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On Centralizers of Involutions

Having a Component of Type A6 and A7.

FRANZ J. FRITZ (*)

Recently, M. Aschbacher [1] has shown under certain assunptions,
that every finite simple group G containing an involution t such that
0,(t) is not 2-constrained contains a subgroup of standard type. So it
is of fundamental interest for the theory of finite simple groups to
classify finite groups by standard subgroups.

A standard subgroup A of a finite group G is a quasisimple group
such that 0,,(A) is a group of even order and satisfies certain further
properties.

Aschbacher [2] has classified all simple groups with a standard
subgroup A such that = An and that C(A) has a 2-rank of
at least 2.

On the other hand, the case of 2-rank 1 is of considerable interest
as well. The Mathieu group M12 contains an involution t2 such that
C(t2) == t2~ X S, where S is isomorphic to ~5; The Higman Sims simple
group contains an involution with centralizer isomorphic to Z2 X 
Both groups have been classified by these centralizers (cf. [4] and [5]).

In this paper, we consider centralizers of the form and

Z2 ~C ~~ . We shall prove the following theorems:

THEOREM A. Let G be a finite group of even order containing
an involution t such that is isomorphic to the direct product
of a group of order 2 and the symmetric group on 6 letters. Then G
has a subgroup of index 2.

THEOREM B. Let G be a finite group of even order containing an
involution t such that is isomorphic to the direct product of a

(*) Indirizzo dell’A.: Mathematisches Institut., 6500 Mainz, SaarstraBe 21,
Rep. Fed. Tedesca.
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group of order 2 and the symmetric group on 7 letters. Then G has

a subgroup of index 2.
The methods used in the proof are elementary. Throughout the

paper we assume that G has no subgroup of index 2 ; we use the Thomp-
son transfer lemma (cf. [3]) to derive a contradiction. The crucial
fact seems to be that in the Sylow-2-subgroup of our centralizer we
have two elementary groups of order 16, say E1 and E2 , which « should »
be conjugate in the centralizer, but are not. (This is contrary to the
situation in [4] leading to the Higman Sims group).

Theorem B will be a corollary of the proof of theorem A. We will
only have to redo parts of §§ 1-4. Then we will see that the two ele-
mentary groups which are the basis for the whole proof, are not conju-
gate in G, so §§ 5-8 can be applied.

Now we fix some notation. G is a finite group having no sub-
group of index 2, t E G is an involution such that H: = Ca(t) _ ~t~ x 27,

We choose a fixed Sylow-2-subgroup of H, say To, where
To = ~~ X ~’o such that So is a Sylow-2-subgroup of ~.

E. and An always denote the symmetric resp. alternating group
on n letters, Ek denotes an elementary abelian group of order k, Dn
denotes a dihedral group of order n. If a group X operates on a group B,
then put Ag(B) := Nx(B)lCx(B).

For this paper, it is useful to define the Thompson subgroup J(T)
of a 2-group T as follows: If X is a sub -

group of G, N(X) and C(X ) always stand for and 
When we regard a permutation representation of a group X on

a set ~’ = {81’ 82’ ... , then we describe the action of an element
x E X as follows:

For sake of convenience, we do not always assume that the represen-
tation of X on ~S is faithful.

The remainder of the notation follows [3] and is fairly standard; for
example we use the «bar convention)) for homomorphic images,
V( cclo(g); Go) denotes the weak closure of g in Go with respect to G.

1. The structure of H.

As So is a Sylow-2-subgroup of the symmetric group on 6 letters,
we may assume that So is generated by the elements i, == (5, 6),
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~=(1~2)(3,4), is=== i2i4, (1, 4)(2, 3) and a2= (1, 2) (5, 6). We have
l a’ 1 a’2 ) 2 - 24 .

We see that I§ = i4&#x3E; and that Z(To) _ t, i2, i4&#x3E;. To con-

tains precisely 2 elementary subgroups of order 16, namely Ei-
and E2= It is clear that Z(To) = El n E2.

The involutions i2 , i4 , and i6 represent the three conjugacy classes
in El i2 having 15 conjugates, i4 having 45 conjugates and is having 15
conjugates in H.

Altogether, .H contains 7 classes of involutions, all the involutions
of Z(To) being representatives of the different classes. This shows
that if t is conjugate to any other class of involutions of .H in G, then
t is conjugate to this class in Na(To).

Finally, we have that = El(d1, a2), where d1 can be
taken as (1, 2, 3), and that NH(E2) = a1) with d2= (1, 6, 4)(2, 5, 3)
Then ac2 inverts dl and acl inverts d2.

2. The first centralizer case.

In this paragraph, we want to show that 2 6 divides the order of G.
So assume the contrary.

LEMMA 2.1. Na(To) has order 25 ~ 3. G has precisely 3 classes of
involutions. E1 and E2 are not conjugate in G. controls the
fusion on Ei for i = 1, 2.

PROOF. By the Thompson transfer lemma, all involutions of To
must be conjugate to some involution of ~So, but So contains involutions
of at most 3 different classes. Hence, fusion must take place in Z(To)
under the action of Na(To). The group T’- i4) is characteristic in

To, so there must be precisely 3 different classes in and N(To)
must have order 25 ~ 3.

If E1 and E2 are conjugate in G, they are conjugate in N(To) by
Burnside’s lemma; but this is not possible. Therefore N G(Ei) must
control the fusion on .Ei .

THEOREM 2.2. 2 6 divides the order of G.

PROOF. It is clear that i =1, 2. A G(Ei) has a

Sylow-2-subgroup of order 2 and hence must be solvable. The involu-
tion t is conjugate into So by an element of Na(To). We conclude that t
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has 3 or 7 conjugates in Ei . If t has 7 conjugates, then has

order 2.3.7, which contradicts the structure of GL(3, 2). Therefore t

has 3 conjugates in Ei and 3 conjugates in E2, y which all must be ele-
ments of Z(To). But this is impossible.

3. The case 26TIG/.

LEMMA 3.1. Put T := Na(To). Then T is a Sylow-2-subgroup of G,
Z(T) has order 4, t is conjugate to ti4 in T, and t does not fuse in G
to any other class of involutions in H.

PROOF. It is clear that Z(T) is elementary of order 4. So at least 3
involutions of Z(To) cannot be conjugate to t, and we see that To does
not admit a 3-automorphism. Therefore t is conjugate to precisely
one other involution of Z(To) and we have shown that t centralizes
either 16 or 46 of its conjugates in G. We assume that G has no sub-
group of index 2, so t operates on its conjugacy class as an even per-
mutation. If t centralizes 16 of its conjugates, then there are 0 (mod 4)
conjugates of t in G. But 2 s divides I Co(t) 1, so 27divides the order of G,
contrary to the assumption of this paragraph. We have proved that t
has 46 conjugates in H, so t must be conjugate to ti4: The lemma is

proved.

LEMMA 3.2. E, is normal in T, for i = 11 2.

PROOF. Put T = To(y) and suppose By lemma 3.1., t

has 1 or 4 conjugates in Ei under the action of Ng(Ei). The order
of NH(Ei) is 25.3, so if t has 4 conjugates in Ei under the action of
N G(Ei), then 2 ~ divides the order of NG(Ei), which is not possible,
Therefore NG(Ei) = NH(Ei), and t has an orbit of length 1 under N G(Ei).
Applying lemma 3.1., we see that we must have This is a
contradiction.

THEOREM 3.3. The order of G is divisible by 2 ~.

PROOF. We have shown that 2s divides the order of Ap-
plying lemma 3.1. again we see that t has 4 conjugates in Ei under
the action of N,(Ei). But then 2 7 must divide the order of N(Ei)
Theorem 3.3. is proved.



5

4. The case 

LEMMA 4.1. Set T1: = Na(To) = Toy; . Then T1===J(T1), El and
E2 are normal in T1, t is fused to precisely one other involution of Z(To),
and there are precisely 16 G-conjugates of t in H.

PROOF. As 2 ~ divides the order of G and, by assumption of this
paragraph, the normalizer of To has order 2 g, To cannot be characteri-
stic in Ti. Therefore T1= J(T1). It is clear from some remarks in

§ 1 that t can only be conjugate to one more class of involutions of H.
From the fact that 2 7 divides we conclude that t cannot have 46

conjugate in H; so t must be conjugate to 16 involutions of g. As

Tl = J(T1), we conclude, using our definition of J(TI), that we cannot
have Ei = E2 . Lemma 4.1. is proved.

LEMMA 4.2. Set Z( T1 ) _ : zl , z2~ such that z2 = i4 . Then z, can

be chosen such tz1. Furthermore, we may assume that

Z(Tl) r1 Z(NH(E1)) == and that Z(T1) r1 Z(NH(F2)) = Finally

PROOF. From the structure of To we see that z, (= i4) is not con-
jugate to t. So we may set Z(Tl) = zl, Z2) such that tv = tz1.

As the normalizers of E1 and E2 in H are isomorphic we may alter
the notation such that the last part of the lemma holds.

LEMMA 4.3. We can choose y to be an involution and to centralize
W ~ z2 ~ au .

PROOF. Set D1:=d1&#x3E; and Ni := NG(E1). Then Dl is a Sylow-3-
subgroup of Nl. From our information about N1 and using Sylow’s
theorem, we conclude that a Sylow-2-subgroup R of NNl(Dl) has order 2’
As a2 inverts d1, it follows that °B(D1) has order 23. On the other hand,

t, so CH(D1) is a dihedral group of order 8. We choose y
to be an involution of this group. As y centralizes di , y operates on
[E1’ d1] _ ai). By the Thompson A x B-lemma, y centralizes

z2 , Lemma 4.3. is proved.

LEMMA 4.4. [y, a2] E 
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PROOF. Using lemma 4.3., y we can choose a Sylow-2-subgroup of
NNl (Dl ) : _R = zl , t, y, a2; . It is clear that and

(zi , t, a2) == R r1 H are normal in I~ ; we conclude that [y, a2] E (zi , t)
is an involution and therefore must be centralized by y. The lemma
is proved.

LEMMA 4.5. Set N2 : = N G(E2) and take T2 to be the Sylow-2-
subgroup of N2 which contains T1. Further set Q2 : = 02 (N2 ) . The

N2/E2 is isomorphic to ~4’ and elementary subgroups of T2 are contained
in T1 or in Q2.

PROOF. The orbit of t in E2 under the action of N2 is It, tzl , tz1z2a2,
Call these elements 1, 2, 3, 4, respectively. Then d2 acts as

(2, 3, 4) and y acts as ( 1, 2). So d2 and y generate the full symmetric
group on the orbit of t, therefore T2/E2 is dihedral of order 8 having
elementary subgroups T,IE2 and Q2/E2. The lemma is proved.

LEMMA 4.6. E2 = J(Q~).

PROOF. We can see from the proof of lemma 4.5. that 
Set f 2 : _ (ya1)dl. It follows that [yal, E2] == Z2) and that [ f 2, E2] _
= Therefore Z(Q2) === Now it is very easy to see

that E2 is the only elementary subgroup of order 16 of Q2 , so 
= J(Q2 ) . The lemma is proved.

LEMMA 4.7. _ ~2) _ : Z. T1 contains precisely 4 elemen-
tary subgroups of order 16, namely and E4===

y&#x3E; .

PROOF. From the proof of lemma 4.5. it follows that [y, a2] = Zl -
Therefore [y, ta2] = 1. On the other hand, y centralizes a1 by lemma 4.3.
We conclude that Tl = al, a2t) X y, t) is the direct product of two
dihedral groups of order. 8 Now it is immediate that T1 contains
precisely 4 elementary subgroups of order 16, namely those listed
above. The lemma is proved.

LEMMA 4.8. E2 is characteristic in T2.

PROOF. First of all, 7 note that Ei$ _ .E4, and from the order of

N G(El) we conclude that neither El nor E4 is conjugate to E2 in G.
Suppose that E3 is conjugate to E2. The involution t operates on E3
centralizing a hyperplane of y but no involution of Q2 - E2 centra-
lizes a hyperplane of .E2 . Therefore must be conjugate to E2a1.
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In particular, t is conjugate to an involution of E2a1. Involutions
of are contained in t, zi , ~2) Zl) a1z2’ These

last sets consisting of 4 elements are conjugate under dl to (~ zi) Z2’
But lemma 4.2. says that t is not conjugate to any element of ~t, zl;: z2.
This is a contradiction. So E3 cannot be conjugate to E2.

Using lemmas 4.5. and 4.6. we see that T1= J(T2), so every au-
tomorphism of T2 operates on the set E2, and, as we have
shown above, figes E2: The lemma is proved.

THEOREM 4.9. The hypothesis of this paragraph cannot be sati-
sfied. We have ING(To): To I - 4.

PROOF. It follows from lemmas 4.8 and 4.2. that T2 is a Sylow-2-
subgroup of G. Furthermore, we see that NG(E2) controls the fusion
of the involutions of E2. We find that z, is fused to Z2, but to no other
H-class of involutions. So z, has 60 conjugates in H. Let t act on the
conjugacy class of zl in G. From the assumption that G has no sub-
group of index 2, and from the fact that 26 divides the order to Ca(zl),
we get that 2 8 divides the order of G, which is a contradiction. Theo-

rem 4.9. is proved.

5. The case E2 in T 1, first results.

LEMMA 5.1. 1B=== NG(To) has order 27.E1 and E2 are not conjugate
in G, t has 8 conjugates in Ei under the action of N a(Ei) and not more
conjugates in Ei under the action of G. The order of NG(Ei) is 28.3.

PROOF. The first assertion has been proved in § 4. As E1 and E2
are normal in T1, it is immediate that t has 8 conjugates in Ei under
the action of and that further fusion is impossible. If El and E2
were conjugate in G, they would be conjugate in C(t), which is not

the case. The lemma is proved.
We fix some notation. D; : = di; , .NG(Ei), Qi : = 02(Ni),

By a 16-group we always mean an elementary
abelian group of order 16. Unless stated otherwise, we use the « bar »
convention for the canonical homomorphism Ni -+ A i = NilEi (i - 1 , 2 ) .

LEMMA 5.2. has order 12. There are involutions y, and

Y2 such that y i centralizes D i : Put Z : = Z ( T 1 ) . Then 

Furthermore, y [yl , t] = z, and [y2 , t] = z2 :
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PROOF. The operator group Ai is a subgroup of GB(4, 2) ^~ A8
of order 2~*3; therefore no group of order 3 is normalized by a group
of order 16 in A ; : We know that has order at least 6, so we
conclude by Sylows therem that I must be 12.

We have shown that INN, (D7,)l = 2~*3, and similarly as in lemma 4.3.
we see that C,,(D,) is the direct product of Di and a dihedral group
of order 8, say R;: This shows that we may choose involutions y,,
and y2, which are not contained in H, and involutions zl and z2 from
Z(To) such that t, Yi). Now it is immediate that [yi, t] = i

It is easy to see that y, and y, normalize Ta, so T1/To is elementary,
and Z(Tl) is a four-group. Using the definition of yi and the Thompson
A X B-lemma we see that Z( Tl ) _ zl , Z2).

The lemma is proved.
Now we want to consider the possible structures of N,. As the

roles of El and E2 are interchangeable so far, we introduce some com-
mon notation.

For the permutation representation of A i on the orbit of t in Ei
we use the following numbering as a common reference:

Setting z : = zlz2 , we have the orbit {t, tz, tai , tzai, tzi , tzi z, tzi ai ,
for Ea . Let these elements, listed in this order, correspond to

{1, 2, 3, 4, 5, 6, 7, 8}.
The 3-elements dl resp. d2 operate as (2, 3, 4) (6, 7, 8), the involu-

tions a2 resp. al inverting di have the action (3, 4)(7, 8), and y; ope-
rates as (1, 5)(2, 6) (3, 7) (4, 8).

Now it is of interest to investigate the action of y; , ? =1= i, on Ei .

LEMMA 5.3. Let ei be the involution of the set inverting dire
Then we have two possibilities:

I ) ei centralizes y;, yi operates on the orbit of t in ~E~ , j ~ i,
as (1, 6) (2, 5) (3, 8) (4, 7).

II) ci t centralizes yi, yi operates on the orbit of t in Ej as

(1, 6)(2, 5).

PROOF. Again look at Similarly as in lemma 4.4., we see
that [yi, ei] = 1 or [yi, ei] - [ya, t]. Now it is straightforward to com-
pute the action on E~ .

LEMMA 5.4. Assume that we have case I) for Ei. Then Qio is gene-
rated by Ei, Y1Y2’ and 
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PROOF. It is immediate from our knowledge about Ai that 0,(A,)
is elementary of order 8 and contains Now use the permutation
representation of Ai on the orbit of t. We compute yl y2 ’--’ (1, 2)(3, 4) ~
. (5, 6) (’1, 8). It f ollows that (yi y2) d~ _ (1, 3 ) (2, 4) (5, ~) (6, 8) and that

The lemma is proved.

LEMMA 5.5. Assume that we have case II) for Then Qio is gene-
rated by .Ei, (~ ~ i), and 

PROOF. This time we see that the action of on the orbit of t

is (1, 6)(7, 8)(2, 5)(3, 4). We finish by calculating in the same way as
in the proof of lemma 5.4.

LEMMA 5.6. Assume that we have case II) for Ei. Set ei := 
and f i : = Then = with hi E z~; . Furthermore, f i] = 1.

PROOF. We easily compute that [Ei, ei] = C,,(ei) = z~. This

implies that = z=, ai&#x3E;. The commutator [ei, f a] is an involu-
tion in EE and therefore centralized by ei and fi, so [ei, f i] E 

with Now we see that 

so hi is centralized by f i, and
similarly, hi is centralized by As lieihi must be an involution,
f i ei is an involution and so [ f i , e~] = 1. The proof is complete.

LEMMA 5.7. Assume that we have case II) for Then either (A )
[Yi, ei] = 1 or (B) ei] = zzi .

PROOF. First of all, note that [ai, ei] = zi. It is clear that

eil E z, Zi).
Suppose that [yi, ei] = zi. Then [yi, fil = zi and [yi, fieihil =

On the other hand, 
which is a contradiction.

So assume that [yi, ei] = z. Then [yi, f;] = ai and [yi, fieihi] ==
_ [yi, fi, ei] = za; z, , which leads to the same contradic-
tion as above. The lemma is proved.

For the next three paragraphs, put R, := = TIQ;.
Because of the symmetry of E1 and E2, we may split the analysis

into the following cases:
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6. The non-isomorphic case.

We will deal with these cases in §§ 6-8.

HYPOTHESIS 6.0. a2] = z, and [y2 , a,] = 1.

LEMMA 6.1. Put and Zl : _ zl , z, al~ . Then BI is

a non-abelian group of order 32; further-more, Z1= Z(B1).

PROOF. First of all, we remark that Zl is the subgroup of B1 gene-
rated by the involutions of E1 which are not conjugate to t. There-

fore Zl is normal in N,. From the definition of yi and from hypo-
thesis 6.0. we conclude that Zl c Z(Ql).

We try to compute -DJ =: B1. If we look at y we see

that B1 is contained in a group of order 32 of the form Zlel , =: BIO,
such that c~l operates non-trivially on Blo/Z1. Lemma 5.4. says that

modulo Zi, el may be chosen to be either y1 y2 or In either

case, [a2 , el] = zl , from hypothesis 6.0. This shows that Zl must be

contained in B1, as a2 operates on [Ql, D1]. So B1 must be non-abelian
and of order 32, y and we have B, - Bio .

PROOF. Choose e1 from the set to be contained in

[Q1’ Dl]. Then from lemma 6.1. , B1 is non-abelian and Bi must be
a Dl-invariant group of order 2. Therefore (zi) and [el, f 1] = zi .

From lemma 5.7. we know that [Y2’ e2] = [Y2’ Y1] is contained in

(zi) from our definitions, we conclude that [y, , e1] E Zl)’ The same

argument as in the proof of lemma 5.7. shows that we must have

[yl, el] = -1.
As, by lemma 6.1. , B1 is non-abelian, el cannot be an involution,

which implies that and that [ yl , y2] = zI . Also, it is easy
to verify that el = ZZl.

Now for some e E Z1: We compute (11e1e)dl==: 
ed1= el, hence ( flel)2[e, dl] = e2and so [e, d1] = a1. This shows that

Interchanging y, and Y1Zl if necessary, we may assume

that e = zal. The lemma is proved.
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LEMMA 6.3. The group Tl contains

precisely 9 16-groups, namely

PROOF. First, note that z1, Y1) is normal in Tl’ Put 1’1: ==
:= Tl/y1, Zl). Then we see from earlier results that is extra-special
of order 32 with center z2~ . We can write as the central product
of two dihedral groups. â2) y (t, y2~. *

Such a group has precisely 6 maximal elementary subgroups all
of which have order 8. Take Ui , li6, to be their inverse images.
Then we have

It is clear that all maximal elementary subgroups of T1 are contained
in some Ui . So we have determined all elementary subgroups of
order 16, as one can easily verify that Ei , 1 ~ i c 9, are elementary
abelian. The lemma is proved.

LEMMA 6.4. Na(T1) = f ~~ =: T is a group of order 21°, the
factor group TIT, is dihedral of order 8. There are precisely 3 G-classes
of 16-groups in Tl , namely ~E2 , E4 , Eg , E8}, 

PROOF. From lemmas 5.6. and 6.2. we know the action of fi and 12
on T1. Regard the operation on the set of 16-groups. By easy com-
putations, we find
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Multiplying this action, we get f 1 f 2 ~- ( .E1, L~’s , .E3 , .E~ ) (E2 , .Eg , L~’4 , Es ),
and we see that there are precisely 3 G-classes of 16-groups with ele-
ments as stated. The elements fi and 12 generate an outer automorphism
group on Ti which is dihedral of order 8. To finish, we use the fact
that N(T1) r1 N(E1) has order 28 and that E1 has precisely 4 conju-
gates under Na(Tl) in T1. The lemma is proved.

LEMMA 6.5. The group Q1 contains precisely 5 16-groups namely E9,
E1, E~, and the groups and Ea2== 

PROOF. We have Z(Q,) = Zl, and we know the multiplication table
of Q1: So we just check which elements of belong to cosets of
involutions, and we see that the assertion of the lemma holds.

LEMMA 6.6. R1== is a Sylow-2-subgroup of N1= Tl and Q,
are characteristic in Na(Rl) -1L1( f lf2)2~ is a group of order 29.

Put 81= Then V(ccIG(t); T). NO(Q1) has order 210 - 3.
Furthermore, 211 divides the order of G.

PROOF. First of all, regard the 16-subgroups of As 
is dihedral of order 8, we only have to look at Tl and Q1, and so we
have determined all 16-subgroups in the lemmas 6.3. and 6.5.

The groups E1, and E4 are normal in Ri, the other 6 groups
contained in T1 are normalized by T1 but not by fi , and E31, ~32 have
normalizer Q, in Ri . We know that Q1= J(Q1) and that Ti = J(T1).

This shows that Tl and Ql are characteristic in Furthermore,
Ei can only have 2 conjugates in Na(.R1), as t cannot be conjugate
to any involution of so No(R1) is as described.

The group 81 is generated by Rl and and V( ccIG(t); Rl).
Having the structure of TjT1 in mind, we only have to prove that there
are no conjugates of t in R2 - Tl:

As usual, we only have to determine the involutions of Q2 - Q2 n Tl :
The factor group Q2/Z involves a direct factor which is dihedral, so
we may reduce to Q21= z2 , z, a2 , e2 , t2l ~2)’ This group has the normal
subgroup z, z2 , tY2) and d2 permutes the non-trivial cosets of this
subgroup.

It suffices to consider one coset which we can choose to be con-
tained in Ti, but from lemma 6.3. we conclude that t has no conju-
gates in the group z2 , z, a2 , ty2 , So we have shown that Tl =
- V( ccIQ(t); Ra), which implies that 81 = V( ccla(t); T).
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As to the next assertion, we note that Q1 contains precisely 4 16-
subgroups conjugate to Ei, and they are conjugate in Na(Qi). So

NO(Q1) must have order 210.3.
Regard the center of a Sylow-2-subgroup of containing 81.

From the action on the 16-subgroups of Q, we see that ( f 1 f 2)2 =: g
is contained in mod Ql). As g and f 1 centralize Z, we see that
a Sylow-2-subgroup of N O(Q1) has a center of order 4. But Z(T) = ~z2~
is of order 2. Therefore 211 must divide the order of G. Lemma 6.6.
is proved.

LEMMA 6.7. Put f := f1 f2, g := f 2 and 
Then t is not conjugate to any involution of U - T1 in G.

PROOF. To start, we determine CTi ( f ) . We compute zi = z, ai 
with tf ==- Y1 a2 tZ2 h, ~ = a2 W y2 h~ (tY2)’ 
From this, it follows that 

As g2 = f 4 we must have The element g centralizes
Z and normalizes the intersections E1 r1 E5 n E7, E8,
hence g2 centralizes these intersections, in particular, g2 centralizes a2:
We have proved that g2 E z2~ .

Put T¡o:= tY2). Then we see that g normalizes T10, and

that g centralizes T10 mod Z. On the other hand, we can compute
that tg E yZ. If gx is an involution, for some x E Tl, then g2 x2[g, x] = 1
and therefore x E Tip.

We note that [~~2] ==(~2)~ ==~2? this implies that if gx is an

involution then gxtY2 is an involution as well. (It is straightforward
to see that ty2 is contained in the center of T1o). So choose x E E,~a2~.
We have [g, a2l ~ z.

Assume g2 = 1. If x2 = [g, x] = 1, then But g centralizes
.E9 and so is elementary of rank 5. Hence, if involutions of this
type occur, they cannot be conjugate to t. If g2 = z2, then Egg does
not contain any involutions.

The coset Tiog contains 64 elements, but we have already excluded
32 elements. Trivial computations show that not all of the remain-
ing 32 elements can be involutions, so there are less than 32 conju-
gates of t in U - T1. But T normalizes U and T has order 21°. On
the other hand, CG(t) has Sylow-2-subgroups of order 25. Hence U
contains 0 (mod 32) involutions which are G-conjugate to t. Alto-

gether, this means that there cannot be any conjugates of t in U - T1.
Lemma 6.7. is proved.
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LEMMA 6.8. Take P1 to be the Sylow-2-subgroup of Na(Q1) contain-
ing Si . Then g2 : = is contained in P1, and we have P1= g2, /1).
S = = and P1).

PROOF. Regard the action of NG(Q1) on the set Ea, Eal, 
We know that N(Q1) induces the full symmetric group on 4 letters.
R1 operates as (Ea1’ Ea2) and corresponds to a transposition.

Suppose that g = (E1, E3). Then is isomorphic to 
but Z(R1) = Z and = Zl, as g centralizes a1, a contradiction.
So we must have and gE02(N(Q1)modQ1)==
== 02(N(Q1)). The 3-element d1 normalizes Q1’ so gdl E 

The group S, contains precisely 64 involutions, which are G-conju-
gates of t, and 211 divides IN(81) I, I so S - = 

The factor group Pl/Q1 is dihedral, so, for determining the elemen-
tary subgroups of P1, it suffices to determine those of fi)
and of g2~ = 0,(N(Q,)). As we have the action of d1, it is enough
to consider the group 

This group is normalized by P1 which is of order 21°, so con-

tains 0 (mod 32) involutions which are conjugate to t. On the other

hand,  81 and 81 contains 64 t-conjugates. The involution a2 t
is conjugate to t and lies in ~S1 but not in Ql~g~, so contains pre-

cisely 32 conjugates of t. But these must already be contained in Qi.
This shows that Q1 = 02(N(Ql)))’ ans do it follows that

Sl = V( cclo(t); P1). Lemma 6.8. is proved. ’.

LEMMA 6.9. The elementary group E9 is normal in S. Put ~9:=
= fl, g, g2)’ ThemS :_ 8/09= ~t, â2, 12) is dihedral

of order 8. The inverse images of the elementary maximal subgroups
of /§ are P1= C9t, a2) and P2 = C9 f 2, 

PROOF. Trivial.

LEMMA 6.10. Put P3 : = Then P, does not contain any
involutions which are conjugate to t.

PROOF. Obviously, ~3 is contained in P1, and we know the conju-
gates of t in Pi. It is obvious from our earlier results that so involu-
tion which is conjugate to t and appears in Rl, is contained in P,,.
But P3 is 12-invariant. The lemma is proved.

LEMMA 6.11. Then P4 does not contain any
involutions which are conjugate to t.
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PROOF. In proofs of some earlier lemmas, we have seen that C,

does not contain any conjugates of t. So suppose to be an involu-

tion, Then x2 = [x, f 2], and f, centralizes x modulo E9’
Now hence · C90 · - is

a group of order at most 2 7, and x must be chosen from C~ . It is im-

mediate that X12, and have all different squares, so
there are at most 2 5 involutions in 

On the other hand, P4 is normalized by a group of order 21° and
therefore contains 0 (mod 32) conjugates of t. But in the proof of
lemma 6.6. we have seen that f 2 is not conjugate to t. So P4 cannot
contain any conjugates of t. The lemma is proved.

LEMMA 6.12. P2 does not contain any conjugates of t.

PROOF. This is clear from the preceeding lemmas, as P2 is the
union of P4 , and 

LEMMA 6.13. V( ccIG(t); S).

PROOF. This follows from lemmas 6.6, 6.8. and 6.12.

THEOREM 6.14. Hypothesis 6.0. cannot be satisfied.

PROOF. From lemmas 6.8. and 6.13. we conclude that S is a Sylow-
2-subgroup of G. Lemma 6.12. says that P2, which is a maximal sub-
group of S, does not contain any conjugates of t. By the Thompson
transfer lemma, it follows that G has a subgroup of index 2, which
is a contradiction.

7. the « case II » case.

HYPOTHESIS 7.0. [y2 , == -21 [Y1’ a2] = Zl.
We use the notation introduced in lemma 5.6. for i = 1 and i = 2.

LEMMA 7.1. We have

PROOF. The first two relations are immediate from lemma 5.6.
and the definition of 
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To prove the other two relations, use lemma 5.7. and assume that
[y~ , e,] = 1, which implies that [ yl , y,] = zl . But then [ y2 , e2] ==
= IY2 y1 a1] = z1z2 which contradicts lemma 5.7. for i:= 2. So we
must have [yl, y2] = z. The lemma is proved.

LEMMA 7.2. Put again Tl := Toyl, Y2) --- NG(To). Then T, con-

tains precisely 8 16-groups, which are:

PROOF. First, check that the groups listed above, are elementary.
But this follows from lemma 7.1.

Now we determine the maximal elementary subgroups of T1 with
the aid of a suitable factor group. The factor group a1aat) ==

the central product of two dihedral groups of
order 8, so T1 has precisely 6 maximal elementary subgroups which
are all of order 8. Take Ui, 1 c i c 6, to be their inverse images in T~ :
Then we have

It is easy to check that U1 and U5 do not contain elementary groups
of order 16. The lemma is proved.

LEMMA 7.3. Neither E3 nor E4 is conjugate to E1 or E2 in G.

PROOF. We show that E3 and E4 contain more than 7 involutions
which are not conjugate to t.



17

As to E3, I we have 0(e2) = Zal, Y1, f2, tY2)’ so e2 is cen-

tralized by a group of order 2 6 and cannot be conjugate to t. As a1
is not conjugate to t either, we are done for E3. Take the involution e,
for E4, and use the same argument.

LEMMA 7.4. Let EE be the set {El , E5 , E? , E2 , Eg , E8} Then we

have the G-orbits ~E1, E5, E7~ and ~E2, Es, Furthermore, NG(T1)
has order 2 8-3.

PROOF. Regard the action of fi and 12 on EE. We find

Having the non-fusion of E1 and E2 in mind, we see that the orbits
are as described.

We have seen that E1 has precisely 3 conjugates under the action
of N o(T1). As N o(T1) r1 Na(E1) = has order 28, we have deter-
mined the order of NG(T1) and finished the proof of lemma 7.4.

LEMMA 7.5. = E1Ea, J(Q2) == E2E4’

PROOF. Regard Q1:= - a~l, ilfl), which is dihedral of
order 8. As usual, take the inverse images of the maximal elementary
subgroups. We get

The group Q11 is contained in Ti , and with the aid of lemma 7.2. it

follows that E1E3 = J(Qll).
Turn to Q12 . We can write Q12 = z2 , 11) y (ai, e1) 1r tyn , I so Q12

is the central product of two dihedral groups of order 8 and a cyclic
group of order 4. It is straightforward that such a group has 2-rank 3.
This proves the lemma.

LEMMA 7.6. R1 is a Sylow-2-subgroup of G.

PROOF. Lemma 7.5. implies that Tl = J(R1). On the other hand,
we know the order of N o(T1), and I~1 must be a Sylow-2-subgroup
of 

THEOREM 7.7. Hypothesis 7.0. cannot be satisfied.
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PROOF. By lemma 7.6., Rl is conjugate to .R2. Regard the normal
elementary subgroups of l~i of order 16. We find that is conju-
gate to ~E2 , E4~ . But this cannot happen. Theorem 7 .’l . is proved.

8. final.

HYPOTHESIS 8.0. - al] = 1.

LEMMA 8.1. Put Bi:= [Qi, Then BI and B2 are homocyclic
abelian groups of order 16 and of the same type. We may write Bi =
- z, ai, ei, f i) such that ei E Y1 and f z = i There are two pos-
sibilities :

I ) Bl and B2 have exponent 4, [yl , Y2] = z,

II) B1 and B2 are elementary, [Y1’ Y2] = 1.

PROOF. First of all, we have for i = 1, 2 , It is clear that

Z(Qio) = Z2, Put

such that and li=ef’.
The involution a" j ~ i, inverts di and centralizes ei fur either

choice of ei . 
hence Looking at the square of we see

that we have [ei, f i] =1 and that B~o is abelian.
Interchange ea and if necess-ary, to see that we can write Bi

as asserted.
As (tyl y2) 2 = z( y1 y2) 2 we see that [~1~2]~~’ Suppose that e1 E

Then which is not compatible with the
operation of d1 on Qi. So The same argument holds
for e~ , and our lemma is proved.

LEMMAS 8.3.-8.5. will be proved under

HYPOTHESIS 8.2. B¡ and B2 have exponent 4.
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LEMMA 8.3. Let T1 and Z be as usual. Then T1 contains 12 16-
groups, namely 

PROOF. Again we use our « factor group method)). The group Z, 
is normal in Tl and the factor group is dihedral of order 8.

We get Tl1 = Za1, a2, W Y2, I t) = a2) Y (y, Y2 t, t) zi&#x3E; and 
= Za1, a2 , 2/1) == a1,a2&#x3E;Yy1, 2/2) X Zl)’ Both maximal sub-

groups are the direct product of an extraspecial group of type Dg 1~ D8
and a group of order 2, the list of elementary subgroups now is imme-

diate.

LEMMA 8.4. Put For any 16-subgroup of T1,
.E say, put I~( E ) : = E n T It . Then T~ is characteristic in Ti. Fur-

thermore, ~) is characteristic in T1.

PROOF. Regard the intersections of the 16-subgroups of T1, which,
are or order 8. The only ones occuring more then once are 
Z~c~2~, and Z~~c~ . These three groups of order 8 generate TK, hence Tr
is characteristic in Tl, and so is z; = T~.

LEMMA 8.5. 29 divides the order of G.

PROOF. Suppose that R1 is a Sylow-2-subgroup of G. We choose
a maximal subgroup We see that 

Regarding cosets of involutions of we easily see
that As t is not conjugate to any element of TK, t is
not conjugate into R11, hence G has a subgroup of index 2, which
cannot be the case. The lemma is proved.

THEOREM 8.6. Hypothesis 8.2. cannot be satisfied.
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PROOF. E4 , F1, I’4} is the set of normal 16-groups in E1
and F. are normal in Nl. On the other hand, R2 has the normal 16-
subgroups .E2 , E5 , E2 and F5 are normal in N2 .

The action of on the set of 16-subgroups of T1 causes
the orbits ~El , .L5 J f ~E2 ~ -U 4 ~ f L-L’ 1 -~’ b~ and ~1’ 2 , .l.’ 4 ·

As NG(R1) &#x3E; E1 is conjugate to F’1 or to F4’ Suppose that .E1
is conjugate to Then E1 is conjugate to F5 , hence N1 is conjugate
to N2, and as .E1 and .F’1 are conjugate, E, and F5 must be conjugate
in G. But this is a contradiction.

Therefore E1 is conjugate to .F’4 and I’1 is conjugate to E4. Again
we see that N1 and N2 are conjugate. We have but 
This again is a contradiction. The theorem is proved.

We have proved that we are in case II) of lemma 8.1., so Bi
and B2 are elementary abelian, and, in particular, [yi , y2] = 1.

LEMMA 8.7. T1 possesses 4 elementary subgroups of order 16 which
contain conjugates of t. They are El = Zccl, t), E2 = Zu2, t), 

group of order 29.

PROOF. The factor group Tl/z, a1, a2, Y1Y2) is dihedral. We get
and T12 = Zal , c~2 , yl y2 , t~ . T11 has a center of

order 16 and does not contain any conjugates of t. T2 can be written
in the form D, Y D8 X Z, and contains precisely 6 elementary 16-groups.
Two of them are contained in Tll , and the other ones are listed above.

It is easy to see that we have f 1-°-- (L~’2, .E4) and 12 ,.. (E1, E3). As
f l and /2 both normalize Tl, we see in the usual way that the normalizer
of Tl in G must be as described.

LEMMA 8.8. T is a Sylow-2-subgroup of G.

PROOF. We will show that T1 == V(ccla(t) ; T), then our assertion
will follow immediately.

First of all, we show that T1= V( ccIG(t); R1). To this end, we
show that conjugates of t which are contained in Q1, also are contained
in Tl . In fact, Q1 contains an elementary group of order 64, 
- z, zl , al , ~!1, y2 , fl ~ , and the only involutions in Q1- Q11 are the
conjugates of t in El and contained in Tl.

In the same way, we see that T1= R2 ) . Put R3 : = 
where f : = f 1 f 2 . To finish, we have to show that T1= V(cclo(t); R3).

We get from easy calculations that = Zy1, Y2) so f 2 E
E y2; . If Ix is an involution, x E Ti , then f 2 x2 = [1, X] E y2; .
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Put Tll = Zyl, Y2, a1, a2) as above. Then x must be in T11. But

Z(Tll) = Zyl, Y2)’ hence the centralizer of Ix has 2-rank at least 5.

Therefore f x cannot be conjugate to t. The lemma is proved.

THEOREM 8.9. E1 and .E2 are conjugate in .N(To).

PROOF. Take y2 , ac1, a2 , f 1, 7 f2&#x3E; which is a maximal sub-
group of T. Z(31) = y,&#x3E; is a 16-group, so t cannot be conjugate
into .lVl, and G has a subgroup of index 2, a contradiction. Hence

hypothesis 8.0. cannot be satisfied, and we have proved that E1 and E2
are conjugate in G.

9. The case of conjugation.

In this section we finish the proof of theorem A. We fix some nota-
tion. As before, T1==NaTo) is a group of order 2 7. Put T~ 
r1 NQ(E1) and Z = Z(T2). We keep the notation Z = Z2) such that

Furthermore, y

LEMMA 9.1. Put T2 = Then we have t~ = zt. Furthermore,
INil == 27.3.

PROOF. Suppose that t has 8 conjugates in NG(Ei), then E1 and E2
are conjugate in C(t), which is not the case. So the conjugates of t
in Ei split into 2 orbits with 4 elements each under the action of N( Ei) .
From the structure of NH(Ei) we easily conclude that we must have
t1J::-= zt. As t has 4 conjugates under the action of N o(Ei), we must
have ING(EI) I = 2 7-3.

LEMMA 9.2. We can choose y to be an involution and to centra-

lize a2~ .

PROOF. T2 is a maximal subgroup of a Sylow-2-subgroup of N1.
If To is characteristic in T,, Tl must be a Sylow-2-subgroup of N1,
but this is not the case. This implies that T2 = J(T2) and in parti-
cular that T 2 = Q1(T2). So we may choose y to be an involution and
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to centralize a hyperplane of a 16-group of To , and we may assume
taht y centralizes a hyperplane of Ei . But then we have [T2’ E1] _ (~).
As T1 interchanges E1 and E2, we get [T2, E2] _ z&#x3E; and y centra-
lizes a hyperplane of E2 as well. Hence, in each of the sets 
and there is precisely one involution. Suppose that [y, a1] = z.
Then replace y by ya2 or yta2. Therefore we may assume that [y, a,] = 1.
Replacing y by yal if necessary, we may assume that y also centralizes a2 .
Our lemma is proved.

LEMMA 9.3.

PROOF. Regard the action of A ( Ei ) on the orbit of t in Ei which
is the set {t, tz, tai, the element di operates as (tz, taci, the
element di operates as (tz, taci, tzai), y acts as (t, tz)(ta;, tzai) and acj,

j -:j:;i, interchanges tai and tzai . So we have the full symmetric group
on this orbit.

LEMMA 9.4. E1/To is cyclic, Ti= Tox), where x can be chosen
to have the following properties:

Let yo : = x2. Then y can be chosen to be the unique involution of
the set {yo, tyol.

PROOF. From lemma 9.3. it follows that = Z(Ni), hence T,
interchanges z, and Z2, ~z~ is of order 2. Suppose that T1/To
is elementary. Then there are 3 maximal subgroups of T1 contain-
ing To. We know that 4 elements of Z(To) are conjugate to t, and that
a group .ltT with To  M  T1 has a center of order 4, so we must
have = Z for any choice of ltl and therefore = Z, a con-
tradiction. We have proved that T,IT,, is cyclic.

It is clear that x acts transitively on Z(To) - Z. Replacing x by x-1
if necessary, we may assume that condition (2) holds.

Suppose that a’= za2. Then replace x by a2x. On the other hand,
if a2 = za1, then replace x by xa2. So x can be chosen to satisfy con-
dition (1) as well.

Put yo := x2. Then yo centralizes Zal, a2), and so does tyo. We
have seen in the proof of lemma 9.2. that Ø(T2) == ~z~, so either yo
or tyo is an involution. The lemma is proved.
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LEMMA 9.5. Z’2 contains precisely 6 elementary subgroups of order 16

PROOF. We write T2 = a1, a2) 1~ y, tj in order to « see » the

elementary subgroups as usual.

LEMMA 9.6. Put Ri : = T2Qi . Then .Ri is a Sylow-2-subgroup of Ni .
Set f : = fli, qi E Ei . Then a&#x3E;I = Yq .

There are two cases:

I) qi E ~z2~, [y, f i] = 1, E3 and E4 are not conjugate to E1.

II) [y, f i] = aiz, all 16-subgroups of T2 are conju-
gate in 

PROOF. First of all, therefore we get
the relation [y, qi] = [qi, aj] and we find two cases:

We shall prove that we always are in the same case for i = 1 and
i = 2. But for the first part of this proof, this does not matter.

Now use the action of di . We get

In case I, we get qi] = 1 and therefore [y, f i] E C(y) r)
r1 C(d;) - zi). In case II we have [Ii’ and [y, f i] E 

Furthermore, y = which implies the relation
[y, fi] [fa, qi] [qi, di] = 1. In case I, we conclude that [y, f i] = 1 and
that [qi, di] = 1; whereas in case II [y, must be so [qi , di] =.: z
and 

From the definition of x, we get E3 = E4 and E 6
Now suppose that for i = 1 or i = 2 we are in case I. Then C(Y) &#x3E;

~ Z( al , ac2 , y, f i~ , hence y is centralized by a group of order 2 s and
cannot be conjugate to t. As a1 and a2 are not conjugate to t either,
we see that E, and .E4 cannot be conjugate to E1.
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On the other hand, if for i = 1 or for i = 2 we have case II,
then, if i === 1 we have E41= E5 and if i = 2 we have Ef- = Ee. In
either case, we have E2= = Eg resp. E(2 = E5 . So if we have « case II &#x3E;&#x3E;

for i = 1 or i = 2, then all 16-groups of T2 are conjugate. This proves
that we must have case I resp. case II simultaneously for i = 1 and
i = 2. The lemma is proved.

We will deal with these two cases separately. Lemmas 9.8-9.10.
will be proved under

HYPOTHESIS 9.7. We have case I of lemma 9.6.

LEMMA 9.8. f l, f 2~ =: T has order 29. The factor

group T/T2 is dihedral or order 8.

PROOF. Put EE : _ ~E1, E2 , E5 , Ee~ . It follows from lemma 9.6.

that Na(T2) operates on EE, and as 
NG(T2)/T2 acts faithfully on EE.

We compute f 1 ~- (E2, .Eg), 9 f 2 = (E1, 7 E,) , and x ̂-- (E1, E2)(E5, E6),
there elements generate a dihedral group of order. 8. Furthermore,
NG(T2) r1 NG(E1) has order 27, hence the order of NG(T2) must be 29;
the lemma is proved.

LEMMA 9.9. T2  V( ccIG(t); T) C ·

PROOF. First we prove that V ( ccla(t) ; Involutions of R1
are contained in T2 or in Q1’ It is clear that Deter-
mine the elements of Q,IZ(Q,) corresponding to cosets of involutions.
We find 4 nontrivial cosets with representatives t, y, /1’ and fi y. Note
that Z(Q1«Y), and are conjugate under d1. So
it is sufficient to prove that no involution of ~3 is conjugate to t. But

is elementary of order 32, and we are done.
Regard the inverse images of the involutions of T/T2. We have

see that Tl/To is cyclic, hence Above we have excluded

Rl - T2 . The elements x and f 1 correspond to representatives of the
2 non-central classes of involutions in T/T2, therefore only the inverse
image of Z(T/T2) is left.

LEMMA 9.10. T is a Sylow-2-subgroup of G.

PROOF. Put U : = Z(T mod T2) and write t : = f 1 f 2 . It is

immediate that Z = Z( U). Regard ~:== U/Z( U). We get from lem-
ma 9.6. that [ f , ’I] = [ f, d2l = y and that [ j, î] It is clear
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that 1’2 is an elementary 16-group. Suppose that U contains a further
maximal group which is elementary. Then CJ’ must be of order 2.

But we have seen that U’ is of order 4, so T2 is the only elementary
16-group contained in 0, therefore T2 is characteristic in 0 and T2
is characteristic in U.
We get that T2 is characteristic in T. Indeed, if T2 = T)

this is obvious. On the other hand, if U = V( ccIG(t); T) then U
is characteristic in T ; as T2 is characteristic in U, we get that T2 is char-
acteristic in T again.

Now it follows directly that T is a Sylow-2-subgroup of G.

THEOREM 9.11. We have case II of lemma 9.6. for i = 1 and i = 2.

PROOF. Suppose not. Then we shall derive a contradiction with

the aid of the Thompson transfer lemma.
is a maximal subgroup of T. We con-

clude from the structure of that 
= Q1(T).

Assume that t is conjugate into lVl. Then t is conjugate into 
c lVl n T, ==: Mo. We have Mo = Zy, aI, a2, and that Z(lVlo) _
= Zy~ .
We know that f l~ = and f 2~ = Because of (xt) 2 =

- 
9 we may interchange y and yz1 such that ql = 1.

Now calculate 1f === (a1t)fl== q2 yal a2 t, so

but f 2 e T2 , so we must have q2 = 1 and tI’ = zt. On the other hand, f2 E
and f 2 centralizes so we must have

f 2 = yv, v ~ Z.
We look for involutions in Mo which can be conjugate to t. As we

have seen in the proof of lemma 9.9., we only have to regard 
: = Z~y, a1, a2, f) . Let Ix be an involution, x e Zy, a1, a2).

Then [~ .r] = ~ and But

are elementary of order 32. So we have shown that t cannot be conju-
gate into Moo . But this implies that t cannot be conjugate into M,
and we can apply the Thompson transfer lemma. Our theorem is

proved.
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LEMMA 9.12. The order of Na(T2) is 28 ~ 3. is isomorphic
to 

PROOF. Put EE = ~El , E2 , E3 , E4 , E5 , Ee~ . Then, by lemma 9.6.
and other facts, we get

r = (E1, E4)(L~’S, E6). This implies that c := flx = (E1, L’2, E5,
E4 , Furthermore, we compute d: = C2 == 

and e: =- &#x26; = (E1, Ea)(E2’ 1’~’4) (~’’s ~ 
Now it is obvious that order and structure of N G(T2) are as described.

LEMMA 9.13. The order of NG(Q1) is 29.3.

PROOF. There are precisely 4 16-groups in Q1, namely E1, E3,
and The group R1== T2Q1 contains

8 16-groups. We see that E1 and E., are normal in Ri, ES1 and E32
have normalizer Q,, finally E2, E4, E", and E6 have normalizer T2
in Ri . As T2 and QI are non-isomorphic, it follows that Qi and T2 are
characteristic in R1.

From lemma 9.12. we conclude that hence e nor-

malizes Q1, and all 16-subgroups of Q1 are conjugate in N(Q,). As
we must have that the order of NG(Q,) is 29.3.

LEMMA 9.14. Put U : = T2e~ . Then 

PROOF. T := T2~e, II) is a Sylow-2-subgroup of N o(T2); as Z(T1) ===
- ~z~, we must have Z(T ) _ ~). On the other hand, (z) = T~ is
normal in No(T2), therefore d centralizes Z and so does 11. This shows
that zi = ZZl.

Take eo to be any involution of U - T2 . Then eo normalizes E1 n E3 ,
jE’~~4~ and Es n E6, so eo normalizes T2o : = Z~az , a2 , yt; . On the
other hand, (El r’1 E2)"’ = (E3 r1 E4), therefore (Zt)eo = Zy. As eo centra-
lizes T2o modulo Z, we then must have 

If U contains a 16-group which does not lie in T2, choose eo from
such a group and outside T2. Then eo centralizes an elementary group
of order 8 in T2o . But the only groups of this type in T20 are 
~~2)? and and no one of these groups can be centralizes

by eo , as eo does not centralize Z. Our lemma is proved.
Now we are able to derive a final contradiction. To this end, we

want to prove that J(T).
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There is a group such that T3 is isomorphic to T1,
therefore T/T2 cannot be covered by an elementary abelian group.
So any 16-group of T is contained in T., or U. But, as we have
seen, T2= J(U) = Hence J(T).

On the other hand, we have noted in the proof of lemma 9.13.
that T2 is characteristic in hence T is a Sylow-2-subgroup of Na(.Ri).
This, however, implies that T is a Sylow-2-subgroup of G. But T has
order 28 and we have seen in lemma 9.13. that 29 divides the order
of G. This is the desired contradiction. Theorem A is proved.

10. Proof of theorem B. 

Let G be a finite group having no subgroup of index 2, containing
an involution t such that H = CG(t) _ ~t~ ~ 

We choose a fixed Sylow-2-subgroup of H, To, which can be taken
to correspond to the one introduced in § 1, when we regard E, as a
subgroup of 277. We use the notation introduced in §1.

LEMMA 10.1. In H, i2 has 21 conjugates, i4 has 105 conjugates and is
has 105 conjugates.

PROOF. The symmetric group on 7 letters contains G) = 21(7)
transpositions. There are (4)-3 involutions operating on 4 letters.
The subgroup };6 contains 15 involutions operating on 6 letters, so };7
must contain 7 .15 = 105 involutions of this type.

LEMMA 10.2. In H, d1 has 70 conjugates, and d2 has 280 conjugates.
In particular, t, ie) is a Sylow-2-subgroup of Oo(d2).

PROOF. There are (7) 2 3-elements operating on 3 letters. Regard3 (5)
3-elements operating on 6 letters. In we find (:)’4 = 40 ele-

ments of this type in The structure of °o(d2) is obvious.

We remark that and Ng(E2) have the same structure as
in the case 2~. So we can take § 2 literally to see that 2 6 divides the
order of G.

LEMMA 10.3. 2 ~ divides the order of G. Furthermore,
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PROOF. The first assertion obviously follows from the second one.
So assume that To) = 2. If t is conjugate to any other H-
class of involution, t is conjugate to its representative in Z(To) under
the action of N(To). Our assumption implies that t is conjugate to
just one other class, therefore t has 22 or 106 conjugates in g, and
as G does not have a subgroup of index 2, T = = is a

Sylow-2-subgroup of G.
Suppose that E1 and E2 are normal in T. Then t must have 2 conju-

gates in El and E2. But this is impossible.
Suppose that Ei = E2. Then To must be a Sylow-2-subgroup of

NG(Ei), t is isolated in NG(Ei), therefore Z(NG(E1))==
- ~, i2) and Z(Na(E2) ) _ t, We conclude that t, i2) 11 = t, is).
But now either t or t is conjugate to at least 3 elements of Z(To).
Both is not possible. The lemma is proved.

THEOREM 10.4. Suppose that g is a finite group of even order,
t E g is an involution and CK(t) has a Sylow-2-subgroup which is ele-
mentary of order 4. Then the Sylow-2-subgroups of K are dihedral
or semi-dihedral. In particular, the 2-rank of I~ is 2.

PROOF. Let s, t) be a Sylow-2-subgroup of Cx(t) and S be a Sylow-
2-subgroup of .K containing (s, t&#x3E;. Suppose that the order of S is 2n.
Then t has 2n-2 conjugates in S. The commutator subgroup of S has
order at most 2n-2, so t cannot be contained in S’. On the other hand,
S’ ~t~ is normal is S. This forces S’ ~ - 2n-2. By [3], theorem 5.4.5.,
S is dihedral, semi-dihedral or generalized quaternion. As S contains
at least 3 involutions, it cannot be quaternion. The theorem is proved.

LEMMA 10.5. dl and d2 are not conjugate in G.

PROOF. It follows from theorem 10.4. that CG(d2) has Sylow-2-
subgroups of 2-rank 2. Suppose that d1 and d2 are conjugate in G.
Then t centralizes 350 = 2 (mod 4) conjugates of d2, hence a Sylow-
2-subgroup of G can be at most twice as big as a Sylow-2-subgroup
of OG(d2). But G has 2-rank at least 4. This is a contradiction.

LEMMA 10.6. E1 and E2 are not conjugate in G.

PROOF. Suppose they are. Then, as before, we see that t has pre-
cisely 4 conjugates in Ei under the action of NG(Ei), and that the order
of Na(Eg) is 2 ~ ~ 3. In particular, is a Sylow-3-subgroup of Na(El),
and d2~ is a Sylow-3-subgroup of If Ei and E2 are conjugate,
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then their normalizers are conjugate in G as well, and so are any two
Sylow-3-subgroups. But that contradicts lemma 10.5. Our lemma is

proved.
Now we are in a position to make use of §§ 5-8, where the lengths

of conjugacy classes in H do not matter at all. This remark finishes
the proof of theorem B.
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