An existence theorem for solutions of n-th order nonlinear differential equations in the complex domain
Rendiconti del Seminario Matematico della Università di Padova, Tome 61 (1979), pp. 61-90.
@article{RSMUP_1979__61__61_0,
     author = {Powder, Charles},
     title = {An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain},
     journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
     pages = {61--90},
     publisher = {Seminario Matematico of the University of Padua},
     volume = {61},
     year = {1979},
     mrnumber = {569652},
     zbl = {0439.34009},
     language = {en},
     url = {http://www.numdam.org/item/RSMUP_1979__61__61_0/}
}
TY  - JOUR
AU  - Powder, Charles
TI  - An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1979
SP  - 61
EP  - 90
VL  - 61
PB  - Seminario Matematico of the University of Padua
UR  - http://www.numdam.org/item/RSMUP_1979__61__61_0/
LA  - en
ID  - RSMUP_1979__61__61_0
ER  - 
%0 Journal Article
%A Powder, Charles
%T An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1979
%P 61-90
%V 61
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1979__61__61_0/
%G en
%F RSMUP_1979__61__61_0
Powder, Charles. An existence theorem for solutions of $n$-th order nonlinear differential equations in the complex domain. Rendiconti del Seminario Matematico della Università di Padova, Tome 61 (1979), pp. 61-90. http://www.numdam.org/item/RSMUP_1979__61__61_0/

[1] S. Bank, An asymptotic analog of the Fuchs regularity theorem, J. Math. Anal. Appl., 16 (1966), pp. 138-151. | MR | Zbl

[2] S. Bank, On the instability theory of differential polynomials, Ann. Mat. Pura Appl., 74 (1966), pp. 83-112. | MR | Zbl

[3] S. Bank, On the asymptotic behavior of solutions near an irregular singularity, Proc. Amer. Math. Soc., 18 (1967), pp. 15-21. | MR | Zbl

[4] S. Bank, On solutions having large rate of growth for nonlinear differential equations in the complex domain, J. Math. Anal. Appl., 22 (1968), pp. 129-143. | MR | Zbl

[5] S. Bank, An existence theorem for solutions of second order nonlinear ordinary differential equations in the complex domain, Rend. Sem. Mat. Univ. Padova, 41 (1968), pp. 276-299. | Numdam | MR | Zbl

[6] E.W. Chamberlain, Families of principal solutions of ordinary differential equations, Trans. Amer. Math. Soc., 107 (1963), pp. 261-272. | MR | Zbl

[7] W. Strodt, Contributions to the asymptotic theory of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc., no. 13 (1954), 81 pp. | MR | Zbl

[8] W. Strodt, Principal solutions of ordinary differential equations in the complex domain, Mem. Amer. Math. Soc., no. 26 (1957), 107 pp. | MR | Zbl

[9] W. Strodt, On the algebraic closure of certain partially ordered fields, Trans. Amer. Math. Soc., 105 (1962), pp. 229-250. | MR | Zbl