
RENDICONTI
del

SEMINARIO MATEMATICO
della

UNIVERSITÀ DI PADOVA

J. L. BRENNER

L. CARLITZ
Covering theorems for finite nonabelian
simple groups. III. - Solutions of the equation
αx2 + βt2 + γt−2 = a in a finite field
Rendiconti del Seminario Matematico della Università di Padova,
tome 55 (1976), p. 81-90
<http://www.numdam.org/item?id=RSMUP_1976__55__81_0>

© Rendiconti del Seminario Matematico della Università di Padova, 1976, tous
droits réservés.

L’accès aux archives de la revue « Rendiconti del Seminario Matematico
della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord
avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=RSMUP_1976__55__81_0
http://rendiconti.math.unipd.it/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Covering Theorems
for Finite Nonabelian Simple Groups.

III. - Solutions of the equation 03B1x2 + 03B2t2 + 03B3t-2 = a in a finite field.

J. L. BRENNER - L. CARLITZ (*)

SUMMARY - Elementary arguments can be used to establish that, if w ~ 0,
~ 2, the class C of trace w in G = PSL(2, q), q odd &#x3E; 3, satisfies CC D G.
A second proof is given, involving the equation of the title. The arguments
do not use group characters, and hence may have application to PSL(n, q).
An explicit formula is given for the number of solutions of the equation
in the title. (Also if q is even &#x3E; 2, there are classes C such that CC D G.)

1. - Introduction.

This is one of a series of papers concerning multiplication of con-
jugacy classes. The existence of a class C in Alt(n) (n &#x3E; 4) such that
CC covers the group was established by Xu (1965) and Bertram (1972)
in answer to a question of Brenner (1960). From this follows a theorem
of Ore (1951) that every element of Alt(n) is a commutator.

1.01. THEOREM. Let C be a conjugacy class in the group G, and
let every element of G be expressible as a product of two elements of C
(CC D G). Then every element of G is a commutator.

PROOF. Let ac E C. From 1 E CC, it follows that x, y exist such
that so that a-1 = y-lxax-1 y . Now let 

Set d = zacz-1, f = and note g = 

In many matrix groups, it is known that every element is a com-

(*) Indirizzo degli AA. : JLB: 10 Phillips Rd, Palo Alto, Cal. USA 94303 -
LC : Duke University, Durham, N. C., USA 27706.



82

mutator. See Thompson (1961), Ree (1964). The stronger statement
that a conjugacy class C exists such that CC covers the group seems
difficult to establish, although this property may well be enjoyed by
all known finite nonabelian simple groups. In some infinite groups,
even infinite simple groups, there is no such class (Brenner, 1960,1973).

If the character table for a group is given explicitly, it can be

determined whether the class C has this property by noting whether
every one of the sums Ex(C)x(C)x(Cj)/X(1) taken over all irreducible

x

characters, is nonzero. But for some groups, or series of groups, the
character table is not likely ever to become available with the required
degree of explicitness. Further, it is not necessary to compute a char-
acter table to settle the covering question.

In this article, the existence of such a class C in q) is estab-
lished ; in fact every class of trace # 0, ± 2 has the covering property.
Further if q - 1 mod 4, but not if q --- 3 mod 4, the class of trace 0
has the property.

We give two direct proofs (not involving characters). The first is

extremely elementary, using only first principles. The second proof
uses character sums over a finite field. Although less elementary,
this proof has the likely advantage of being extendable to the groups
PSL(n, q).

In the latter group, the class C of I + superdiag [1, 1, ... , 1] prob-
ably satisfies G. In fact, it can be shown that CC contains every
triangular matrix with l’s on the diagonal. The class of a (circulant)
permutation matrix may also have this property.

2. - Preliminary lemmas.

The group SL(2, q) consists of all 2 X 2 matrices of determinant 1,
with elements from the finite field ~ of q elements. q) is the
central quotient group; the center has order 2 if q is odd; for q &#x3E; 3,

q) is a simple group.
Two matrices of the same 2 are necessarily conjugate

in SL(2, q). If -1 is a square, there is a single class of noncentral
matrices for each of the traces 2, -2. If -1 is a nonsquare, the
noncentral matrices of the same trace (2 or -2) separate into the
two conjugacy classes represented by N, N’ in SL(2, q) [N =
_ (0, 1; -1, ~ 2)]. In PSL(2, q), every element, and hence every
conjugacy class, can be represented by a pair ( ltl, -M). See Dick-

son (1900).
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3. - The covering theorems.

Let l~ _ (r, s; t, ~) denote the 2 X 2 matrix with first row (r, s)
and second row (t, u). First, a negative result.

3.01. THEOREM. Let M have trace 0, q = 3 mod 4. There is no
matrix R in SL(2, q) such that í = trace is :f: 2.

PROOF. If If = (0, 1; - l, 0) and 1 == :f: 2, then (rt + su)2 = -

- (t2 + u2 + 1)2; this is impossible, since -1 is a nonsquare.

3.02. COROLLARY. If q = 3 mod 4, the class C of trace 0 in
G = q) does not satisfy CC D G.

3.03. LEMMA. Let (0, 1; -1, w), 1-~ _ (r, s; t, u), det R = 1.
Then T = trace can be written

where

and where it is understood that g/r means 0 if r -- 0, and (g -1 )/s
means 0 if s = g -1 = 0. Further, the (1, 2) element of is

+ s(r + gjr) + wg.

3.07. LEMMA (Dickson, p. 46). If w, 1V are fixed, w ~ ~ 2, there
always exist numbers v, V such that

3.08. LEMMA. If ~1, ~2 are defined as in (3.05), (3.06), and if w, W
are preassigned, w 0 ± 2, a matrix = (r, s; t, u) exists with det .R == 1
such that

PROOF. In view of lemma 3.07, it is only necessary to show that,
with v, V determined, numbers r, s can be found so that ~1= v, ~2 = V.
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All solutions of ~2 = V’ are given by taking g = V 2 - z2, 
where z2 runs through the squares. To solve the equation ~, = v for s,
it is necessary to select z so that (14w2-1)[z-wv/(w2-4)]2 + V2 -
-1-14w2v2/(w2-4) is a square; this condition can always be met.

3.10. COROLLARY TO 3.03. If w = ~ 2, the class C of lVl in either
G = SL(2, q) or q) does not satisfy CC D G.

3.11. THEOREM. Let w2 - 4 be a Then the class C o f M
in G = ~’.L(2, q) does not satisfy CC D G.

PROOF. This also follows from lemma 3.03, with some additional
calculation. It turns out that if T = 2, and thus $1 = ~2 = 0, then

must be the identity matrix.
The failure to cover in SL(2, q) is healed by the process of taking

quotients: in PSL(2, q), trace 2 is the same as trace - 2. Let w be

arbitrary #+ 2. There are two separate lines of argument, according
as w2 - 4 is a square or a nonsquare.

3.12. THEOREM. Let w2 - 4 = 0. The class C o f M = (0, 1;
-1, w) in G = PSL(2, q) satisfies CC D G.

PROOF. In view of lemma 3.08, it is only necessary to show that
r, s, g can be found so (3.04), and so that the (1, 2)
element of lVIPl’VIR-1 is a nonzero square [nonsquare].

To achieve t=-2, try to solve E2=0, E1 = 2. All solutions of

~2 -= 0 are given by g = - r2, where r is arbitrary. Thus r - g/r =
- - 2r (even when g = r = 0 ), and $1 == 2 requires that

This will have a solution if the right member is a square X2 . To

arrange this, set

where e is an arbitrary nonzero number. All solutions of (3.13) thus
arise from

From lemma 3.03, the (1, 2) element of is - 2r = - (2/ez) -
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(e + WIZ)2. It is clear that nonzero e can be chosen different from

- w/z so that this is (a) a nonzero square, (b) a nonsquare.

REMARK. All solutions of 7: = - 2 can be parametrized, and the
number of solutions counted, by an extension of the above elementary
methods.

3.15. THEOREM. Let w2- 4 be a nonsquacre, w -::/=- 0. The conclusion

of theorem 3.12 holds.
The proof is omitted; but see Dickson, p. 46.

4. - The second proof.

In this section, an approach is given that establishes the covering,
but that cannot be extended to compute the Burnside covering con-
stants as the first proof can be. Although the calculations involve
fewer parameters, the underlying field (number) theory is deeper.
This second approach uses either a lemma from number theory that
appears to be new, or, in another modification, a device that should
be applicable to the covering question in q), where detailed
enumeration of conjugacy classes is impossible.

The basic idea is to use only those matrices = (r, s; t, u) for
which

4.01. LEMMA. The trace 7: of is given by - 1 = X2-
. (w2- 4)(t2 -F t-2) - § w2, and the (1, 2) element is - Xt-1 + 2 w(1-f- t-2).

4.02. LEMMA. Let W2 - 4 = 62 be a nonzero square; .M~, R as

above. Then 3IRMR-1 covers all classes.

PROOF. Set x = ~ ~ (t -E- tw ). Then T==2y and the ( 1, 2 ) element
2 t-2(~ - W)(t2 + 1) can be a nonzero square or a nonsquare by choice
of t (this is an elementary result).

For q &#x3E; 7, the remainder of the proof follows from the next lemma.

4.03. LEMMA. Let a, fl, y be nonzero, and let a be arbitrary,
q &#x3E; 7.

i) if a2 - 4~y ~ 0, the equation

has a solution (x, t).
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ii) If = 0, (4.04) has a solution unless -03B203B1 and are

both nonsquares, in which case there is no solution.
There is no loss of generality in assuming a = 1. [Multiply (4.04)

by a and set X = az.]
From we conclude that (a-x2)2 -

- This shows that there is no solution unless (a - x2)2 - can

be a square. All solutions of

are given by writing

where s = Thus

Thus it is necessary that p = 2pt2, so that = z2 must be a square.
Furthermore, the relation

must have a solution x. Solving this for x2, it is seen that

must be a square (for some choice of z). The conclusion ii) of the
lemma follows at once. (If a2 = 4#y, set Z2 = 2afJ, x = 0, e === 0’ = a.
Also if a~ = 4~8y, - ~8 = ~2, take z arbitrary, set x = 2 ~(z~/~ - 2a)/z,
y = 

If a2 - 4~y ~ 0, it remains to be shown that z # 0 can be chosen
in such a way that the quartic { } in z has the same quadratic character
as - fl.

To see this let 0, be arbitrary nonzero numbers. We assert
that if q &#x3E; 7, there is a and that 8[(xz2- ~,)2-~C) is a square.
It is enough to show that for every $, r ~ 0, there is a z ~ 0 such
that (~2013~2013~ is a square [nonsquare]. This can be verified directly
for q = 9, 11, 13. Take q &#x3E; 13. Let 11’ be the quadratic character in Fq, y
i.e. y(y) = 0, 1, -1 according as y is 0, a nonzero square, or a non-
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square in Fq . Consider

where

and (Weil)

Hence + qi). If every term in ~1 were a nonsquare [square],
the relation q - 5] would hold, since (z2 - ~)2 - r~ = 0
has at most four solutions. This establishes the assertion, and with it,
lemma 4.03 and theorem 3.12. (For q = 5, 7 special formulas have to
be given, to show that there is a class C such that CC D (~. Note that
the class C of trace 0 has this property if q =1 mod 4.)

Another proof of lemma 4.03 is given in the next section.

5. - The number of solutions of ax2 = a in a finite field.

Another way to establish lemma 4.03 is to give a formula for the
number of solutions. Since this result and the method of obtaining
it are interesting in themselves, details are given here, together with
a generalization. A critique of the various methods ends this article.

5.01. THEOREM. Let a, ~, y ~ 0. The number of solutions of

of

(in the finite field Fq of q elements) is given by the formula
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if a2 = 4~y this reduces to

where 1p(z) is the quadratic character of z.

Let a = ~ = y = 1; the proof in the more general case is analogous.
Let denote the number of solutions (x, y) of

where q is odd but otherwise arbitrary. Put q = pn, where p is an
odd prime and define

Thus = n. Also let denote the quadratic character, that is

Put

all sums being over Fq. Then

The analysis continues with the equalities
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Now

Thus

Formula (5.03) is just (5.05) with the term for y = 0 added and
subtracted.

mod 4, but N(2) =2 if
q - 3 mod 4. Also, N(- 2 ) = (1 + ~~ (-1 )) (q - 2 ) in both cases. These

results are in evident agreement with (5.04).
The following extension of Theorem 5.01 will be useful in studying

q).

5.06. THEOREM. The number o f solutions of

For simplicity, the coefhcients of (5.07) are taken as 1. The method
used to obtain this result is not applicable if the number of xi is even.

The proof of Theorem 5.06 is similar to the proof of Theorem 5.01.
Critique of the various proofs. Our first is so explicit that it can

enumerate the covering constants. The second proof cannot do this,
but is still elementary, and can certainly yield (5.03) and (5.04); in
fact not only the number of solutions N, but the actual solutions
themselves are obtained. However this method apparently will not
yield Theorem 5.06, one of the tools we hope to apply in studying

q).
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