 1\rangle$. As $C_{G}(V)=V$, the group \bar{N} is isomorphic to a subgroup of $G L(11,2)$.

Further $|\bar{N}|_{2}=2^{10}$ and $\bar{N}>N \cap M / V$. It is clear from the structure of $G L(11,2)$, that $O(\bar{N})=\langle 1\rangle$. We have $V \leqslant O_{2}(N) \leqslant$ $\leqslant O_{2}(N \cap M)=V Q$. As Z char $\left.Q=\langle x| x \in V Q, x^{2}=1,\left|C_{V Q}(x)\right| \geqslant 2^{11}\right\rangle$ char $V Q$, we get $O_{2}(N) \neq V Q$. Because of the irreducibility of $N \cap M / V Q$ on $V Q / V$, we have $O_{2}(N)=V$ and $O_{2}(\bar{N})=\langle 1\rangle$.

Let \bar{X} be a minimal normal subgroup of \bar{N}. Then $\bar{X}=\bar{X}_{1} \times \ldots \times \bar{X}_{s}$, where the \bar{X}_{i} are isomorphic non-abelian simple groups. Further
$O_{2}(\overline{N \cap M})<\bar{X}$ and $\overline{N \cap M} / \overline{V Q} \cong \Sigma_{3} \times L_{3}(2)$. It follows $\bar{L}<\bar{X}$ and $|\tilde{X}|_{2} \in\left\{2^{9}, 2^{10}\right\}$. Assume $s>1$.

If $s=2$, then $|\bar{X}|_{2}=2^{10}$, but the center of a Sylow-2-subgroup of $\overline{N \cap M}$ has order 2 , a contradiction.

If $s \geqslant 3$, the center of a Sylow- 2 -subgroup of \bar{X} has order at least 8 , but this is impossible for the same reason.

Hence $s=1, \bar{X}$ is a simple group and $\bar{N} \leqslant \operatorname{Aut}(\bar{X})$.
The lengths of the orbits of $V-\{1\}$ under the operation of $N \cap M$ are 7/336-84-84/1344-192. Here, the orbit of length 7 is $Z-\{1\}$, the orbits of lengths 336 and 84 are contained in $W-Z$.
(1) $N(V) \nsubseteq N(W)$: Assume $W \triangleleft N$. Let X be the inverse image of \bar{X} in N, set $\tilde{X}=X / W$. Then $\tilde{X}=\tilde{V} \times \tilde{Y}$, where $\tilde{Y} \cong \bar{X}$. The simple group \tilde{Y} is isomorphic to a subgroup of $G L(9,2)$ and is generated by involutions of type J_{2} in the sense of [4]. Further \tilde{Y} operates irreducibly on W. The length of the Y-orbit containing $Z-\{1\}$ is $5^{2} \times 7$ or 7^{3}. We get then a contradiction from [4, Theorem A], [10] and [18].
(2) The lengths of the orbits of $V-\{1\}$ under N and under X are 1771 and 276: We use (1) and the fact, that $N \nsubseteq M$. The only other possibility for the lengths of orbits under N is 1519-528. Here $1519=7+1344+84+84=7^{2} \times 31$,

$$
528=336+192=2^{4} \times 3 \times 11 .
$$

Consider $V /\langle z\rangle$, where $1 \neq z \in Z$. We see then, that the homomorphic images in $V /\langle z\rangle$ of the elements in V contained in the $N \cap M$-orbits of length 336 are the only ones which don't contain an involution conjugate to z under N. Thus $W \triangleleft \boldsymbol{C}_{N}(z)$. This contradicts the fact, that $11\left|\left|C_{N}(z)\right|\right.$.

We have

$$
\begin{aligned}
1771 & =7+1344+336+84=7 \times 11 \times 23 \\
276 & =192+84=2^{2} \times 3 \times 23
\end{aligned}
$$

Obviously, a Sylow-23-normalizer has to be a Frobeniusgroup of order 23×11 in \bar{X} as well as in \bar{N}. It follows from the Frattiniargument, that $\bar{N}=\bar{X}$ and \bar{N} is a simple group.

Further \bar{N} possesses a 2 -local subgroup, which is an extension of E_{64} by $\Sigma_{3} \times L_{3}(2)$. The element of order 3 in Σ_{3} operates fixed-point-freely
and so the extension is split. As $L_{3}(2)$ operates completely reducibly on E_{64}, this 2-local subtroup is uniquely determined and a Sylow-2 subgroup of \bar{N} is isomorphic to a Sylow-2-subgroup of M_{24}. It follows from [17], that \bar{N} is isomorphic to M_{24}.

REFERENCES

[1] B. Beisiegel, Semi-extraspezielle p-Gruppen, Math. Z., 156 (1977).
[2] R. W. Carter, Simple Groups of Lie-Type, Wiley, 1972.
[3] U. Dempwolff, On extensions of an elementary abelian group of order 2^{5} by $G L_{5}(2)$, Rend. Sem. Mat. Univ. Padova, 48 (1973).
[4] U. Dempwolff, Some subgroups of $G L_{n}(2)$ generated by involutions I, J. Algebra, 54 (1978).
[5] D. Goldschmidt, 2-fusion in finite groups, Ann. Math., 99 (1974).
[6] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
[7] G. Higman, Suzuki-2-groups, Ill. J. of Math. (1963).
[8] Z. Janko, A new finite simple group of order 86.775.571.046.077.562.880, J. Algebra, 42 (1976).
[9] P. Landrock, Finite groups with a quasisimple component of type $\operatorname{PSU}\left(3,2^{n}\right)$ on elementary abelian form, Ill. J. of Math., 19 (1975).
[10] J. McLaughlin, Some subgroups of $S L_{n}\left(F_{2}\right)$, Ill. J. of Math., 13 (1969).
[11] R. Markot, A 2-local characterization of the simple group E, J. Algebra, 40 (1976).
[12] D. Parrott, On Thompson's simple group, J. Algebra, 46 (1977).
[13] D. Parrott, Characterizations of the Fischer groups II, to appear.
[14] D. Parrott, Characterization of the Fischer groups III, to appear.
[15] R. Ree, On some simple groups defined by C. Chevalley, Trans. Amer. Math. Soc., 84 (1957).
[16] A. Reifardt, A 2-local characterization of $M(24)^{\prime}$, . 1 and J_{4}, J. Algebra, 50 (1978).
[17] U. Schönwälder, Finite groups with a Sylow-2-subgroup of type $M_{24} I I$, J. Algebra, 28 (1974).
[18] B. Stellmacher, Einige Gruppen, die von einer Konjugiertenklasse von Elementen der Ordnung 3 erzeugt werden, J. Algebra, 30 (1974).
[19] Tran Van Trung, Eine Kennzeichnung der endlichen einfachen Gruppe J, von Janko durch eine 2-lokale Untergruppe, to appear.

Manoscritto pervenuto in redazione il 9 maggio 1979.

