@article{RSMUP_1977__57__75_0, author = {Ursini, Aldo}, title = {A sequence of theories for arithmetic whose union is complete}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {75--92}, publisher = {Seminario Matematico of the University of Padua}, volume = {57}, year = {1977}, mrnumber = {526185}, zbl = {0411.03053}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1977__57__75_0/} }
TY - JOUR AU - Ursini, Aldo TI - A sequence of theories for arithmetic whose union is complete JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1977 SP - 75 EP - 92 VL - 57 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1977__57__75_0/ LA - en ID - RSMUP_1977__57__75_0 ER -
%0 Journal Article %A Ursini, Aldo %T A sequence of theories for arithmetic whose union is complete %J Rendiconti del Seminario Matematico della Università di Padova %D 1977 %P 75-92 %V 57 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1977__57__75_0/ %G en %F RSMUP_1977__57__75_0
Ursini, Aldo. A sequence of theories for arithmetic whose union is complete. Rendiconti del Seminario Matematico della Università di Padova, Tome 57 (1977), pp. 75-92. http://www.numdam.org/item/RSMUP_1977__57__75_0/
[1] Arithmetization of Metamathematics in a general setting, Fund. Mat. 49 (1960) pp. 35-92. | MR | Zbl
,[2] Transfinite recursive pregressions of axiomatic theories, Joun., of Symb. Logic, 27 (1962) pp. 259-316. | MR | Zbl
,[3] Significato e verità nell'aritmetica peaniana, Ann. di Mat. Pura e Appl., 4 (103) 1975, pp. 343-368. | MR | Zbl
,[4] Solution of a problem of Leon Henkin, Journ. of Symb. Logic, 20 (1955) pp. 115-118. | MR | Zbl
,[5] Jr. Theory of recursive functions and effective computability, Mc Graw Hill ; New York, 1967. | MR | Zbl
,[6] Consistency and related metamathematical properties, Amsterdam Mathematisch Instituut, Rp. 75-02.
,[7] On the set of « meaningful » sentences of arithmetic, to appear in Studia Logica. | MR | Zbl
,