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On Some Conjectures by E. De Giorgi Relative
to the Global Resolvability of Overdetermined Systems

of Differential Equations.

GIUSEPPE ZAMPIERI (*)

SUMMARY - In the following we prove that semiglobal resolvability in an open
set of for overdetermin ed systems (Pu = f , Qu = 0) with constant coef-
ficients and Q elliptic comports global resolvability. This proves De Gior-

gi’s first conjecture of [2] in the case A = B, thus generalizing L. Modica’s
result relative to open bounded sets in which the solutions of the equation
Qu = 0 are approximable by solutions of the same equation in Rn. Then,
for Q elliptic, we prove conjecture 2, arising from 1, and conjecture 5 for
which we give the resolving map of the system in question by means of
closed graph theorems.

1. In this paragraph we compile the necessary classical results
needed to affront the De Giorgi’s conjectures; these theorems will be
indicated with capital letters while our original theorems by numbers.
The essential information are theorems on resolvability in convex
regions for systems of differential equations with constant coefficients,
the theory of real analytic functionals, and theorems on extensions
and approximations of solutions to homogeneous elliptic systems and
equations.

(*) Indirizzo dell’A.: Seminario Matematico - Via Belzoni 7 - - 1-35100
Padova.
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. Let Pij (i ~ = 1, ... , I, j = ly ... , J) be polynomials in n variables
and consider the system of differential equations

where D Consider the module over the polynomial ring of
the polynomial relations among the matrix’s rows and let (Qii , ... , 
..., (Qkl, ..., Qkl) be a set of generators (it will be useful in the fol-

lowing to know that this one also generates the relations with coeffi-
cients in the local ring of germs of holomorphic functions). If we

write (1) in the form Pu = f and interpret Q similarly, then obviously
a necessary condition for the existence of solutions to (1) is that

Qf = 0. Conversely we have ,

THEOREM A (Lojasiewicz-Malgrange). If S2 is a convex open set
then the system Pu = f has a solution u E ~’(S~) (= aOOJ(Q)) for every
f E ~I (S~) s.t. Qf = O.

In the following we’ll deal only with overdetermined systems in the
form (Pu = f, Qu = g) with P and Q relatively prime differential poli-
nomials and we give a sketch of proof for these particular systems. First
of all the condition of compatibility over the data is that Qf - Pg = 0.
Thus the function: P X Q : ~(S~) -~ ~( f , g) E 8(Q) X ~(S~) : Q f = Pg~ has dense
range because let (u, v) E ~’(S~) x 8’(Q) and tpu + tQv = 0 (tP(D) =
= P(- D)) then IP4 + tQv = 0 (û denotes the Fourier-Laplace trans-
form of ~); so, as we noted above, tQ and - tP devide 4 and ~ respec-
tively from which there exists WE 8’(Rn) s.t. u = tQw and v = - tPw
(see [11]); at last this w is forced to belong to ~’ (S~) because of the
S21s convexity. To conclude it is enough to prove that tP8’(Q) +
+ tQE’(Q) is closed. Now let u E (tPE’(Q) + tQ8’(!J))- (closure) thus
in particular u is orthogonal to 8Q(Rn) f1 E 8(Rn):
Qf = 0)) ; then it is easy to see that VC E Cn we can resolve û, =
= tPG1f¡ + tQG2f¡ in the ring of formal power series (where ic~ denotes
the germ of u at ~) ; this equation can also be resolved in the ring of
germs at C (A~), because every submodule of Ac is closed in AC (see
Theorem 6.3.5 of [4]). By means of the Cartan theorem we can « glo-
balize » such a solution and so the equation 4 = tpG1 + tQG2 is sol-
vable in the ring of holomorphic functions. By the Paley-Wiener the-
orem, which relates the supports of the distributions with the growth
of their Fourier-Laplace transforms we conclude that there exists .~
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holomorphic s.t. G, + tQF and G2 - tPF are the Fourier-Laplace
transforms of distributions of 6’(Q). So also we proved the following

THEOREM B. Let be a convex open set. If (u, v) E E’ (Rn) X 
and tPu + tQv E ~’(S~) then there exists w E s.t. u + tQw and
v - tPw both belong to 6’(Q).

Let A be a generic open and suppose Q elliptic. The space 
endowed with the topology induced by 6(A), is a Fréchet reflexive

space; its dual 6§(A) is canonically isomorphic to by
Hahn-Banach theorem.

DEFINITION. We say that is carried by a compa,ct
subset If of A if there is c &#x3E; 0 and s.t.

Obviously we say that L is carried by an open B of A if L is carried
by some compact K of B. First of all observe that b’L E 6§(A) there
exists K s.t. the relation (2) is satisfied with m = 0 because in ~Q(A )
the topology induced by ~(A ) and by ~’ (A ) coincide. Thus we can’t
talk about the order for an element of 6§(A). Besides it is certainly
true that every L has some compact carrier but, differently from
the case of the supports of distributions, y the intersection of two car-
riers of L is not a carrier of L, generally. For instance is
the restriction to harmonic functions of the Dirac measure then, in

view of the maximum principle, y we have:

but of course °It.1(Rn) can’t be carried by ~x ~ = l~ _ ~.
However by means of the following results on the representation

of 6§(A) we’ll see that, under certain hypotheses, carriers behave like
supports. Let L E 6((A ) and let B be a relatively compact open of A
that carries L, s.t. A - B has no component which is relatively compact
in A. Define WE by the formula: (WL, ~~ _ L, E ~g~~, Vg E 
(where B is a fundamental solution of Q). Obviously PL E B).
Via !P we can give a character ization of 6((A) ; i.e. one proves that

8§(A) and are algebraically and topologically
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isomorphic (see [7]). Here En denotes the Alexandroff compactification
af Rn and 6t (En 1’.1 A) the inductive limit of 6t (W r’1 when W runs

over the family of the open neighbourhoods of 

THEOREM C. A functional L E ~Q(A) is carried by an open subset B
of A if and only if IfL has an analytic continuation on for

some KCB (see [8]). So we can state:

THEOREM D. Let be a family of open subsets of A s.t. m

has no relatively compact component; if is
carried by An b’n, then L is carried by also.

Besides from the representation of 6§(A) it is clear that if ’KcA
then in 8o(~-) the topology induced by 6(A) and by 6(A - K) coincide;
infact obviously ~Te can give an analytic (non unique) extension of

to a neighbourhood of _fin 1’.1 (A 1’.1 I~). Thus if AI:2 A2 and A1 ~ A2
has some component w hich is relatively compact in then if

can be approximated by functions of 6~(Ai), it follows that
f has an extension on such a component / which also satisfy Q f = 0.
Therefore if f E ~Q(A2) verifies (translation of 6 by x belonging
to some relatively compact component) then f can’t be approximated
because it can’t be extended. Moreover note that if there is no

such component thus let u E 6’ (AI) s.t. tQu E ~’ (A2) then u belongs to
8~(~-2)? therefore it follows:

THEOREM E (Prop. 8, pg. 336 of [6] ) . Let Al :2 A2. Every f E 
is approximable by functions belonging to 80(~1) if and only if A1 ~ A2
has no relatively compact component.

At all differently behave the solutions of the overdetermined sys-
tem (Pu = 0, Qu = 0).

THEOREM F. If P has no elliptic factor and I~ is a compact subset
of A s.t. Rn 1’.1 K is connected then every u E ~Q(A ~ K) n 6p(A - K)
can be extended as an element of ~~ (A ) r1 ~p(A ) .

We make the above hypothesis on P because thus the theorem
banally arises from [5] and because this hypothesis is non restrictive
in problems of analytic convexity. It is clear that we could have

analogous results supposing .P and Q relatively prime; indeed if W
is a neighbouhood of K s.t. Zw = Q~ (Zw is the union of all components
of Rnl’.l W that are compact) then tP : ~Q( W) ~- ~Q( W) is injective.
Thus we conclude using the representation of 6§(W) and observing
that P and f conimute,
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2. Some conjectures by E. De Giorgi.

In [2] E. De Giorgi proposed five conjectures arising from his
works (e.g. [3]) on the resolvability of partial differential equations
in the space of real analytic functions. The problem of analytic con-
vexity for an open of can be translated into the compatibility,
respect to an overdetermined system, between opens of the space

(m &#x3E; n) to which we « suspend » the differential equation by means
of the Cauchy-Kovalevsky theorem. We express the above com-

patibility as follows:

DEFINITION . Given two open scts B C A of I~n and two operators
P, Q defined in 6(A) then (A, B, P, Q) is (6-) compatible if Vf E 6(A)
for which the system Pu = f, Qu = 0 is (6-) locally resolvable in A
(i.e. Vy e A there exists a neighbourhood Vy and an u E EQ(Vy) s.t.

Pu = f in V~) for every such f the system is (8-) resolvable in B

(i.e. there exists an u E CQ(B) s.t. Pu = f in B).
In the following we suppose that P and Q have constant coeffi-

cients and that they are relatively prime; so the condition of local

resolvability of the system is that f belongs to CQ(A) (see Lojasiewicz-
Malgrange theorem); furthermore we suppose that Q is elliptic because
there exists a class of opens and of hypoelliptic operators for which
the conjectures are false (see [12] in which we developed a counter-
example of [9]). These hypotheses are sufficient for the following

LEMMA. If A is Q-convex (in particular if Q is elliptic), then

(A, A, P, Q) is compatible if and only if A is (P, Q)-convex (i.e.
g) E 6(A ) x 6(A) with Q f = Pg the system Pu = f , 7 is re-

solvable in A). For the proof see [12].

In conjecture 1 De Giorgi presumes that if is a rising sequence
of opens of Rn s.t. A D U Bn = B and if Vn (A, Bn, P, Q) is com-

patible, then (A, B, P, Q) is also compatible. We will not prove this
conjecture in all its generality (i.e. with because it is arduous,
if not impossible, to give, for a generic open, a density theorem of

n 8,(A) in n (where A, = {x E A: A) &#x3E; oi)
This will impede us to answer conjecture 4 (substantially recon-

ducible to 1 with B c A ) and conjecture 3, which is quite a bit stronger
than 1. In any case if B - A, then from the compatibility of (A, Bn,
P7 Q) Vn, we obtain a density theorem of the kind mentioned. That
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is the resolvability of an (elliptic) overdetermined system in relatively-
compact opens of A is restricting enough (for an equation it is tri-

vially verified by means of the existence theorem of the fundamental
solution) to imply global resolvability (which, in the case of equa-
tions, requires additional hypotheses on A’s geometry).

Conjecture 2 is resolved combining the results obtained in the
course of the proof of conjectures l and 5 together with the theorems
in [1] an.d [11]. In conjecture 5, which we here resolve in almost full
generality, De Giorgi proposes the following problem: if Vy 
(I~n ~ ~y~, B, P, Q) is compatible, is (A, B, P, Q) also compatible ~ An
elementary example of this situation, is the following:

(z = is the variable in C).

Given if (R2 _ ~zo~, A, P, Q) is compatible, then in
particular the form is exact in A ; repeating Vzo e
E R2 - A one concludes that A is simply-connected from which every
form f dz which is closed in A (i.e. such that f is holomorphic in A)
is exact (i.e. there exists g holomorphic in A s.t. (djdz)g = ( a/axl ) g = f).
Before giving the proofs we need the following

THEOREM G. Given a rising sequence of open sets s.t. B Bn,
n

if b’n is compatible and if the space BQ(Bn+2) n Bp(Bn+2)
is dense in the space BQ(Bn+1) n endowed with the topology
induced by 6(Bn), then (A, B, P, Q) is compatible (1).

This theorem is well known in the case that the topology in ques-
tion is that induced by (see Prop. 2, pg. 296 of [10]) and
makes use of the usual device of the telescopic series.

When the opens Bn+2’ Bn+~ , Bn are, with respect to (P, Q), in

the previous relation we say (following L. Modica) that they form a
Runge triple for (P, Q).

3. THEOREM 1. Given a rising sequence ~An~ of open sets of 
with A = U An, i f b’n (A, An, P, Q) is compatible then (A, A, P, Q) is

n

also compatible (2).

(1) Here it is not necessary to assume Q elliptic.
(2) Here, as in the following, we don’t specify that P and Q have constant

coefficients and that they are relatively prime with 9 elliptic.
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PROOF. Let ZA = 9~. We want to show that, for every fixed

m E N, (A, A n ~’(m), P, Q) is compatible (where = {x ERn:
 m~~. Let = A1/2n r1 S(m - lj2n) (where Â1/2n = {x E A: d(x,

BI - A ) &#x3E; then obviously (A, Bm, P, Q) is compatible Vn and
An S(m) = ~ B~ . Besides

n

as it is easy to prove considering that 1/2~~-~-1/2~~  1/2~.
Let orthogonal to the space 6p .

~ (B~+2) ; then in view of the theorem of [11] there exists T e 6§(A ) s.t.
If we show that it will follow that 

B~ + ~ ~ ( and a f ortiori is a Runge triple
for (P, Q), which enables us to conclude in view of Theorem G. 
is small enough then Vy E Rn s.t. IYI  1/2n+l + 1] the functional (3)
is carried by B’::+2 and belongs to (8~(~+2)~ ( 4 ) ; indeed
if f E 8~(~+2) then the application:

is analytic and vanishing together with all its derivatives at y = 0,
it is identically zero. Therefore ’v"lyl  L belongs to 
’ ( 2v-Bn + 2 ) n from which, Q ) being com-
patible, there exists s.t. L = Obviously dy T = 
Indeed P: -~ is surjective and, since then

T18Q(Rn); so we conclude considering the density of 
in and which arises from the hypothesis ZA = ø. There-

fore and so in view of Theorem D.
_

We now show that T belongs to Let T be a

distribution of which induces T on induces tPT
and so there exists s.t. 
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Therefore, by Theorem B, there exists U E 8’(Rn) s.t. T + tQÙ,
W - belong to E’(S(m 20131/2n+1)). Finally T is carried by S(m -
- 1/2n+l) and being carried by also, it belongs to

Thus we proved that, ’B1m E N, (A, A n S(m), P, Q) is compatible
from which (A, A, P, Q) is also compatible considering that, again
by Theorem B, A n + 1), A r1 S(m) is a Runge pair for (P, Q).
We’ll now give a sketch of another proof of the theorem similar to
the previous one; it will, however, be useful in the following because
it shows how to utilize the theorems on surjections between .F-spa-
ces ([11]). It amounts to show that the ~’’ E ~e(A ) which realizes
L = tPT in view of the compatibility of (A, Bn + 2 , P, Q ), in fact

bel ongs to ~Q (Bn + 1 ) . In primis Otherwise, let

then is a family of functionals carried by one and the
same compact of B’::+2, while there isn’t a compact of A which carries
every functional of the family (see Theorem 1.9 of [8]) (5).

Now, by what we have already proved, y

Furthermore iytPT = tPiyT (the equality is obvious in 8¿(Rn), and
hence in 6§(A) by density); this contradicts the corollary of [11].
To finish the proof one now proceedes as above.

We show now that, in the hypotheses of the theorem, ZA must
be empty. Indeed dn we must have ZAn ç A, from which ZA = ø,
according to the following:

LEMMA. Given two open sets B C A, then is 

in 8~) (if and) only if 

(s) If Q is a hypoelliptic operator and A an open, then in 8q(A ) the topology
induced by 8(~.) and by C°(A ) (even by :I)’(A») coincide. Therefore we can

canonically identify the continuous seminorms on 6q(A ) with the compacts of A.
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The «if» is proved in [11]. Conversely if we suppose Z~ ~ A we
can take a compact K of ZB open in with (Rn - A ) ~ ~6
(Lemma 2, pg. 333 of [6]). So if x E ~(B U I~), x - l in a neigh-
bourhood of .K, and f E n with f ~ 0 in some point of
.K n (I~n ~ A) (such f exists if and only if P and Q have common
complex zeros), then Zf E B’(Rn), tpxl and belong to 6’(B), but

~~(~1-).

THEOREM 2. (A, B, P, Q) then i f is a

rising sequence o f open sets s.t. A = Lj An then there exists a rising

sequence with B s.t. ’BIn (An, Bn, P, Q) is compatible.
n

PROOF. Let ZA = 0. W.I.g. we can suppose that Al/n n S(n) C: An
(otherwise W e can take a subsequence of Since, y if L E (BQ.

S(n)) n Bp(Bl/nn S(n)))1 then LE(BQ(B) n 6p(B))-Ln 
n ~’(n)), it follows by Theorem 1 that L E n ~’(n)). This
assures the compatibility of b’n; since fur-

thermore B = U B,/n n 8(n) we conclude. Let 0. If (A, B, P, Q)
n

is compatible so is (Al/n, P, Q) as we’ll see in the course of the
proof of Theorem 3. So, observing that

we conclude that is also compatible.

THEOREM 3. Given two open sets o f Rn suppose either B

or B = A. Then i f b’y (.Rn ~ ~y~, B, P, Q) is com-
patible so is (A, B, P, Q).

PROOF. If B = A is unbounded, supposing the case of B bounded
being proved, we obtain that (A, A n ~’(n), P, Q) is compatible and
hence (A, A, P, Q) is compatible by Theorem 1. Therefore suppose
B bounded with ~’(n) ~ B. Let, for the time being, 2’A = ø. Fixed

L e (8Q(B) n 6§(Be) (L = limj tPTj with Tj e 6§(B) ) (6) de-

fine T as follows: ~~’, f ~ _ ~.L, h~ if h resolves the

system (Ph = f, Qh = 0) in ~’(n); obviously T E ~Q(~’(n)). It is clear

(~) Obviously (8Q(B) n ~p(B) )-~ = (closure).
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that L = tPT and that

Fixed let be a set of points belonging to

Rn-A with s.t. Vi Since (R~t ~ 
B, P, Q) is compatible Vi then yi, B, P, Q) is also. Indeed
the application: i

is a surjective homomorphism (this is well-known in the case of

Laplace’s operator; see Prop. 1, pg. 499 of [7]). Therefore if 

splitting f in lo-Lli i with we have

f = gi) in B if gi E 8Q(B) resolves Pgi = f i in B. Now con-
i=1

sider the map: L : U Yi) -+ defined by the posi-

tion L(g)(tPT) == T, g) (here s indicates the weak topology).
L(g) is well defined since if tPT = 0 then T vanishes on 

D U y,). L(g) is linear (obvious), continuous for if 0

thus if f E resolves P f = g in B we have:

limj L(g)(tPTj) = limj T; , g) - limj Tj, P f ~ = f ~ = 0 .

L is obviously linear and continuous. Let

where .M~(g) is the extension by continuity of L(g) to 

The map M is continuous by the closed-graph theorem; therefore
for every continuous seminorm p on ~Q(B) there exists a continuous
seiiiinorm h on s.t.

is continuous (1).

(7) If X is a V.S. by Xp we indicate X topologized by means of the semi-
norm p.
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Transposing we obtain:

It is obvious that we now show that t.ML E 

- u yi)e). If not, letting a = sup {t: tML is carried by (R- - U 
we would have Then observing that the functional 7:1IL again
belongs to r1  as seen in Theorem 1, we
would have that there exists a compact of B which carries every
functional of the family while there is no compact of Rn -

which carries every element of the family 

If we prove the following

LEMMA. lf )y ) I  = 

we obtain a contradiction. Fixed g E yi , consider the two
applications: i

They are (defined and) analytic for we have seen this

in Theorem 1. As far as F2 is concerned, observe that  t.lVl zyL, g) =
- Mg) _. h) = L, h(x - y)~ where h is an arbitrary ele-
ment of the class Mg of the quotient (BQ(B))j(BQ(B) r1 If we

prove that F1 and I’’2 coincide together with their derivatives in y = 0
we have finished. Indeed

This implies (where Y is the representing isomorphism of
6§((Rn - u yi) of n. 1 is analytic in the connected open set U S(yi, s).
Furthermore YT and YtML coincide together with their derivatives
at the point Indeed:
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Repeating for every yo e Rn - A we conclude that there exists a com-
pact s.t. T has an analytic extension to Rn- K from which
T E ~Q(A) ; so in view of [1] and [11] we conclude if ZA = 0.

The case ZA ~ ~; we have seen that (A U ZA, B, P, Q) is com-

patible from which ((A U ZA) n ,~(n), B, P, Q) is banally also com-
patible. Fixed s and a set of points of Rn - A s.t.

e) is the sphere of centre y i and then the

map M defined above is the resolving map for the equaton Pu = f
with data in (and hence in particular in 80( Rn ’"’"’
~ (Z, r1 8(n)))) and solutions in 80(B.). In fact consider:

The first space is closed in and hence, endowed with the topo-
logy induced by is isomorphic to

where ~Q(B~))1 is obviously the closure of 6Q(B) r1 6p(B)
in If we also endow the second space with the weak topology,
tlVl is continuous by the closed graph theorem for weak duals of

F-spaces (Theorem 1 of [11]). In fact if tMLj) -* (L, T) then
Vf E Y i) we have on one f ~ - (T, f ~ and on
the other: i

thus = from which tML = T by density.
i i

Transposing we obtain :

which is the resolving map in question. Indeed if
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and we have :

If next we must add some points to the set 
N 

_ _ 

’°’

in order that U 8(j/,, S(n). We obtain by similar construc-
i=

tion, another resolving map It is moreover evident that if
then M8lt thought of as an element of

is equal to This means that if and Mef are two generic
representatives of the classes and respectively then 

belongs to the closure of t1 in Therefore
if is a decreasing sequence which converges to zero, chosen

then the following series: converges in
n=1

8o(B)to a solution of the equation Pu = f. Therefore 
n S(n)), J~y JPy Q) is compatible. Observe now that:

from which (A, B, P, Q) is compatible. It is clear that we could have

given a proof simultaneously resolving the cases Z~ = 0 and 9~

by taking a set of points of Rn - (A n ~’(n) ), Vs, s.t.

U (8(y,, s)) is a neighbourhood of S(n) )~ U (where -P
i

indicates the boundary). We prefered to give a separate proof in the
case ZA = 0 since there the complications are not too intolerable.
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