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A Variational Principle, in General Relativity,
for the Equilibrium

of an Elastic Body also Capable of Couple Stresses.

LUCIANO BATTAIA (*)

SUMMARY - We prove a variational theorem for the equilibrium of an elastic
body, also capable of couple-stresses but not of heat conduction, in gen-
eral relativity. It can be considered as the relativization of the classical

principle of stationary potential energy.

1. Introduction.

In classical physics equilibrium problems are often proved to be
equivalent to variational principles. One of these principles is the

principle of stationary potential energy, firstly formulated within the
linear theory for infinitesimal deformations and then extended to
the non lineary theory for finite deformations but, in both cases, for
materials not capable of couple-stresses (non-polar materials)-see for
example [12], [14].

In this work we present an extension of this equivalence theorem-
to general relativity and we take also polar materials (and finite defor-
mation) into account. The work is based on the Eulerian and Lagran-
gian theories of continuous media in general relativity as formulated
by Bressan ( § 2 ), and on a certain variational principle, involving the

(*) Indirizzo dell’A.: Seminario Matematico, Universith di Padova,
via Belzoni 7, 35100 Padova.

Borsista C.N.R. presso 1’ Istituto di Analisi e meccanica della Università
di Padova.
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variation of world lines. This principle was first formulated by Taub
in [13] and improved by Fock cf. [19], § 47 ; then it was extended
by Sch6pf and Bressan to the non-polar and polar cases respectively.

As a preliminary, in § 4 we state the dynamical equations in mixed
form in general relativity for polar materials, thus extending the cor-
responding result of Bressan for non-polar materials, cf. [2].

In § 5 we present and prove the equivalence of the aforementioned
variational principle to the corresponding conservation equations,
which include the dynamical equations of the equilibrium.

In § 6 we compare our principle with the classical principle of

stationary potential energy.

2. Preliminaries.

We first recall some fundamental concepts of the Eulerian and

Lagrangian theories of continuous media in general relativity presented
by Bressan in [1]-[7].

Let 84 be the space time of general relativity with the metric (1)

whose signature is determined by the condition that it can every-
where be reduced locally to the pseudo-Euclidean form:

where ~a~ is the Kronecker symbol.
The co-ordinate system (x) is assumed to be admissible: the hyper-

surfaces zo= const are space like and x° increases towards future.
Let C be a body. We may consider the process S of the universe

in S, as consisting only of the motion A of C, the temperature distri-
bution in the world-tube W~ of C, and the metric tensor field over S4.

We consider only regular motions of the body C for which, among
other things, C can be regarded as a collection of material points.
We denote the typical one of them by P*, and the four velocity (in-
trinsic acceleration) of C at its material point P* by uCt(ACt).

(1) Greek and Latin indices run over 0 1, 2, 3, and 1, 2, 3 respectively.
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The frame (x) is called locally natural and proper at the event
point xp if there (2) and

hold.
We use the notation for the covariant derivative:

We also consider the spatial projector

and the following notations

recalling that the index a of the tensor T:::« is said to be spatial if
0 or, equivalently, if T:::a= T:::*. *

We also use the spatial derivative and divergence of any tensor:

and the natural decomposition of a tensor with respect to the index a.
This decomposition for a vector Vex is:

and is called the spatial (temporal) part of Vex (2).
The proper density (! of total internal energy is defined by:

where dm is the proper gravitational mass of the element dC of C
and dC the actual proper volume of dC.

(2) For more details on this subject see Cattaneo [8].
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Now we fix a process J * (reference process) physically possible
for the universe (containing C) and we define g~~, dC*
to be corresponding instances of ~54, We, and dC. We consider
an admissible system of co-ordinates (y) and the intersection ~S3 of W~
with the hypersurface y°= 0. For every material point P* of C we
shall use to co-ordinate yL of the intersection of ~S3 with the world
line of P* as the L-th material coordinate. The spatial metric in ~S3
will be called ds* 2 :

The co-ordinates yL and their increments dyL then caracterize the mate-
rial points P* and the linear infinitesimal material elements at P*.

Let Z* be the intrinsic state of e in J * ; we call k* dC* the proper
gravitational mass of de in ~*. It is related to the actual volume dC

by the following definition of the density k :

As a consequence of this definition k satisfies the continuity equation

Let us set c-2 wk dC =C-2 e dC - k de. Then by the equivalence
principle of mass and energy wk dC can be regarded as the internal
energy of dC. Furthermore:

We also set

An arbitrary motion of C in the system of co-ordinates (x) is repre-
sented by the equations (3)

(3) Capital and lower case letters represent material and space time indices
respectively.
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For the regularity conditions on the functions (15) and their inde-
termination in the choice of the time parameter t = t(x) see Bres-

san [1] ; here we only remember that t = t(x) can be chosen in such
a way that

holds at an arbitrarily pre-assigned event 8.
Let now Tø:’:fi::’, be a double tensor field-cf. Ericksen [9]-asso-

ciated to the event point xp and the material point yL. We shall
think of it as depending from xe, yL and the time parameter t, with xe
and yL connected by means of the equations of motions (15). Then
the total covariant derivative based on the map (15) is defined by

It depends on the particular representation of the motion through the
time parameter t. In case (16) holds it is called Lagrangian spatial
derivative and denoted by T:::1P’

Then we introduce the first and second deformation gradient

the first and second Cauchy-Green tensor

and lastly the deformation tensor ELM

We have (4)

The spatial inverse Dy§ of is defined by

(4) We use the notations
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If Xol is an arbitrary Eulerian double tensor, its mixed and La-
grangian counterparts are defined by

In the sequel Xea will denote the Eulerian stress tensor so that
its mixed and Lagrangian counterparts defined by (23) are called
first and second Piola stress tensor, see [15].

We are interested in an elastic body C capable of couple-stress
but not of heat conduction and we assume, also for the sequel the
absence of electromagnetic phenomena. We consider an event 8 in
the world tube We of C and we suppose that the vector da(1a. represents
the infinitesimal oriented spatial surface da at 8. We admit that the
forces exerted by the material elements contiguous to the negative
face of dQ on those contiguous to the positive one are caracterizable
by means of the resultant dRa and the intrinsic resultant moment

is expressed by

while is expressed by

where is the spatial Ricci tensor (5).
As well as the stress the tensor of couple stress depends

on 8 but not on 
We define

Then the total energy tensor is:

(5) is the usual permutation symbol with 6~~~~= 1 . The Ricci tensor
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The temporal part of the conservation equations

can satisfactorily be taken as the relativization of the first principle
of thermodynamics and can be put into the form

where is the work of internal contact forces

The spatial part of (28)

can be taken as the relativization of the first Cauchy equation of con-
tinuous media ( s ) .

3. Variation of world lines in the elastic adiabatic case.

Introducing the Lagrangian counterpart.

of mfJ)./-l, the constitutive equations of the elastic body C capable of

(6) For more detail on the definition of and on the acceptability in
general relativity of the equations (29), (31) and the expression (30) of the
work of internal contact forces see the works of Bressan. When thermodynamic
and electromagnetic phenomena are taken into account, Eckart’s tensor Q,,,#
and the electromagnetic tensor Eaf1 should also be added to the expression (27)
of However no equation involving Qaf1 or will be considered in the

sequel.
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couple stress but not of heat conduction are

where h = and is the spatial Ricci tensor is 8:.
Now we suppose the field and the motion fl of C as given in 84~ i

We consider a regular motion depending on the real parameter 1

and the functions za(~,, ze) defined by the condition

furthermore we set

It follows that is the displacement of the material point yL
(at the instant in the correspondence Ada -

Consider the functional

and the variation d£ of the motion A of C that is of class C~3~ and
satisfies

on the boundary of C4.
Then in [6] it is proved that for these variations we have
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Hence the validity of the variational condition

is equivalent to the conservation equations (28).

4. Mixed form of the dynamical equations.

In the absence of electromagnetic and heat conduction phenomena
the spatial part of == 0 is:

We call the resultant of the forces due to couple
stresses and, in analogy with Bressan [2], we introduce the resultant

of the same forces per unit volume of reference configuration.
By a useful formula proved in [2] we have

Let us multiply (41) by ~(~ 0) then by (14), (23), (41), (42) and
(43) we have

from which the following mixed form of the dynamical equations
follows

(1) Recalling that YLM, from (45) we can also deduce the com-

pletely Lagrangian form of the same equations.
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5. Varational principle for equilibrium problems.

We now suppose that the space-time 84 is stationary and intro-

duce a stationary system of reference (x). Let C, be the intersection
of the world tube W~ of C with the hypersurface 

We want to consider the equilibrium of C with respect to the sta-
tionary frame of reference (x). We identify the arbitrary parameter t
in the equations (15) of the motion of C with x° and denote the con-
figuration of C in Cg by Xr = Then the equations of the mo-
tion of C can be put into the form

The functions xr(yL) are such that (46) satisfy the regularity condi-
tions requested for the equations of motion.

The hypothesis of stationarity of (x) implies

Consider the functional

where é* = °BLM,v) and J* depends of xr through ELM and I

and an arbitrary variation of 1/, that is of class C~~&#x3E; and vanishes
on the boundary of S3 together with ~xr,L .

We shall prove the following:

a) the first principle of thermodynamics holds for the body C
(not capable of heat conduction);

b) for the aforementioned variations 3zr we have

Hence the validity of the variational condition
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is equivalent to the dynamical equations (45) of the equilibrium (8).
Let C undergo the motion (46). We first prove (a) . Since heat

conduction is absent, the first principle of thermodynamics reads

By (46) 0 = Hence on the one hand from

we deduce Dw/Ds = 0. With regard to we

know from Bressan [6] that (9)

so that, on the other hand, we have dl(i)/Ds = o.

Now we consider the set C4 of the points xl’ of We with Ixo c a + 1
(a real positive). Let be the subset of C, where IxO ; a, let C4 be
the subset where and let C4 be the subset were

-(c~--f-1)~x°c-a.
Then we consider any function, of class C~3~, cp(~), of the real va-

riable ~, for which

(8) It must also be remembered that the vector on the left hand side
of (45) is purely spatial, hence it vanishes if and only if its components with
a = 1, 2, 3 vanish.

(9) If and d*l(i)lDs represent the power of internal contact forces
for unity of actual and reference configuration respectively, we have
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Next we introduce the arbitrary variations 3zr, of class C~3~, that
vanish on together with we also consider the correspond-
ing 3zr of the xr as given by (46) and we set 3z°= 0. We regard
these 3zr as functions of the space time co-ordinates x8 by means
of the inverses of the functions xr= Then 3zr= 0 = 6Xr" on
YC3 - We also suppose that, for xr in C3, the functions that appear
in (39) are given by

By (53) these functions are of class C~3~ in C, and vanish on :F04
together with ~e Q ~

For these variations we have, remembering that e g does not
depend on x°,

and likewise

Then, as + does not depend on xl,

and analogously
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We then have

hence, see also (55) and (56),

for the variations and 3zr considered above. Furthermore, re-
membering (57), (58), and that the temporal part of vanishes

identically (first principle of thermodynamics), we have

From (60), (61) and (39) we obtain the validity of

for the variations 6,xr of Xr that are of class C~3~ and vanish on 
together with their first partial derivatives. Q.E.D.
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6. Comparison with a classical principle.

We now consider an elastic body C not capable of couple stresses,
in classical physics. If W is the elastic potential energy, y the consti-
tutive equations of C are 

where ,u* is the mass density in the reference configuration.
We suppose that the body forces are conservative, that is there

exists a potential U = U(x) such that

Then the equations of the equilibrium of C are

Consider the functional

and any variation 3zr of xr that vanishes on YC. Then it has been

proved that the variational condition

is equivalent to the equilibrium equations.
If we remember that in general relativity body forces are taken

into account by means of the metric, we see that our theorem in § 5
generalizes this classical equivalence theorem involving the statio-

(lo) The quantities ëLM etc., occurring in classical physics, are defined
in substantially the same way as we did in general relativity. See for example
[14], [15].
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narity of potential energy. Furthermore in our principle we also take
into account possibly vanishing couple stresses and the energy due
to the mass of C, as requested by the principle of equivalence of mass
and energy.
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