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On a Certain Class of 2-Local Subgroups
in Finite Simple Groups.

JURGEN BIERBRAUER (*)

The object of this paper is to study a class of special 2-groups
which occur as the maximal normal 2-subgroups in 2-local subgroups
of ~ finite simple groups.

Among these simple groups are the Chevalleygroups Dn(2), n ~ 4
and the Steinberg groups 2Dn (2 ), n &#x3E; 4 as well as the sporadic groups J4
and M(24)’.

We consider a special group Qo of order 29 with elementary abelian
center of order 8, which admits 1:3 x L,(2) as an automorphism group.
Let Qn, n ~ 1 denote the automorphism type of the central product
of n copies of Qo . We determine the automorphism group of Qn and
we show, that J4 contains a maximal 2-local subgroup of the form

Q2(1:sxL3(2)) and that .11~1(24)’ contains a maximal 2-local subgroup
of the form Q2(A6XL3(2)). The groups Dn(2 ) resp. 2Dn(2 ) contain para-
bolic subgroups of the form Qn-3(Dn-3(2) X L3(2) ) resp. Qn-3( 2.Dn-3(2) X
x~3(2))y which are maximal with the exception of the case D4(2 ).

These results and several characterizations of the groups Qn by
properties of groups of automorphisms are collected in the first part
of the paper. The second part contains a characterization of lVl (24 )’
by the 2-local subgroup mentioned above. In [19] Tran van Trung
gives an analogous characterization of Janko’s group J4.

Standard notation is like in [6]. In addition Dg resp. Qg denotes
the dihedral resp. quaternion group of order 8 and D8 resp. Q8 the

(*) Indirizzo dell’A.: Mathematisches Institut der Universität Heidelberg -
69 Heidelberg, Im Neuenheimer Feld 288, W. Germany.
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central product of n copies of Dg resp. The central product with
amalgamated centers of groups H and K is denoted H * K.

For a regular matrix A, the transposed-inverse of A shall be
written A*.

If an element g of the group G operates on some v ectorspace V
with fixed basis, the symbol g, denotes the matrix giving the operation
of g with respect to the fixed basis.

1. Properties of some 2-groups.

(1.1) LEMMA. Let Q be a p-group of class 2 and let N be an auto-
morphism-group of Q such that INI) = 1. Assume further

[Q’, 1. Set A = CQ(N) and B = [Q, N]. ~ 
(

Then we have Q = A * (BZ(Q)).
PROOF. This follows from the 3-subgroup-lemma like in the case

that Q is an extraspecial 2-group and N a cyclic group of odd order
[12, prop. 4].

(1.2) LEMMA. Let Q be a special group of order 29 with center Z
of order 8. Let n be an element of order 7, which operates fixed-point-
freely on Q. Assume further, that = QIZ is the direct sum of two
isomorphic irreducible n~-modules. Then Q is isomorphic to one of
the following groups:

(1) a Suzuki-2-group of type (B ) ;

(2) a central product of two Suzuki-2-groups of type (A ) and
order 26.

(3) a group of type ~3(8);

(4) a group Qo which has the following structure:

as n&#x3E;-modules,

and
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Qo contains exactly 3 elementary abelian subgroups of order 64,
namely A, B and A + B = X2Y2, X3Y3). ·

PROOF. If Z is isomorphic as an to the irreducible

submodules of Q, then it follows from [9, (2.5)], that Q is of type 1/3(8).
So we shall assume, that Z is not isomorphic to a submodule of Q.

(1) Assume, that Q - Z doesn’t contain involutions. Then Q is
a Suzuki-2-group of type (B ) or ( C ) in the sense of [7].

If 4911Aut (Q) 1, there is an element m of order 7 in Aut (Q), which
centralizes Z. Because of (1.1 ), we have CQ(m) = Z. This contradicts
a result of Beisiegel [1]. So we have 49||Aut (Q)l for every Suzuki-
2-group of type (B ) or (C) and order 29.

It follows now from [7], that the Suzuki-2-groups of type (B) and
order 29 possess an automorphism n with the required properties,
whereas the groups of type (C) and order 29 don’t.

(2) Assume, that Q - Z contains exactly 7 X 8 involutions.
Let H  Z, I H = 4. The number of cosets in which contain

elements with square in H, is then 7 + 3x56/7 == 31.
It follows QIH Z2 X Z4 * (Qg)2 or Let A de-

note the unique elementary abelian subgroup of order 26 of Q.
Assume E8 XZ4 * Qg . The maximal elementary abelian sub-

groups of QIH have order 32 and we n It fol-

lows, that Q] ~ = 2 for every x E A - Z. This shows, that 
a contradiction. We have (n)

Set Q/H = where 
Then Set B = vl&#x3E;. Then B is isomorphic to

the Suzuki-2-group of type (A) and order 26. As Q] C H, we have
[~9]=[~~]-~. 

°

Assume YI] *-1. Set [xl , = zl . We can choose bases

~x x x ~ ~ ~ ~ ~ ~ and of resp. Z such that

We have = z, and further commutator relations follow by
application of the automorphism n. Especially
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and thus Z2Z3EH. It follows H = z2 z3~ . On the other hand

and thus zlz2 E H, a contradiction. We have [Xl’ y,] = 1. If t[x, Q] ) I - 2
for x E A - Z, we get the contradiction A = Z again. It follows

Then we can assume

and we have [xi , 2/J = = 1 and thus y;] _ for

(1 , 2, 3} . Set Y2] == [x2 , ~ y1] = zi = = Z3’ Then

with respect to the basis (zi, z3} and

Thus Y3] = z2 ~ z3 and H = Z2Z3)’ Further [x2 , Y3] = Z2’ We
have y1 E H = z1, z2z3&#x3E;. Assume y21 = ZIZ2’ Then y23 = (y1y3)2 =
- zlz2z3 and Y3] = a contradiction.

Similar calculations show and It follows Yî == Z2,
y2 --- Z3, y23 = z1z3 and the group-table of Q is determined. We have
Q = 2/i?2/2) 2/3) * ~2’~2? ~3 y3 ~ and Q is a central product of
two Suzuki-2-groups of type (A ) and order 26.

(3) Assume, that Q - Z contains exactly 14x8 involutions.
Then Q = AB, where A and B are the only subgroups of Q isomorphic
to Let A = and B = as Choose

yl E Bo and set Yl]. Then z1 ~ 1. Set further x2 = 
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We can assume, that

we have IXI ~= yl] and thus
follows

Assume first, that y2] = zlz2 , y [x2 , yl] = zlz3 . Then = z2z3 , 7
hx3 2/2] - As z, = [xg ! - C’"~’3 ! 7 Yll Y2]’ we have [x~ ! y,] ===
= Z2Z3’ From y2] = Zl Z2 ZS it follows [XlX2’ Y3] = Thus [0153l, y3] ==
= zlz3. Identify Aa, Bo and Z with the additive group of GF(8), i.e.
Ao = Joe E GI’(8)~ , 9 Bo = !~ E G.F’(8)~ , Z = E (7F(8)}
with the obvious multiplication. Let ;1, be a generator of 

Interpret the operation of n on Bo resp. Z as multiplication with
Ä, ;1,4 resp. )..5. Choose xl --- 0153(l), 2/1= 2/(1)? ~(1)’ It is then easy
to check, that [x(a), = for every E GF(8). Thus Q is
of type .L3(8) in this case.

If x2] = [x2 , yl] = we get the same result by a similar
calculation. In this case, the operation of n on Ao , Bo resp. Z has to
be interpreted as multiplication resp. A3.

(4) Assume, that Q - Z contains exactly 21 x 8 involutions. Like
under (3 ), 7 let Q = AB, where A ~ B ~ Eg4 , let A = Ao ~+ Z, B =
- BotBZ be the decompositions as n~ -modules, Ao = x2 , x3~, 9
-Bo = yi, y2, 9 where = and

with respect to the bases ~xl, x2, x3~ resp. (yi , y2, y3~.
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Assume )[~ Q] == 2, let == z,, 0 1 and [v2, WI] =~3~1 for
Then Further 

and thus This shows .9 - Z, a contradic-
(n)

tion. We have I [xy Q] == 4 for Z, X2 == 1. Set y Y2] == Z3
and = Z2 - It follows

and thus [x2 , yl] = ~3) [x3 , yl] = z2 . Further

With respect to the basis (zi, z2 , Z31 we have

The structure of Q is now uniquely determined. Let H  Z, - 4.

Then Q contains exactly 21+3x42/7 ==39 cosets which contain

elements with square in H. It follows E4 X (QS)2.

(5) Assume Q - Z contains more than 21 x 8 involutions. Then

Q = AB, and for x E A - Z we have IGB(x)1 [ = 25. It

follows [ [x, Q] [ = 2 and as a contradiction.

(1.3) LEMMA. Let Q be a special 2-group of order 29 with ele-

mentary abelian center Z of order 8. Let F be a Frobenius-group of
order 21 operating on Q, F == n, r&#x3E;, n7 - r3 = 1, nr = n2. Assume, y
that n operates fixed-point-freely on Q and that gz Then Q
is isomorphic to the group Qo in (1.2) (4) and the operation of F on Q
is uniquely determined.

PROOF. Let V be an irreducible F-submodule of Q = Q/Z. The

operation of r shows, that V - Z contains involutions. Thus T7 = 
We have Q = AB, A n B = Z and F normalizes A

and B.
Set Xl), C.,,(r) = zn.
Assume Ã Then we can choose bases x2, x3}, 1 fgl y2, y3, 1

n&#x3E;
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of A, .7~ resp. Z such that

It follows

We have

Assume Then

a contradiction. The same calculation shows ~ z~ z~ .
Thus = z~ ~ [Xl’ = Z2Z3, [~2 ~ Y.] = ~3.
On the other hand

and thus [x2 , = Z2Z3, a contradiction. We B. It follows

from (1.2), that Q is isomorphic to the group Qo of (1.2) (4) and that
the operation of n on Q is uniquely determined. Choose notation for Qo
and for the operation of n line in (1.2) (4).

Then
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(1.4) EXAMPLE. Let D be the Dempwolffgroup, i.e. the unique
nonsplit extension of E32 by L5(2 ) [3]. For a description of D see [11].
Let V= 02(D) rov E32’ X  V, IXI = 4. Then ND(X)/V has the struc-
ture Eg4(~3 X L3(2 ) ). Let R¡== Then R1/X is iso-

morphic to Qo and ND(X)jX is a split extension of by 17s xLs(2)
From now on Qo denotes the group given in (1.2) (4). We shall

now describe the automorphism group of Qo .

(1.5) COROLLARY. Let A = Aut (Qo), B = [a, Z] = 11,
C = E .A, [a, Z~ . Then B and C are normal subgroups of A.
We have G’  B, CrovE2l8, AjBrovLs(2), 

PROOF. It follows from (1.4), that L3(2). An automorphism
of Qo , which induces the identity on Z and operates on each of the
three E64-subgroups of Qo has to lie in C. Thus and C is
the kernel of the representation of B on the set of E64-subgroups of Qo :
Clearly ° rov E2l8.

The following is probably well known

(1.6) LEMMA. Let Ls(2). Let L operate on "f7., Z an
irreducible L-submodule of V. Assume, that Z and VIZ are non-
isomorphic natural L-modules. Then either V is a completely redu-
cible L-module or V is a uniquely determined indecomposable L-module.
Choose n, r)  L such that n 7 = r3 = = n 2, Z = z3~ and
let V = Z QQ Vo as an ~n, r~-module. We can choose a basis I V2 
of Vo, such that

and for every x E L we have xz = Choose t e Z such that

Then If V is an indecomposable L-module we have vx = vl,
v2 = VaZ2’ y v3 = V2Za. Then &#x3E; and thus ICv(t)1 = 16.
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(1.7) Let L operate on Qo, where Fix F  L, 
.F’ _ ~n, r~, n’ = r3 = 1, nr = n2. Then E8 and one of the

following holds:

(1 ) L operates completely reducibly on two of the E64-subgroups
of Qo and indecomposably on the third. 

,

(2 ) L operates indecomposably on all of the E64-subgroups of Qo .

We shall refer to the operations under (1) resp. (2) as operations
of « dihedral &#x3E;&#x3E; resp. « quaternion » type.

PROOF. Clearly n operates fixed-point-freely on Qo and CQo(r) ~ Es.
We choose notation like in (1.3). Let t e L such that

Then (tr) 2 = (tn)3 = 1.

(a) Assume, that .L operates completely reducibly on A, i.e.
L operates on Ao = Xl’ X21 X3)’

(a1) Assume, that L operates on Bo = Y1, y2, Y3)’ The F-com-

plement of Z in A + B is (A -E- B )o We
have 9 and 

Thus A --~- B is an indecomposable L-module.

(a2) Assume, that B is an indecomposable L-module. Then we

see like above, that A -f- B is a completely reducible L-module.

((3) Let L operate indecomposably on A, B and d + B. With

respect to the basis Z31 resp. Y3, Z31 we
have then
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We note, that in both cases, (a) and (fl), Z2 X (D8)~, CQ. (t, t2) ~2t~
gg (DS)2 and CQo(t, tl) ^~ EIs,

The following is easily verified:

(1.8) Lemma. Let the operation ’of L on Qo be of dihedral type,
where L ~ L~(2). Choose notation like in (1.7 ) («1). Then 

and the operation of F, on Qo is of qua-
ternion type.

(1.9) NOTATION. Let Q n denote the isomorphism-type of the central
product (with amalgamated centers) of n copies of Qo and let Qi ,
1  i  n be groups which are isomorphic to Qo . Further l ~ i ~ n
are isomorphisms from Qo on Qi . Consider Q = Qi * Q2 * ... * Qn r’J Qn.
We can assume Z = Z(Qo ) = Z(Qi ) = Z(Q), and we

set = V(i), 99i (yj) = 1 ~ i  n, j = 1, 2, 3. Set A = Aut (Q),
B = E A, [a, Z] = 1 } , C = E A, [a, Z}. Here the index

 n&#x3E; is omitted as no confusion will occur. We set Q = QIZ and iden-
tify Q with a subgroup of A. Then  C  B  A and the groups B,
C are normal subgroups of A. Further L3(2).

Set
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For elements oci, a_i of GF(2), not all zero, set

Consider the set

Then t8 is a GF(2)-vectorspace with respect to the addition

The is a basis of 8. We consider
further the non-singular scalar product ( , ) on ? given by ( Y, ~W ) = 0
if V = 0 or W = 0 or [V, W] =  1 ~ and ( Y, W ) = 1 otherwise.

Then

Ex ~ E~2n -E- 3. Set ~,=~=Z~~,...,~~B ~=1,2,3.
We have Ek] = zr~, where ~~, k, r) - {l, 2, 3}.

Set Ej - ?7-1, ... , -n ~ ? _ 1, 2, 3 and

For 2 E (1 , 2, ... , ~} let BL =~ bi , b_i~  B with Q j] --- 1 
Cb~ ~ v-~ ] =- 1 - Cb-~ ~ Yi] and

Then b2i = b2-i = 1, Bi = E3 and [B, , Bj] = 1 for i # j.
Let L be a complement of B in A = Aut (Q).

(1.10 ) LEMMA. Let q E Q - Z. Then [q, Q] ~ Z is equivalent to

q E .Ex for an E specially, is a characteristic
subset of Q. We have Q] _ [q, Q] for every q e Ex - Z, It follows

for every 
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PROOF. Let If for an in-
verse image qi of qi , we have Z Cq, [q, Q].

Assume [q, Q] =1= Z. Then [qi , Qi] == [qj, Qj]
wherever and This shows for an x E Ao.

(1.11) LEMMA. CBo , Bo rov Sp (2n, 2), Bo r1 C = 1,
AIB - Z3(2 ).

PROOF. It is clear, that C rov E2l8n and AIB - L3(2). Let X E

c- {0}. Then X satisfies the following conditions:

( a ) ..

where BQn-i.

(y) Q = Rl * .R, where 

( 3) C(X) = 2 for each x E Ao.
(8) For every such that we have

Consider the set satisfies conditions (x)-(e)}.
n

(1 ) ~0~ : let X E M. For write 
1

Assume [x, Q] = Z. Then IQ: - 8 and CQ(x) = CQ(X)
by (~8), a contradiction to (s). Thus y E Ao by (1.10 ). It fol-
lows from (y), that we can write ~ ~ Xo = q, r, s~ - E8 ,

r E E2, 8 E Ea. By ( 3 ) we have C(X) m (v§’~, wi)) # (1) for

every j E (1 , 2, 3}. Choose 2 E 2, ... , n~ .
Assume v=", v~’i~ c CQ(~) for Without restriction

we can choose j = 1. It follows ri, si&#x3E;  Z and from (e) we get
n C~(8) = C(X) and thus qi e Z. We now choose i E

e{ly2y...~} such that qa , ri , sv ~ ~ Z. By the above we have
n = 2 for every j e {l, 2, 3} and x, y) 6 Z for every

~x, ~q~ , ri , si} such that x ~y. Without loss It follows

ri e va2’&#x3E; Z, 8i e v23’~ Z. Assume 8i e Z. Then CQc(X) = -

by (s). It follows a contradiction.
We It and by the same

operation as above This holds for every ~e{ly2~...~}
such that qi , r~ , si~ ~ Z, This shows ~e~2013 {O}. We have shown
M === t8- {O}.
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(2) It follows from ( 1 ), that the automorphism-group B operates
on t8. Further B respects the linear structure and the symplectic
scalar product of 3S. The kernel of this representation of B is exactly C,
as -- Q and A/B ~ L3(2 ). Hence B/C is isomorphic
to a subgroup of Sp(2n, 2).

(3) Define a symplectic non-singular scalar-product on over

GF(2) by = 1 exactly if 1~ _ - r (and 0 otherwise). Let

Sp(2n, 2) and let Bo be represented in the natural way on .E2o’
and E(O). Let q E Q. Then q possesses a unique representation of the
form q = qi E E Z, i = ~ , 2, 3 . We extend the operation
of Bo on Q by setting for It is now easy to see,
that Bo is a group of automorphisms of Q.

(1.12) LEMMA. Let Q be a special 2-group, Z(Q) = and
let a group L, L "-/ L3(2), operate nontrivially on Q. Suppose

... Q+ T~~,t as an L-module such that Pi ~ T7j * Z for
E 119 ... , Here 17i and Z are natural L-modules.
Then m = 2n and Q "-/ Qn. If r is an element of order 3 in L, then

CQ(r) ~2t~ E2 2n + 1.

PROOF. (1) Let be an irreducible L-submodule and V be
the inverse image of 9. Then V cannot be a Suzuki-2-group of

(A)-type as L3 (2 ) operates on V. As V ~ Z as an L-module, we must
have It follows + 1, when r is an element of
order 3 in L.

(2) Consider Q as a GF(2)-vectorspace. Then it is easy to

see, that X = C(L) ~1 Aut (Q) ~ Lrn(2) and E XI = 2m-1. Set

flJ’ - 

(3) V is an irreducible L-submodule of ~~ .
Let an irreducible L-submodule of ~~ .

Clearly S. Let V E 0’ and let 2 be an L-isomorphism of 9
on Then r can be extended to an L-isomorphism of ~, that
is 7: E X.

(4) Then 6 is an GF(2)-vectorspace by the
following definition: 0 --f- Y -- Y -~- 0 - Y, Y -I- Y = 0 for 

Let S’ such that V # W. Then V + ’W is defined as the unique
irreducible L-submodule of  P7 W ~ which is different from 9 and W .
Then clearly V + ~tY = W I V. The associativity of the so defined
addition is easily proved with the help of the fact, that a 9-dimensional
L-invariant subspace of Q contains exactly 7 irreducible L-submodules.
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(5) We define a symplectic non-singular GF(2)-scalar product
( , ) on ftJ by (o, o ) = (o, V) - (Y,0)=O and, for V, (V, W) == 0
if and only if [ Y, W == 1.

Clearly (V, W) = ( W, V) and { Y~, V) = 0. We show (A -~- B, C) =
- {A, C) + (B, C) for all A, B, C We can assume 0 ~ {A, B, C}
and 

If [A, C] = 1 = [B, C], we have [A + ~ C] = 1, as A -~- B ~
 A, B~ . If [A, C] = 1 ~ [B, C], we have [A + B, 

So we can assume [~C]=~1~[2~C]~ and we have to show

[A + B, C] = 1. This however follows directly from the structure
of Qo , as A, 0) ro.J B, C~ ^~ Qo . As Q E ?’), it is clear that
( , ) is non-singular.

(6) It dim Z ’ 2n. Let ? = ... be
a decomposition of * in hyperbolic planes with respect to ( , ). Then

The group Qi is

special of order 29 with center Z. The operation of an element of
order 7 and (1.2) show Qiro.JQO, 1  2 ~ n. Thus 

The following lemma gives f urther motivation for the term « dihe-
dral type » resp. « quaternion type ». introduced in (1.7).

(1.13) LEMMA. Let Q = like in (1.9) for n = 2. Let

L ~ L3(2 ) and assume the operation of L on Qi and Q2 is of quaternion
type like in (1.7) (2). Then we can choose 1~2  Q, I I

Q - RI * R2 , such that L operates on = 1, 2, and the operation
of L on R~ is of dihedral type.

PROOF. Let ggi be the isomorphism from Qo on Qi , i = 1, 2, and
let the operation of L on Q i be like in (1.7) (2).

Set Y-1 + I R2 +  Vi + V 2 ~ ·

From (1.12) and (1.13) we get the following

(1.14) COROLLARY. Let L be a complement of B in A = Aut (Q)
such that the operation of L on Q satisfies the hypothesis of (1.12).
Then L is conjugate in A to one of the following two automorphism-
groups of Q (notation like in (1.9)).

(1 ) L+, where the operation of L+ on Qi , 1 c z  n is of dihedral
type like given in (1.7) (1).

(2 ) .L_, where the operation of L- on Qi is of dihedral type like
above for 2  i  n and of quaternion type like in (1.7) (2) for i = 1,
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(1.15) LEMMA. Consider the subgroups L+ and L- of A as intro-
duced in (1.14). Then L+ n L_ = F21 and F = n, r&#x3E;, where n7 -
- r3 = 1, nr = n2 and the operation of F on Qi is described in (1.7),
1 ~ 2 ~ n. We have CB(I’) = CB(n) = B* - Sp(2n, 2) and B* is a com-
plement of C in B.

Further El’) is an indecomposable B*-module, i ~= 1, 2, 3 and

2), where BE ~-~-, -}.
PROOF. It follows from (1.7), that As it is

easy to see, that n operates fixed-point -freely on C, we have that
CB(n) is isomorphic to a subgroup of ~Sp(2n, 2). The group B/C is

represented in the natural way on the vector-space E1/Z and the com-
plement Bo of C in B is represented on the complement of Z
in E (1.11 ). Fix the basis { (1) v2(1), ... (1) ... for E( 0) and
the analogous basis for E,IZ. Identify each element of B/C resp. Bo
with the matrix representing the operation of the element with respect
to the above basis. Then BjC resp. Bo is generated by the matrices
of the following form ( see [ 1 ~ ] ) :

Here I denotes the (2n, 2n)-unit matrix and denotes the matrix
with entry 1 at the intersection of row k and column r and 0 other-

wise. Let Bi’ be the subgroup of Bo generated by the elements which
correspond to the matrices of forms (1)-(4). Then B:’ "’-/ Q+(2n, 2).
Set The involutoric generators of Bi ,
1 ~ i ~ n ( 1.9 ) are elements of B, which are not contained in Bo . They
correspond to the matrices of forms (5) and (6). It follows from (1.9),
that B* operates on This operation is clearly indecomposable.
Further it is a matter of direct calculation, that B*  C(F). As

Cc(n) = 1, we have CB(n) = CB(I’) = B* ~ Sp(2n, 2).
Let q~, 8 E { +, -} be defined on the vector space 6 with values

in GF(2) by = 0 and = 0 if and only if L,, operates com-
pletely reducibly on V for 

It is then easy to see with the help of ( 1. 7 ), that qe are quadratic
forms on 6 with respect to the scalar product ( , ) . Let 
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+ X-t. Thus the indices of q+ , q- are n resp. n - 1.

Let B8 be the subgroup of B* respecting the form q,,. Then B* is

isomorphic to 011(2n, 2). Clearly CB(Le) C The equality -= B~
will follow from the examples (1.15) (i) and (ii).

(1.15) EXAMPLES.

(i) Consider the Chevalleygroup Dl(2 ), ~&#x3E;4. We use the nota-
tion of [2]. So let el, ... , el be an orthonormal basis for an euclidean
vector space. :t = 1, 2, ...Z} is a root-

system of type Di . The vectors ri , 1  i  I with ri = ei - for i  1
and ri = + e, form a system of fundamental roots. This choice

corresponds to the following labelling of the Dynkin-diagram

for I = 4. Then P is a parabolic
subgroup of Dz(2). Set Q = 0,(P). Then

For 4jl set

Then with Further

is isomorphic to ~~(2 ) and

Then and The group L operates on
each of the subgroups  i  3&#x3E; and  i  3&#x3E; 9 4  j  1.

== ~20133, and the operation of .~ on each of
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the subgroups Q i of is of dihedral type. The group P is a
maximal parabolic subgroup of Dt(2 ) with the exception of the case
I = 4, where P is contained in a maximal parabolic subgroup, which
is a split extension of Eg4 by S~+(6, 2).

(ii) Consider the Steinberg group 2D,(2) for Z ~ 4. Let e be the
symmetry of the Dynkin diagram for D, interchanging and ri
and fixing the fundamental roots ri 7 1~~20132. The Dynkin-
diagram for 2DL(2 ) is then

Let P = P3 be a maximal parabolic subgroup of ID,(2), Q = 0,(P).
If r is a root and r:k rl, set = E where I~ _ GF(4)
and or is the non-trivial field-automorphism of K. Then 
If r = rl, set where .Ko is the prime field of K.
Then

Set

for 4~~20131. Then where

We have [Z, .x] = 1, P = Q r-v Qn and the operation of L
on Q~ i is of dihedral type for i ~ 2, of quaternion type for i == 1.

(iii) Janko has shown [8, Prop. 13], that J, contains an elementary
abelian subgroup V of order 8 such that L = is a special
group of order 215 with center V, N(V) = J X C, where

and 0 L,(2). Here J= C(V), an element of order 5 of J
operates fixed-point-freely on LjV and an element of order 7 in C

operates fixed-point-freely on L. Further an element of order 3 in J
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operates fixed-point-freely on LIV. Tran Van Trung has characterized
the simple group J, by a maximal 2-local subgroup having the above
structure [19]. It is easy to see and follows from Tran Van Trung’s
proof, that the operation of C on L/ Y and TT satisfies the conditions
of (1.12). It follows then from (1.12), that Q 2.

It should be noted, that 0-(10, 2) possesses a maximal 2-local

subgroup M such that E,,
C ~ L3(2 ), where an element of order 5 in .M~ operates fixed-point-
freely on and an element of order 7 operates fixed-
point-freely on 02(M)- In this case, however, an element d of order 3
in J will not operate fixed-point-freely on In fact we

have = (C(d) [d, where

(iv) Let G = lVl(24)’ be one of the Fischer-groups, let z be a
2-central involution of G and set H = CG(z), K = H’, J= 0,(H)
like in [13]. Then J r-v (DS)6, I02,3(H)/JI = 3, K/02,3(H) r-v U4(3) and

== 2. Let j2 be an involution in J - ~) such that 
E181 A6 · Then E32A6’ · Let R = 02( CK(j2))’ H = 
1i = and use the « bar convention ». Then -= Cj(JS) r-v E64 and

Further 
Set M = Like in [8, Prop. 13] consider the inverse image U
in M of a maximal 2-local-subgroup of which is a faithful
and splitting extension of Eg4 by ~3 X L3 (2 ) . Set Z = Z( 02 ( U) ~, I let P

be a subgroup of order 3 in 02,3( U) and let C be a subgroup of order 7
in U. Similarly like in [8, Prop 13], we get Cv(P) = Further
Z- 1~ consists of 2-central involutions of G. We can choose

z, j2~  Z. Set B = CH(Z) and Q = 02(B). The operation of P
shows Z  F. Further Q = CR(Z), = 215 and R operates fixed-

point-freely on We have and 

As elements of order 7 of L3(2 ) and elements of order 5 in A. operate
fixed-point-freely on the group Q has to be special with center Z.
Let S be an element of order 3 in B, which doesn’t operate fixed-
point-freely on QjZ. Then by (1.1) ,,1"e have where

Ql = Q2 = Z[Q, S] and Qi, Q2 are L3(2)-admissible special groups
of order 29 with center Z. It follows from (1.2), that 
and thus Q r-v Q2. Obviously, NG(Z) is a maximal 2-local subgroup
of M(24)B Further
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(1.16) LEMMA. For every there is a group X with the follow-
ing properties:

(iv) The operation of L/Q on Q/Z and Z satisfies the hypothesis
of (1.12).

Then the sequence 0 is non-split for n &#x3E; 1,
split for n = 1. Further the structure of X /Z is uniquely determined.

PROOF. It follows from (1.14), (1.8) and (1.5), that there is a group X
satisfying (i)-(iv). Further XjZ is isomorphic to a subgroup of Aut (Q)
and its structure is uniquely determined by the same lemmas mentioned
above. It follows from (1.1 ~), that the above sequence splits only
for n = 1.

2. A 2 -local characterization of Fischer’s simple group -ill(24)’.

THEOREM. Let G be a finite simple group possessing a 2-local sub-
group Jf with the following properties:

(i) Q = is a special group of order 215 with elementary
abelian center Z of order 8.

Then G has a 2-local subgroup of the form B211 ’ M24’

COROLLARY. Under the additional assumption, that 0(C~)) ~ 1
for a 2-central involution z in G, it follows from [16] and _ [14], that G
is isomorphic to .lVl(24)’.

PROOF. Let_G be a group which satisfies the assumptions of the
theorem. Set 9 = M/Q, 1fl == M/Z and use the «bar convention ».
Let B resp. L be the inverse images of B resp. L. Then B = C(Z).
Let F = ~n, r) be a Frobeniusgroup of order 21 contained in L,
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where n7 = r3 = 1, nr = n2. Clearly, elements of order 5 and 7 of M
have to operate fixed-point-freely on Q. As n operates fixed-point-
freely on Q, we have CB(n) --- 

We use the symbol - to denote the correspondence of elements
in the isomorphism Let D E Syl3 (BI), D == d2), where
dl ~---&#x3E; (1,2,3), d2 ~ -~ (4, 5, 6 ) . As dl and dld2 are conjugate under
Aut (As), we can assume = - 26.

Assume = CQ(d2). Then [dl, Q] = [d2,Q]. As Q - 
d E D~, there such that n Q] ~ 1. The

operation of n shows then [d~ d2 , ~] = 1, a contradiction. Thus

[d2, Q], CQ(d2) = [dl, Q], the elements dld2 and d, d2l operate
fixed-point-freely on ~.

Set Q1= Q] and Q2 = = Z[d2, Q]. It follows
from (1.1), that Further Z = Z(Ql) = Z(Q2) and the
groups Qi are special groups of order 29, i - 1, 2.

As BI operates on CQ(r), we have CQ(r) By (1.3) 
and thus Q ^~ Q 2. Further L C N(Qi ), i = 1, ~ .

Set Lo = CL(dld2). Then and it follows from the
structure of Aut (Q2), that Lo is conjugate to L+ as a subgroup of
Aut (Q2) in the sense of (1.14). Especially, Lo is a uniquely determined
subgroup of Aut (Q) and thus M is uniquely determined. It follows,
that M has the structure given in the following lemma :

(2.1). LEMMA. Q = Ql * Q2 ’"’"’ Q2. For elements of Q we use the nota-
tion of (1.9). L = QLo, Lo = ZF, t~, L3(2). With respect to the
bases vi2’, v23’~ of i E {::l:: 1, :::l::: 2} and z3~ of Z we have

and (gq)* for every- 
Further C’B (.F’ ) = Sp~ ( 2 )’ and the elements of B1 are represent-

ed in the natural way on the elementary abelian groups ~,~==1,2~3.
The operation of B, on has been given in (1.15) with respect to
the bases V(i) zl, where z = z1 for i = 1, z = for
i = 2 and z = f or i = 3.
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We have CB(Lo) = = N(K) r1 -81, where K = k2~ E
E (B1), k1 ’-~ (1, 3, 5), k2-,--~ (2, 4, 6), vw (1, 2) (3, 6, 5, 4) and

Set vo E Bl such that v~ ~ (3, 4 ) ( 5, 6 ) . Then

C’Q(v2) = V -1(V2 + Y-~) Bl contains exactly two conjugacy-
classes of elementary abelian groups of order 4 with representatives .~1
and where

We have = E84 and = -~- rv E2’. Set
V = X2CQ(X2). Then V - 



158

PROOF. The bulk of the lemma follows from the fact, that we
can choose so, that Q --- and that the operation
of Lo on Q1 and Q2 is of dihedral type in the sense of (1.7). It is a mat-
ter of direct calculation, that C(L,) n B = It follows from the

3-subgroup-lemma, that [(Kv~ )’, Lo] _ [K, Lo]. As v centralizes LQ/Z
and Z, we get [Kw~, Lo] = 1.

(2.2) LEMMA. Let TT c T E (M). Then V is the only elementary
abelian subgroup of order 211 of T.

PROOF. We have T/Q = Ð1 x D2, where Die E Syl2 (B), D2 E Syl2 (L).
Denote by Di the inverse image in T = 1, 2.

Let .E211.

(1 ) Then

A n Q is contained in the inverse image U of But ii - t and
so V;2), v~3~ ~~ E ~ ~ 1, ::i:: 21 &#x3E; 7 .E4 X (DS)4 and Z( U) = Z.
Further C(a) ~ Z. Thus CQ(a) doesn’t contain an elementary abelian
subgroup of order 27. It follows j.AI:&#x3E;32, a contradiction.

(2 ) A C Dl : If A çt D1, there is an involution a E A - Q such

D2. As ii inverts an element of order 5 in B, we have

I~Q((i)1 = 26. Further Z ~ C(a) and thus It follows

~ A ~ ~ 8 and a contradiction to (1). ..
We have A C DI , 7 A n Q ~ B297 = 4. All the involutions in the

coset v2Q are contained in Q). Thus Y n Q c A and
A= V.

PROOF. Set J = x2 = 1, ~Q: - 4}. We have W =
- Y =  ~W n J~..Assume (M), (G). Then T C Tl,
)TijT) = 2. Choose x E T1-T. Then Q, Z, but Zx_C Q, as

&#x3E;219 for z E Z. Thus Qx is elementary abelian and IQael : 16.
(1) Qx r) V = 1&#x3E;: Assume the contrary. We have Qx n V =

Wx. So there is an element y yY such that

V ) - Q. As we have = W ^J E29. On the
other hand and as So

C(yx) W ç Q and a contradiction.

Clearly 

_ 
(2) Assume I Qx = 8. Then Qx n 1. But T and Z(Di) 

C Qx. It follows Tl ~ ~1 ~, a contradiction.
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(3) We have  4, 1 Q r’1 ~ 213. Let yx E (J~ r1 Qx) - Q. Then
IC(yx) n Q n QxI ~ 2~1, another contradiction.
we consider the involutions contained in M - Q.

(2.4) We may and will take t to be an involution in L - Q.
Let t’ be an involution Then CQ(t’) Z2 X (Qs)4. Further
t’ ~ t’ z if and only if z E z2z3&#x3E;.

PROOF. As L3(2 ) contains only one class of involutions, all the

involutions in L - Q are conjugate to an involution in the coset tQ.
If Lo is a non-split extension of E,, by L3(2 ), the Sylow-2-subgroup
of Lo is of type M12’ Thus in any case Lo - Z contains involutions
and we can take t to be an involution. We have

Let U be the inverse image of CQ(t). Then E4 X (DS)4. Thus tQ
contains exactly 210 involutions. They have one of the following forms :

(1) tx, x E CQ(t), x2 = 1.

(2) tZ2 Y, yc-CQ(t), y2 = z2zs.

By direct calculation we see for every involution

t’ E tQ. Obviously for all these involutions t’.
Assume t’ = tx, x E CQ(t), x2 = 1, t’q = t’z1, q E Q. Then q, 0153)  U,

a contradiction.
Assume

Then tz1, a contradiction like above.

(2.5) LEMMA. All the involutions in B - Q are conjugate to ’02

or to ’02Z1’ We have C~(v 2 ) = W = 

PROOF. We have CQ(v2) _ [v~, Q]  W, ~[v2, = 26.

It follow, that the involutions in ’02Q are all contained in v 2 W. As

~Co(~)~=2~ there are exactly 8 classes of involutions in B - Q
under the operation of Q and the elements v2z, z E Z, are repre-
sentatives of these classes. If z, we have under
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(2.6) LEMMA. All the involutions in M - Q, which are not con-
tained in B or Z, are conjugate to v2 t. We have CQ( ’1)2 t) E16 

PROOF. By (2.1) v2t is an involution. Clearly ,all the involutions
in are conjugate to an involution in V2tQ. Let TI be
the inverse image of CQ("v2t). Then TT = Zxl , x2 , ... , xg~, where

By direct calculation we see, that v2 tQ contains exactly 28 invo-
lutions, namely 96 in V2 t U, 1 32 in v2 tz2 U1, 7 64 in v2 tx3 U1 and 64 in
v2 tx3z2 U1. As I Q: = 2g, the lemma is proved.

(2.7) LEMMA. Every involution in Q is conjugate under M to an
involution contained in V.

PROOF. There are exactly 3 x 5 X 72 nontrivial cosets in Q, which
consist of involutions. Consider the operation of lVl on Q. Let t1 E L
like in (1.7). Then and B induces a natural rep-
resentation as Sp(4,2)’ on Let 41 E CQ(t, t1). Then q2 = 1

Assume Then Q2 has to be centralized by an element
of order 3 in B. We can assume q2 E Q2, where Q = Q1 ~ Q2. But
then q2 is centralized by an element of order 3 in L. It follows q2 ~ gi,
a contradiction. We have 9?ICM(Q2)I and thus 
It follows 

’

So there are exactly two conjugacy-classes of nontrivial cosets in
Q/Z, which contain involutions. These classes then have to consist
of those cosets which contain involutions q E Q - Z such that

= 4 resp. = 8. As W - Z contains involutions
of both types, the lemma is proved.

(2.8) LEMMA. NG(V) i M.
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PROOF. (1) If then Z is strongly closed in B with
respect to G : Let z E Z - E Q, g E G. Then zg- E W c V, m c- M.
By (2.2), (2.3) we can assume By assumption gm E M,
gEM and thus zg E Z.

Assume Then As z2 = 1,
we have E xCQ(x) c V. Thus we can assume gm E N(V), g E M, a
contradiction.

(2) If Na(V) ç M, then no element of Z is conjugate in G to
an involution x E M - (B U L) : Assume xg = z, g E G. We have 

by (2.6). Let Then, by (2.6), x is

conjugate under Q to all of the elements of the coset xE. Choose

g E G such that Then Egr-o.JE64’ Eg  T, and z is

conjugate to every element of the coset zEg. We have lEglEg n 4,
a contradiction to (1).

(3) If M, then Z is strongly closed in with respect
to G : assume the contrary. Then by (1), (2) 
We can choose Set .X = [z~’, W]. By (2.4) either

IXI =8, ZI=2 or ~x~ --- 16, Set Z° = X f1Z.

Again, zg is conjugate to every element of the coset but X f1zG _
- Z° - fl} by (1), (2). We have Xg-1  C(z) and we can assume
Xg-1 T. Further z E Xg-1, z ~ zxg-1 for all x E X. It follows

Let Then Thus Z° _
- z°&#x3E;&#x3E; = 2, 8, - (z, £~’) for every x E X - 

There is then an y E x - (zo) such that yg-1~ yg-1- z z, a contra-

diction to X n za = 

We have proved, that Z is strongly closed in T, where T E SyI2(G),
in case This contradicts Goldschmidt’s result [5J.

(2.9) LEMMA. Set N = NG(V), N = NjV. Then ~V124 and the
lengths of the orbits of VO under the operation of N are 1771 and 276.

PROOF. We have _O(N) ~ C(Y) ~ Y and so O(N~ _ 1~. As

V, the group N is isomorphic to a subgroup of GL(11, 2 ).
Further ~N ~ 2 = 2 ~° and It is clear from the

structure of GL(11, 2), that O(S) = 1&#x3E;. yVTe have Y c 02(N) c
VQ. As Z char Q = 1, 

char VQ, we get 0,(N) =A VQ. Because of the irreducibility of

N n MjVQ on VQIV, we have 02(N) = V and 02(N) _ 1). 
_

Let X be a minimal normal subgroup of N. Then X --- Xi X ... 
where the X, are isomorphic non-abelian simple groups. Further
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n ..M~)  X and N r1 .~3 XL3(2). It follows L  X and

1, c- {29, 2 10). Assume s &#x3E; 1.
If s = 2, then /..Y12 = 210, but the center of a Sylow-2 -subgroup

of N r1 ll has order 2, 7 a contradiction. 
_

If s ~ 3, the center of a Sylow-2-subgroup of X has order at least 8,
but this is impossible for the same reason. 

_

Hence s =1, X is a simple group and N Aut(X).
The lengths of the orbits of V - {1} under the operation of

7/336-84-84/1344-192. Here, the orbit of length 7 is

Z - ~1~, 9 the orbits of lengths 336 and 84 are contained in ~Y - Z.

(1) Assume W ~ N. Let X be the inverse image
of X in N, set Then where The

simple group ? is isomorphic to a subgroup of G.L(9, 2 ) and is

generated by involutions of type J2 in the sense of [4]. Further
operates irreducibly on W. The length of the Y-orbit containing
Z - {1} is 5 2 X 7 or 73. We get then a contradiction from [4, Theo-
rem A], [10] and [18].

(2) The lengths of the orbits of V - {1} under N and under X
are 1771 and 276: We use (1) and the fact, that N ~ M. The only
other possibility for the lengths of orbits under N is 1519-528. Here
1519 = 7 + 1344 + 84 + 84 = 7 2 X 31,

Consider where We see then, that the homomorphic
images in of the elements in V contained in the N r1 M-orbits
of length 336 are the only ones which don’t contain an involution
conjugate to z under N. Thus W « CN(z). This contradicts the fact,
that 

We have

Obviously, a Sylow-23-normalizer has to be a Frobeniusgroup of order
23x11 in X as well as in N. It follows from the Frattiniargument,
that N = X and N is a simple group.

Further N possesses a 2-local subgroup, which is an extension of Eg4
by 1:3 X L~(2 ). The element of order 3 in ~3 operates fixed-point-freely
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and so the extension is split. As L3(2 ) operates completely reducibly
on Ea4.’ this 2-local subtroup is uniquely determined and a Sylow-2
subgroup of N is isomorphic to a Sylow-2-subgroup of M21- It fol-

lows from [17], that N is isomorphic to M24’
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