RENDICONTI

del
 SEMINARIO MATEMATICO della Università di Padova

Franz J. Fritz

On centralizers of involutions having a component of type A_{6} and A_{7}

Rendiconti del Seminario Matematico della Università di Padova, tome 54 (1975), p. 1-29
http://www.numdam.org/item?id=RSMUP_1975__54__1_0
© Rendiconti del Seminario Matematico della Università di Padova, 1975, tous droits réservés.
L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova» (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

On Centralizers of Involutions Having a Component of Type A_{6} and A_{7}.

Franz J. Fritz (*)

Recently, M. Aschbacher [1] has shown under certain assunptions, that every finite simple group G containing an involution t such that $C_{G}(t)$ is not 2 -constrained contains a subgroup of standard type. So it is of fundamental interest for the theory of finite simple groups to classify finite groups by standard subgroups.

A standard subgroup A of a finite group G is a quasisimple group such that $C_{G}(A)$ is a group of even order and satisfies certain further properties.

Aschbacher [2] has classified all simple groups with a standard subgroup A such that $A / Z(A)=A_{n}$ and that $C(A)$ has a 2 -rank of at least 2.

On the other hand, the case of 2 -rank 1 is of considerable interest as well. The Mathieu group M_{12} contains an involution t_{2} such that $C\left(t_{2}\right)=\left\langle t_{2}\right\rangle \times S$, where S is isomorphic to Σ_{5} : The Higman Sims simple group contains an involution with centralizer isomorphic to $Z_{2} \times \operatorname{Aut}\left(\boldsymbol{A}_{6}\right)$. Both groups have been classified by these centralizers (cf. [4] and [5]).

In this paper, we consider centralizers of the form $Z_{2} \times \Sigma_{6}$ and $Z_{2} \times \Sigma_{7}$. We shall prove the following theorems:

Theorem A. Let G be a finite group of even order containing an involution t such that $C_{G}(t)$ is isomorphic to the direct product of a group of order 2 and the symmetric group on 6 letters. Then G has a subgroup of index 2.

Theorem B. Let G be a finite group of even order containing an involution t such that $C_{G}(t)$ is isomorphic to the direct product of a

[^0]group of order 2 and the symmetric group on 7 letters. Then G has a subgroup of index 2 .

The methods used in the proof are elementary. Throughout the paper we assume that G has no subgroup of index 2; we use the Thompson transfer lemma (cf. [3]) to derive a contradiction. The crucial fact seems to be that in the Sylow-2-subgroup of our centralizer we have two elementary groups of order 16 , say E_{1} and E_{2}, which《should» be conjugate in the centralizer, but are not. (This is contrary to the situation in [4] leading to the Higman Sims group).

Theorem B will be a corollary of the proof of theorem A. We will only have to redo parts of §§1-4. Then we will see that the two elementary groups which are the basis for the whole proof, are not conjugate in G, so $\S \S 5-8$ can be applied.

Now we fix some notation. G is a finite group having no subgroup of index $2, t \in G$ is an involution such that $H:=C_{G}(t)=\langle t\rangle \times \Sigma$, $\Sigma \cong \Sigma_{6}$. We choose a fixed Sylow-2-subgroup of H, say T_{0}, where $T_{0}=\langle t\rangle \times S_{0}$ such that S_{0} is a Sylow-2-subgroup of Σ.
Σ_{u} and A_{n} always denote the symmetric resp. alternating group on n letters, E_{k} denotes an elementary abelian group of order k, D_{n} denotes a dihedral group of order n. If a group X operates on a group B, then put $A_{X}(B):=N_{X}(B) / C_{X}(B)$.

For this paper, it is useful to define the Thompson subgroup $J(T)$ of a 2 -group T as follows: $J(T)=\left\langle E / E \leqslant T, E \cong E_{16}\right\rangle$. If X is a subgroup of $G, N(X)$ and $C(X)$ always stand for $N_{G}(X)$ and $C_{G}(X)$.

When we regard a permutation representation of a group X on a set $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$, then we describe the action of an element $x \in X$ on S as follows:

$$
x へ\left(s_{j 11}, s_{j 12}, \ldots, s_{j 1 r_{1}}\right), \ldots,\left(s_{i n 1}, \ldots, s_{j n r_{n}}\right)
$$

For sake of convenience, we do not always assume that the representation of X on S is faithful.

The remainder of the notation follows [3] and is fairly standard; for example we use the «bar convention» for homomorphic images, $V\left(\operatorname{ccl}_{G}(g) ; G_{0}\right)$ denotes the weak closure of g in G_{0} with respect to G.

1. The structure of H.

As S_{0} is a Sylow-2-subgroup of the symmetric group on 6 letters, we may assume that S_{0} is generated by the elements $i_{2}=(5,6)$,
$i_{4}=(1,2)(3,4), i_{6}=i_{2} i_{4}, a_{1}=(1,4)(2,3)$ and $a_{2}=(1,2)(5,6)$. We have $\left(a_{1} a_{2}\right)^{2}=i_{4}$.

We see that $S_{0}^{\prime}=T_{0}^{\prime}=\left\langle i_{4}\right\rangle$ and that $Z\left(T_{0}\right)=\left\langle t, i_{2}, i_{4}\right\rangle . \quad T_{0}$ contains precisely 2 elementary subgroups of order 16 , namely $E_{1}=$ $=Z\left(T_{0}\right)\left\langle a_{1}\right\rangle$ and $E_{2}=Z\left(T_{0}\right)\left\langle a_{2}\right\rangle$. It is clear that $Z\left(T_{0}\right)=E_{1} \cap E_{2}$.

The involutions i_{2}, i_{4}, and i_{6} represent the three conjugacy classes in Σ, i_{2} having 15 conjugates, i_{4} having 45 conjugates and i_{8} having 15 conjugates in H.

Altogether, H contains 7 classes of involutions, all the involutions of $Z\left(T_{0}\right)$ being representatives of the different classes. This shows that if t is conjugate to any other class of involutions of H in G, then t is conjugate to this class in $N_{G}\left(T_{0}\right)$.

Finally, we have that $N_{H}\left(E_{1}\right)=E_{1}\left\langle d_{1}, a_{2}\right\rangle$, where $d_{1} \in \Sigma$ can be taken as $(1,2,3)$, and that $N_{H}\left(E_{2}\right)=E_{2}\left\langle d_{2}, a_{1}\right\rangle$ with $d_{2}=(1,6,4)(2,5,3)$ Then a_{2} inverts d_{1} and a_{1} inverts d_{2}.

2. The first centralizer case.

In this paragraph, we want to show that 2^{6} divides the order of G. So assume the contrary.

Lemma 2.1. $N_{G}\left(T_{0}\right)$ has order $2^{5} \cdot 3$. G has precisely 3 classes of involutions. E_{1} and E_{2} are not conjugate in $G . N_{G}\left(E_{i}\right)$ controls the fusion on E_{i} for $i=1,2$.

Proof. By the Thompson transfer lemma, all involutions of T_{0} must be conjugate to some involution of S_{0}, but S_{0} contains involutions of at most 3 different classes. Hence, fusion must take place in $Z\left(T_{0}\right)$ under the action of $N_{G}\left(T_{0}\right)$. The group $T_{0}^{\prime}=\left\langle i_{4}\right\rangle$ is characteristic in T_{0}, so there must be precisely 3 different classes in $Z\left(T_{0}\right)$ and $N\left(T_{0}\right)$ must have order $2^{5} \cdot 3$.

If E_{1} and E_{2} are conjugate in G, they are conjugate in $N\left(T_{0}\right)$ by Burnside's lemma; but this is not possible. Therefore $N_{G}\left(E_{i}\right)$ must control the fusion on E_{i}.

Theorem 2.2. 2^{6} divides the order of G.
Proof. It is clear that $N_{G}\left(T_{0}\right) \leqslant N_{G}\left(E_{i}\right), i=1,2 . \quad A_{G}\left(E_{i}\right)$ has a Sylow-2-subgroup of order 2 and hence must be solvable. The involution t is conjugate into S_{0} by an element of $N_{G}\left(T_{0}\right)$. We conclude that t
has 3 or 7 conjugates in E_{i}. If t has 7 conjugates, then $A_{G}\left(E_{i}\right)$ has order $2 \cdot 3 \cdot 7$, which contradicts the structure of $G L(3,2)$. Therefore t has 3 conjugates in E_{1} and 3 conjugates in E_{2}, which all must be elements of $\boldsymbol{Z}\left(T_{0}\right)$. But this is impossible.
3. The case $2^{6} T|G|$.

Lemma 3.1. Put $T:=N_{G}\left(T_{0}\right)$. Then T is a Sylow-2-subgroup of G, $Z(T)$ has order $4, t$ is conjugate to $t i_{4}$ in T, and t does not fuse in G to any other class of involutions in H.

Proof. It is clear that $Z(T)$ is elementary of order 4. So at least 3 involutions of $Z\left(T_{0}\right)$ cannot be conjugate to t, and we see that T_{0} does not admit a 3 -automorphism. Therefore t is conjugate to precisely one other involution of $Z\left(T_{0}\right)$ and we have shown that t centralizes either 16 or 46 of its conjugates in G. We assume that G has no subgroup of index 2 , so t operates on its conjugacy class as an even permutation. If t centralizes 16 of its conjugates, then there are $O(\bmod 4)$ conjugates of t in G. But 2^{5} divides $\left|C_{G}(t)\right|$, so 2^{7} divides the order of G, contrary to the assumption of this paragraph. We have proved that t has 46 conjugates in H, so t must be conjugate to $t i_{4}$: The lemma is proved.

Lemma 3.2. E_{i} is normal in T, for $i=1,2$.
Proof. Put $T=T_{0}\langle y\rangle$ and suppose $E_{1}^{\nu}=E_{2}$: By lemma 3.1., t has 1 or 4 conjugates in E_{i} under the action of $N_{G}\left(E_{i}\right)$. The order of $N_{H}\left(E_{i}\right)$ is $2^{5} \cdot 3$, so if t has 4 conjugates in E_{i} under the action of $N_{G}\left(E_{i}\right)$, then 2^{7} divides the order of $N_{G}\left(E_{i}\right)$, which is not possible, Therefore $N_{G}\left(E_{i}\right)=N_{H}\left(E_{i}\right)$, and t has an orbit of length 1 under $N_{G}\left(E_{i}\right)$. Applying lemma 3.1., we see that we must have $t^{y}=t$. This is a contradiction.

Theorem 3.3. The order of G is divisible by 2^{7}.
Proof. We have shown that 2^{6} divides the order of $N_{G}\left(E_{i}\right)$. Applying lemma 3.1. again we see that t has 4 conjugates in E_{i} under the action of $N_{G}\left(E_{i}\right)$. But then 2^{7} must divide the order of $N\left(E_{i}\right)$ Theorem 3.3. is proved.

4. The case $\left|N_{\theta}\left(T_{0}\right): T_{0}\right|=2$.

Lemma 4.1. Set $T_{1}:=N_{G}\left(T_{0}\right)=T_{0}\langle y\rangle$. Then $T_{1}=J\left(T_{1}\right), E_{1}$ and E_{2} are normal in T_{1}, t is fused to precisely one other involution of $Z\left(T_{0}\right)$, and there are precisely $16 G$-conjugates of t in H.

Proof. As 2^{7} divides the order of G and, by assumption of this paragraph, the normalizer of T_{0} has order $2^{6}, T_{0}$ cannot be characteristic in T_{1}. Therefore $T_{1}=J\left(T_{1}\right)$. It is clear from some remarks in $\S 1$ that t can only be conjugate to one more class of involutions of H. From the fact that 2^{7} divides $|G|$, we conclude that t cannot have 46 conjugate in H; so t must be conjugate to 16 involutions of H. As $T_{1}=J\left(T_{1}\right)$, we conclude, using our definition of $J\left(T_{1}\right)$, that we cannot have $E_{1}^{y}=E_{2}$. Lemma 4.1. is proved.

Lemma 4.2. Set $Z\left(T_{1}\right)=:\left\langle z_{1}, z_{2}\right\rangle$ such that $z_{2}=i_{4}$. Then z_{1} can be chosen such that $t^{y}=t z_{1}$. Furthermore, we may assume that $Z\left(T_{1}\right) \cap Z\left(N_{H}\left(E_{1}\right)\right)=\left\langle z_{1}\right\rangle$ and that $Z\left(T_{1}\right) \cap Z\left(N_{H}\left(E_{2}\right)\right)=\left\langle z_{1} z_{2}\right\rangle$. Finally

$$
\left|N_{G}\left(E_{1}\right)\right|=2^{6} \cdot 3, \quad \text { and } \quad\left|N_{G}\left(E_{2}\right)\right|=2^{7} \cdot 3
$$

Proof. From the structure of T_{0} we see that $z_{2}\left(=i_{4}\right)$ is not conjugate to t. So we may set $Z\left(T_{1}\right)=\left\langle z_{1}, z_{2}\right\rangle$ such that $t^{\nu}=t z_{1}$.

As the normalizers of E_{1} and E_{2} in H are isomorphic we may alter the notation such that the last part of the lemma holds.

Lemma 4.3. We can choose y to be an involution and to centralize $\left\langle z_{1}, z_{2}, a_{1}\right\rangle$.

Proof. Set $D_{1}:=\left\langle d_{1}\right\rangle$ and $N_{1}:=N_{G}\left(E_{1}\right)$. Then D_{1} is a Sylow-3subgroup of N_{1}. From our information about N_{1} and using Sylow's theorem, we conclude that a Sylow-2-subgroup R of $N_{N_{1}}\left(D_{1}\right)$ has order 2^{4} As a_{2} inverts d_{1}, it follows that $C_{R}\left(D_{1}\right)$ has order 2^{3}. On the other hand, $C_{R \cap H}\left(D_{1}\right)=\left\langle t, z_{1}\right\rangle$, so $C_{H}\left(D_{1}\right)$ is a dihedral group of order 8 . We choose y to be an involution of this group. As y centralizes d_{1}, y operates on $\left[E_{1}, d_{1}\right]=\left\langle z_{2}, a_{1}\right\rangle$. By the Thompson $A \times B$-lemma, y centralizes $\left\langle z_{2}, z_{1}\right\rangle$. Lemma 4.3. is proved.

Lemma 4.4. $\left[y, a_{2}\right] \in\left\langle z_{1}\right\rangle$.

Proof. Using lemma 4.3., we can choose a Sylow-2-subgroup of $N_{N_{1}}\left(D_{1}\right): R=\left\langle z_{1}, t, y, a_{2}\right\rangle$. It is clear that $\left\langle z_{1}, t, y\right\rangle=C_{R}\left(D_{1}\right)$ and $\left\langle z_{1}, t, a_{2}\right\rangle=R \cap H$ are normal in R; we conclude that $\left[y, a_{2}\right] \in\left\langle z_{1}, t\right\rangle$ is an involution and therefore must be centralized by y. The lemma is proved.

Lemma 4.5. Set $N_{2}:=N_{G}\left(E_{2}\right)$ and take T_{2} to be the Sylow-2subgroup of N_{2} which contains T_{1}. Further set $Q_{2}:=O_{2}\left(N_{2}\right)$. The N_{2} / E_{2} is isomorphic to Σ_{4}, and elementary subgroups of T_{2} are contained in T_{1} or in Q_{2}.

Proof. The orbit of t in E_{2} under the action of N_{2} is $\left\{t, t z_{1}, t z_{1} z_{2} a_{2}\right.$, $\left.t z_{1} a_{2}\right\}$. Call these elements $\underline{1}, \underline{2}, \underline{3}, \underline{4}$, respectively. Then d_{2} acts as $(\underline{2}, \underline{3}, \underline{4})$ and y acts as $(\underline{1}, \underline{2})$. So d_{2} and y generate the full symmetric group on the orbit of t, therefore T_{2} / E_{2} is dihedral of order 8 having elementary subgroups T_{1} / E_{2} and Q_{2} / E_{2}. The lemma is proved.

Lemma 4.6. $\quad E_{2}=J\left(Q_{2}\right)$.
Proof. We can see from the proof of lemma 4.5. that $a_{1} y \in Q_{2}$ Set $f_{2}:=\left(y a_{1}\right)^{d_{2}}$. It follows that $\left[y a_{1}, E_{2}\right]=\left\langle z_{1}, z_{2}\right\rangle$ and that $\left[f_{2}, E_{2}\right]=$ $=\left\langle z_{1} z_{2}, a_{2}\right\rangle$. Therefore $Z\left(Q_{2}\right)=\left\langle z_{1} z_{2}\right\rangle$. Now it is very easy to see that E_{2} is the only elementary subgroup of order 16 of Q_{2}, so $E_{2}=$ $=J\left(Q_{2}\right)$. The lemma is proved.

Lemma 4.7. $Z\left(T_{1}\right)=\left\langle z_{1}, z_{2}\right\rangle=: Z . \quad T_{1}$ contains precisely 4 elementary subgroups of order 16 , namely $E_{1}, E_{2}, E_{3}=Z\left\langle a_{1}, y\right\rangle$ and $E_{4}=$ $=\boldsymbol{Z}\left\langle t a_{2}, \boldsymbol{y}\right\rangle$.

Proof. From the proof of lemma 4.5. it follows that $\left[y, a_{2}\right]=z_{1}$. Therefore $\left[y, t a_{2}\right]=1$. On the other hand, y centralizes a_{1} by lemma 4.3. We conclude that $T_{1}=\left\langle a_{1}, a_{2} t\right\rangle \times\langle\mathrm{y}, t\rangle$ is the direct product of two dihedral groups of order. 8 Now it is immediate that T_{1} contains precisely 4 elementary subgroups of order 16, namely those listed above. The lemma is proved.

Lemma 4.8. E_{2} is characteristic in T_{2}.
Proof. First of all, note that $E_{1}^{f_{2}}=E_{4}$, and from the order of $N_{G}\left(E_{1}\right)$ we conclude that neither E_{1} nor E_{4} is conjugate to E_{2} in G. Suppose that E_{3} is conjugate to E_{2}. The involution t operates on E_{3} centralizing a hyperplane of E_{3}, but no involution of $Q_{2}-E_{2}$ centralizes a hyperplane of E_{2}. Therefore $E_{3} t$ must be conjugate to $E_{2} a_{1}$.

In particular, t is conjugate to an involution of $E_{2} a_{1}$. Involutions of $E_{2} a_{1}$ are contained in $\left\langle t, z_{1}, z_{2}\right\rangle a_{1}=\left\langle t, z_{1}\right\rangle a_{1} \cup\left\langle t, z_{1}\right\rangle a_{1} z_{2}$. These last sets consisting of 4 elements are conjugate under d_{1} to $\left\langle t, z_{1}\right\rangle z_{2}$. But lemma 4.2. says that t is not conjugate to any element of $\left\langle t, z_{1}\right\rangle z_{2}$. This is a contradiction. So E_{3} cannot be conjugate to E_{2}.

Using lemmas 4.5. and 4.6. we see that $T_{1}=J\left(T_{2}\right)$, so every automorphism of T_{2} operates on the set $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$, and, as we have shown above, fixes E_{2} : The lemma is proved.

THEOREM 4.9. The hypothesis of this paragraph cannot be satisfied. We have $\left|N_{G}\left(T_{0}\right): T_{0}\right|=4$.

Proof. It follows from lemmas 4.8 and 4.2. that T_{2} is a Sylow-2subgroup of G. Furthermore, we see that $N_{G}\left(E_{2}\right)$ controls the fusion of the involutions of E_{2}. We find that z_{1} is fused to z_{2}, but to no other H-class of involutions. So z_{1} has 60 conjugates in H. Let t act on the conjugacy class of z_{1} in G. From the assumption that G has no subgroup of index 2 , and from the fact that 2^{6} divides the order to $C_{G}\left(z_{1}\right)$, we get that 2^{8} divides the order of G, which is a contradiction. Theorem 4.9. is proved.

5. The case $E_{1} \sim E_{2}$ in T_{1}, first results.

Lemma 5.1. $T_{1}=N_{G}\left(T_{0}\right)$ has order $2^{7} \cdot E_{1}$ and E_{2} are not conjugate in G, t has 8 conjugates in E_{i} under the action of $N_{G}\left(E_{i}\right)$ and not more conjugates in E_{i} under the action of G. The order of $N_{G}\left(E_{i}\right)$ is $2^{8.3}$.

Proof. The first assertion has been proved in §4. As E_{1} and E_{2} are normal in T_{1}, it is immediate that t has 8 conjugates in E_{i} under the action of $N_{G}\left(E_{i}\right)$ and that further fusion is impossible. If E_{1} and E_{2} were conjugate in G, they would be conjugate in $C(t)$, which is not the case. The lemma is proved.

We fix some notation. $D_{i}:=\left\langle d_{i}\right\rangle, N_{i}:=N_{G}\left(E_{i}\right), Q_{i}:=O_{2}\left(N_{i}\right)$, $Q_{i 0}:=\left[Q_{i}, D_{i}\right] E_{i}$. By a 16 -group we always mean an elementary abelian group of order 16. Unless stated otherwise, we use the «bar» convention for the canonical homomorphism $N_{i} \rightarrow A_{i}=N_{i} / E_{i}(i=1,2)$.

Lemma 5.2. $N_{A_{i}}\left(\overline{D_{i}}\right)$ has order 12. There are involutions y_{1} and y_{2} such that y_{i} centralizes D_{i} : Put $Z:=Z\left(T_{1}\right)$. Then $Z=\left\langle z_{1}, z_{2}\right\rangle$. Furthermore, $\left[y_{1}, t\right]=z_{1}$ and $\left[y_{2}, t\right]=z_{2}$:

Proof. The operator group A_{i} is a subgroup of $G L(4,2) \simeq A_{8}$ of order $2^{4.3}$; therefore no group of order 3 is normalized by a group of order 16 in A_{i} : We know that $N_{A_{i}}\left(\overline{D_{i}}\right)$ has order at least 6 , so we conclude by Sylows therem that $\left|N_{A_{i}}\left(\overline{D_{i}}\right)\right|$ must be 12.

We have shown that $\left|N_{N_{i}}\left(\overline{D_{i}}\right)\right|=2^{4} \cdot 3$, and similarly as in lemma 4.3. we see that $C_{N_{i}}\left(D_{i}\right)$ is the direct product of D_{i} and a dihedral group of order 8 , say R_{i} : This shows that we may choose involutions y_{1} and y_{2}, which are not contained in H, and involutions z_{1} and z_{2} from $Z\left(T_{0}\right)$ such that $R_{i}=\left\langle z_{1}, t, y_{i}\right\rangle$. Now it is immediate that $\left[y_{i}, t\right]=z_{i}$.

It is easy to see that y_{1} and y_{2} normalize T_{0}, so T_{1} / T_{0} is elementary, and $Z\left(T_{1}\right)$ is a four-group. Using the definition of y_{i} and the Thompson $A \times B$-lemma we see that $Z\left(T_{1}\right)=\left\langle z_{1}, z_{2}\right\rangle$.

The lemma is proved.
Now we want to consider the possible structures of N_{i}. As the roles of E_{1} and E_{2} are interchangeable so far, we introduce some common notation.

For the permutation representation of A_{i} on the orbit of t in E_{i} we use the following numbering as a common reference:

Setting $z:=z_{1} z_{2}$, we have the orbit $\left\{t, t z, t a_{i}, t z a_{i}, t z_{i}, t z_{i} z, t z_{i} a_{i}\right.$, $\left.t z z_{i} a_{i}\right\}$ for E_{i}. Let these elements, listed in this order, correspond to $\{1,2,3,4,5,6,7,8\}$.

The 3 -elements d_{1} resp. d_{2} operate as $(2,3,4)(6,7,8)$, the involutions a_{2} resp. a_{1} inverting d_{i} have the action (3,4)(7, 8), and y_{i} operates as $(1,5)(2,6)(3,7)(4,8)$.

Now it is of interest to investigate the action of $y_{j}, j \neq i$, on E_{i}.
Lemma 5.3. Let c_{i} be the involution of the set $\left\{a_{1}, a_{2}\right\}$ inverting d_{i}. Then we have two possibilities:
I) c_{i} centralizes y_{i}, y_{i} operates on the orbit of t in $E_{j}, j \neq i$, as $(1,6)(2,5)(3,8)(4,7)$.
II) $c_{i} t$ centralizes y_{i}, y_{i} operates on the orbit of t in E_{j} as $(1,6)(2,5)$.

Proof. Again look at $N_{N_{i}}\left(D_{i}\right)$. Similarly as in lemma 4.4., we see that $\left[y_{i}, c_{i}\right]=1$ or $\left[y_{i}, c_{i}\right]=\left[y_{i}, t\right]$. Now it is straightforward to compute the action of y_{i} on E_{j}.

Lemma 5.4. Assume that we have case I) for E_{i}. Then $Q_{i 0}$ is generated by $E_{i}, y_{1} y_{2}$, and $\left(y_{1} y_{2}\right)^{d_{i}}$.

Proof. It is immediate from our knowledge about A_{i} that $O_{2}\left(A_{i}\right)$ is elementary of order 8 and contains \bar{y}_{i} : Now use the permutation representation of A_{i} on the orbit of t. We compute $y_{1} y_{2} \xlongequal{\wedge}(1,2)(3,4)$. $\cdot(5,6)(7,8)$. It follows that $\left(y_{1} y_{2}\right)^{d}=(1,3)(2,4)(5,7)(6,8)$ and that $\left(y_{1} y_{2}\right)^{d_{i}^{2}}=\left(y_{1} y_{2}\right)\left(y_{1} y_{2}\right)^{d_{i}} \bmod E_{i}$. The lemma is proved.

Lemma 5.5. Assume that we have case II) for \boldsymbol{E}_{i}. Then $\boldsymbol{Q}_{i 0}$ is generated by $E_{i}, c_{i} y_{j}(j \neq i)$, and $\left(c_{i} y_{j}\right)^{d_{i}}$.

Proof. This time we see that the action of $c_{i} y_{j}$ on the orbit of t is $(\mathbf{1}, 6)(7,8)(2,5)(3,4)$. We finish by calculating in the same way as in the proof of lemma 5.4.

Lemma 5.6. Assume that we have case II) for E_{i}. Set $e_{i}:=c_{i} y_{i}$ and $f_{i}:=e_{i}^{a_{i}}$. Then $f_{i}^{a_{i}}=f_{i} e_{i} h_{i}$ with $h_{i} \in\left\langle z_{i}\right\rangle$. Furthermore, $\left[e_{i}, f_{i}\right]=1$.

Proof. We easily compute that $\left[E_{i}, e_{i}\right]=C_{E_{i}}\left(e_{i}\right)=\left\langle z_{i}, z\right\rangle$. This implies that $C_{E_{i}}\left(f_{i}\right)=\left\langle z_{i}, a_{i}\right\rangle$. The commutator [e_{i}, f_{i}] is an involution in E_{i} and therefore centralized by e_{i} and f_{i}, so $\left[e_{i}, f_{i}\right] \in\left\langle z_{i}\right\rangle$.

We put $f_{i}^{a_{i}}=: f_{i} e_{i} h_{i}$ with $h_{i} \in E_{i}$. Now we see that $\left[e_{i}, f_{i}\right]=$ $=\left[e_{i}, f_{i}\right]^{d_{i}}=\left[f_{i}, f_{i} e_{i} h_{i}\right]=\left[f_{i}, e_{i}\right]\left[f_{i}, h_{i}\right]$; so h_{i} is centralized by f_{i}, and similarly, h_{i} is centralized by e_{i}. As $f_{i} e_{i} h_{i}$ must be an involution, $f_{i} e_{i}$ is an involution and so $\left[f_{i}, e_{i}\right]=1$. The proof is complete.

Lemma 5.7. Assume that we have case II) for E_{i}. Then either (A) $\left[y_{i}, e_{i}\right]=1$ or $(B)\left[y_{i}, e_{i}\right]=z z_{i}$.

Proof. First of all, note that $\left[a_{i}, e_{i}\right]=z z_{j}=z_{i}$. It is clear that $\left[y_{i}, e_{i}\right] \in\left\langle z, z_{i}\right\rangle$.

Suppose that $\left[y_{i}, e_{i}\right]=z_{i}$. Then $\left[y_{i}, f_{i}\right]=z_{i}$ and $\left[y_{i}, f_{i} e_{i} h_{i}\right]=$ $=\left[y_{i}, f_{i}\right]\left[y_{i}, e_{i}\right]=1$. On the other hand, $\left[y_{i}, f_{i} e_{i} h_{i}\right]=\left[y_{i}, f_{i}\right]^{d_{i}}=z_{i}$ which is a contradiction.

So assume that $\left[y_{i}, e_{i}\right]=z$. Then $\left[y_{i}, f_{i}\right]=a_{i}$ and $\left[y_{i}, f_{i} e_{i} h_{i}\right]=$ $=\left[y_{i}, e_{i}\right]\left[y_{i}, f_{i}\right]\left[y_{i}, f_{i}, e_{i}\right]=z a_{i} z_{i}$, which leads to the same contradiction as above. The lemma is proved.

For the next three paragraphs, put $R_{i}:=T_{1}\left\langle f_{i}\right\rangle=T_{1} Q_{i}$.
Because of the symmetry of E_{1} and E_{2}, we may split the analysis into the following cases:
I) $\left[a_{1}, y_{2}\right]=1,\left[a_{2}, y_{1}\right]=z_{1}$,
II) $\left[a_{1}, y_{2}\right]=z_{2},\left[a_{2}, y_{1}\right]=z_{1}$,
III) $\left[a_{1}, y_{2}\right]=\left[a_{2}, y_{1}\right]=1$.

6. The non-isomorphic case.

We will deal with these cases in §§ 6-8.
Hypothesis 6.0. $\left[y_{1}, a_{2}\right]=z_{1}$ and $\left[y_{2}, a_{1}\right]=1$.
Lemma 6.1. Put $B_{1}:=\left[Q_{1}, D_{1}\right]$ and $Z_{1}:=\left\langle z_{1}, z, a_{1}\right\rangle$. Then B_{1} is a non-abelian group of order 32; further-more, $Z_{1}=Z\left(B_{1}\right)$.

Proof. First of all, we remark that Z_{1} is the subgroup of E_{1} generated by the involutions of E_{1} which are not conjugate to t. Therefore Z_{1} is normal in N_{1}. From the definition of y_{i} and from hypothesis 6.0. we conclude that $Z_{1} \leqslant Z\left(Q_{1}\right)$.

We try to compute $\left[Q_{1}, D_{1}\right]=: B_{1}$. If we look at Q_{1} / Z_{1}, we see that B_{1} is contained in a group of order 32 of the form $Z_{1}\left\langle e_{1}, f_{1}\right\rangle=: B_{10}$, such that d_{1} operates non-trivially on B_{10} / Z_{1}. Lemma 5.4. says that modulo Z_{1}, e may be chosen to be either $y_{1} y_{2}$ or $t \cdot y_{2} y_{1}$. In either case, $\left[a_{2}, e_{1}\right]=z_{1}$, from hypothesis 6.0. This shows that z_{1} must be contained in B_{1}, as a_{2} operates on [Q_{1}, D_{1}]. So B_{1} must be non-abelian and of order 32 , and we have $B_{1}=B_{10}$.

Lemma 6.2. Put $B_{1}=Z_{1}\left\langle e_{1}, f_{1}\right\rangle$ such that $e_{1} \in\left\{t y_{1} y_{2}, y_{1} y_{2}\right\}$. Then we have $e_{1}=t y_{1} y_{2},\left[y_{1}, y_{2}\right]=z_{1}, e_{1}^{2}=z_{1} z,\left[e_{1}, f_{1}\right]=z_{1},\left[e_{1}, y_{1}\right]=1$, and $f_{1}^{d_{1}}=f_{1} e_{1} z a_{1}$.

Proof. Choose e_{1} from the set $\left\{y_{1} y_{2}, t y_{1} y_{2}\right\}$ to be contained in [$\left.Q_{1}, D_{1}\right]$. Then from lemma 6.1., B_{1} is non-abelian and B_{1}^{\prime} must be a D_{1}-invariant group of order 2. Therefore $B_{1}^{\prime}=\left\langle z_{1}\right\rangle$ and $\left[e_{1}, f_{1}\right]=z_{1}$.

From lemma 5.7. we know that $\left[y_{2}, e_{2}\right]=\left[y_{2}, y_{1}\right]$ is contained in $\left\langle z_{1}\right\rangle$ from our definitions, we conclude that $\left[y_{1}, e_{1}\right] \in\left\langle z_{1}\right\rangle$. The same argument as in the proof of lemma 5.7. shows that we must have $\left[y_{1}, e_{1}\right]=1$.

As, by lemma 6.1., B_{1} is non-abelian, e_{1} cannot be an involution, which implies that $e_{1}=t y_{1} y_{2}$ and that $\left[y_{1}, y_{2}\right]=z_{1}$. Also, it is easy to verify that $e_{1}^{2}=z z_{1}$.

Now $\left(f_{1}\right)^{d_{1}}=f_{1} e_{1} e$ for some $e \in Z_{1}$: We compute $\left(f_{1} e_{1} e\right)^{d_{1}}=f_{1} e_{1} e \cdot f_{1}$. $\cdot e^{d_{1}}=e_{1}$, hence $\left(f_{1} e_{1}\right)^{2}\left[e, d_{1}\right]=e_{1}^{2}$ and so $\left[e, d_{1}\right]=a_{1}$. This shows that $e \in z a_{1}\left\langle z_{1}\right\rangle$. Interchanging y_{1} and $y_{1} z_{1}$ if necessary, we may assume that $e=z a_{1}$. The lemma is proved.

Lemma 6.3. Put $Z:=Z\left(T_{1}\right)=\left\langle z_{1}, z_{2}\right\rangle$. The group T_{1} contains precisely 916 -groups, namely
$E_{1}=Z\left\langle a_{1}, t\right\rangle, \quad E_{2}=Z\left\langle a_{2}, t\right\rangle, \quad E_{3}=Z\left\langle a_{1}, y_{2}\right\rangle$,
$E_{4}=Z\left\langle a_{2}, y_{2}\right\rangle, \quad E_{5}=Z\left\langle y_{1}, t a_{2}\right\rangle, \quad E_{6}=Z\left\langle y_{1} y_{2} a_{1} a_{2} t, a_{1} y_{2}\right\rangle$,
$E_{n}=Z\left\langle y_{1}, y_{2} a_{2}\right\rangle, \quad E_{8}=Z\left\langle y_{1} y_{2} a_{1} a_{2} t, a_{1} t\right\rangle, \quad E_{9}=Z\left\langle a_{1}, y_{1}\right\rangle$.
Proof. First, note that $\left\langle z_{1}, y_{1}\right\rangle$ is normal in T_{1}. Put $\hat{T}_{1}:=$ $:=T_{1} /\left\langle y_{1}, z_{1}\right\rangle$. Then we see from earlier results that \hat{T}_{1} is extra-special of order 32 with center $\left\langle\hat{z}_{2}\right\rangle$. We can write \hat{T}_{1} as the central product of two dihedral groups. $\hat{T}_{1}=\left\langle\hat{a}_{1}, \hat{a}_{2}\right\rangle Y\left(\hat{t}, \hat{y}_{2}\right\rangle$.

Such a group has precisely 6 maximal elementary subgroups all of which have order 8 . Take $U_{i}, 1 \leqslant i \leqslant 6$, to be their inverse images. Then we have

$$
\begin{array}{ll}
U_{1}=Z\left\langle y_{1}, a_{1}, t\right\rangle & =E_{1} E_{9}, \\
U_{2}=Z\left\langle y_{1}, a_{1}, y_{2}\right\rangle & =E_{3} E_{9}, \\
U_{3}=Z\left\langle y_{1}, a_{2}, t\right\rangle & =E_{2} E_{5}, \\
U_{4}=Z\left\langle y_{1}, a_{2}, y_{2}\right\rangle & =E_{4} E_{7}, \\
U_{5}=Z\left\langle y_{1}, a_{1} t, a_{2} y_{2}\right\rangle & =E_{7} E_{8}, \\
U_{6}=Z\left\langle y_{1}, a_{1} y_{2}, t a_{2}\right\rangle & =E_{5} E_{6} .
\end{array}
$$

It is clear that all maximal elementary subgroups of T_{1} are contained in some U_{i}. So we have determined all elementary subgroups of order 16 , as one can easily verify that $E_{i}, 1 \leqslant i \leqslant 9$, are elementary abelian. The lemma is proved.

Lemma 6.4. $N_{G}\left(T_{1}\right)=T_{1}\left\langle f_{1}, f_{2}\right\rangle=: T$ is a group of order 2^{10}, the factor group T / T_{1} is dihedral of order 8 . There are precisely $3 G$-classes of 16 -groups in T_{1}, namely $\left\{E_{1}, E_{3}, E_{5}, E_{7}\right\}\left\{E_{2}, E_{4}, E_{6}, E_{8}\right\}$, $\left\{E_{9}\right\}$.

Proof. From lemmas 5.6. and 6.2. we know the action of f_{1} and f_{2} on T_{1}. Regard the operation on the set of 16 -groups. By easy computations, we find

$$
f_{1} \hat{=}\left(E_{5}, E_{7}\right)\left(E_{2}, E_{8}\right)\left(E_{4}, E_{6}\right), \quad f_{2} \bumpeq\left(E_{1}, E_{5}\right)\left(E_{3}, E_{7}\right)\left(E_{6}, E_{8}\right)
$$

Multiplying this action, we get $f_{1} f_{2} \bumpeq\left(E_{1}, E_{5}, E_{3}, E_{7}\right)\left(E_{2}, E_{6}, E_{4}, E_{8}\right)$, and we see that there are precisely $3 G$-classes of 16 -groups with elements as stated. The elements f_{1} and f_{2} generate an outer automorphism group on T_{1} which is dihedral of order 8. To finish, we use the fact that $N\left(T_{1}\right) \cap N\left(E_{1}\right)$ has order 2^{8} and that E_{1} has precisely 4 conjugates under $N_{G}\left(T_{1}\right)$ in T_{1}. The lemma is proved.

Lemma 6.5. The group \boldsymbol{Q}_{1} contains precisely 516 -groups namely \boldsymbol{E}_{9}, E_{1}, E_{3}, and the groups $E_{31}=Z_{1}\left\langle f_{1} y_{1} t\right\rangle$ and $E_{32}=Z_{1}\left\langle f_{1} y_{2}\right\rangle$.

Proof. We have $Z\left(Q_{1}\right)=Z_{1}$, and we know the multiplication table of Q_{1} : So we just check which elements of Q_{1} / Z_{1} belong to cosets of involutions, and we see that the assertion of the lemma holds.

Lemma 6.6. $R_{1}=T_{1}\left\langle f_{1}\right\rangle$ is a Sylow-2-subgroup of N_{1} : T_{1} and Q_{1} are characteristic in $R_{1} . \quad N_{G}\left(R_{1}\right)=R_{1}\left\langle\left(f_{1} f_{2}\right)^{2}\right\rangle$ is a group of order 2^{9}.

Put $S_{1}=N_{G}\left(R_{1}\right)$. Then $S_{1}=V\left(\operatorname{ccl}_{G}(t) ; T\right) . \quad N_{G}\left(Q_{1}\right)$ has order $2^{10} \cdot 3$. Furthermore, 2^{11} divides the order of G.

Proof. First of all, regard the 16 -subgroups of R_{1}. As $R_{1} / E_{1}\left\langle y_{1}\right\rangle$ is dihedral of order 8 , we only have to look at T_{1} and Q_{1}, and so we have determined all 16 -subgroups in the lemmas 6.3. and 6.5.

The groups E_{9}, E_{1}, and E_{4} are normal in R_{1}, the other 6 groups contained in T_{1} are normalized by T_{1} but not by f_{1}, and E_{31}, E_{32} have normalizer Q_{1} in R_{1}. We know that $Q_{1}=J\left(Q_{1}\right)$ and that $T_{1}=J\left(T_{1}\right)$.

This shows that T_{1} and Q_{1} are characteristic in R_{1}. Furthermore, E_{1} can only have 2 conjugates in $N_{G}\left(R_{1}\right)$, as t cannot be conjugate to any involution of E_{9}; so $N_{G}\left(R_{1}\right)$ is as described.

The group S_{1} is generated by R_{1} and $R_{1}^{f_{2}}$, and $R_{1}=V\left(\operatorname{ccl}_{G}(t) ; R_{1}\right)$. Having the structure of T / T_{1} in mind, we only have to prove that there are no conjugates of t in $R_{2}-T_{1}$:

As usual, we only have to determine the involutions of $Q_{2}-Q_{2} \cap T_{1}$: The factor group Q_{2} / Z involves a direct factor which is dihedral, so we may reduce to $Q_{21}=\left\langle z_{2}, z, a_{2}, e_{2}, f_{2}, t y_{2}\right\rangle$. This group has the normal subgroup $\left\langle z, z_{2}, a_{2}, t y_{2}\right\rangle$ and d_{2} permutes the non-trivial cosets of this subgroup.

It suffices to consider one coset which we can choose to be contained in T_{1}, but from lemma 6.3. we conclude that t has no conjugates in the group $\left\langle z_{2}, z, a_{2}, t y_{2}, a_{1} y_{1}\right\rangle$. So we have shown that $T_{1}=$ $=V\left(\operatorname{ccl}_{G}(t) ; R_{2}\right)$, which implies that $S_{1}=V\left(\operatorname{ccl}_{G}(t) ; T\right)$.

As to the next assertion, we note that Q_{1} contains precisely 416 subgroups conjugate to E_{1}, and they are conjugate in $N_{G}\left(Q_{1}\right)$. So $N_{G}\left(Q_{1}\right)$ must have order $2^{10 .} 3$.

Regard the center of a Sylow-2-subgroup of $N_{G}\left(Q_{1}\right)$ containing S_{1}. From the action on the 16 -subgroups of Q_{1} we see that $\left(f_{1} f_{2}\right)^{2}=: g$ is contained in $O_{2}\left(N_{G}\left(Q_{1}\right) \bmod Q_{1}\right)$. As g and f_{1} centralize Z, we see that a Sylow-2-subgroup of $N_{G}\left(Q_{1}\right)$ has a center of order 4. But $Z(T)=\left\langle z_{2}\right\rangle$ is of order 2. Therefore 2^{11} must divide the order of G. Lemma 6.6. is proved.

Lemma 6.7. Put $f:=f_{1} f_{2}, g:=f^{2}$ and $U:=T_{1}\langle g\rangle=Z\left(T \bmod T_{1}\right)$. Then t is not conjugate to any involution of $U-T_{1}$ in G.

Proof. To start, we determine $C_{T_{1}}(f)$. We compute $z_{1}^{f}=z, a_{1}^{f}=y_{1} h_{2}$ with $h_{2} \in\left\langle z_{2}\right\rangle, a_{2}^{f} \in a_{1} a_{2} y_{1} y_{2} t Z, t^{f}=y_{1} a_{2} t z_{2} h, y_{2}^{f}=a_{2} y_{1} y_{2} h,\left(t y_{2}\right),=z t y_{2}$. From this, it follows that $C_{T_{1}}(f)=\left\langle a_{1} y_{1}, z_{2}\right\rangle$.

As $g^{2}=f^{4}$ we must have $g^{2} \in\left\langle a_{1} y_{1}, z_{2}\right\rangle$. The element g centralizes Z and normalizes the intersections $E_{1} \cap E_{3}, E_{5} \cap E_{7}, E_{2} \cap E_{4}, E_{6} \cap E_{8}$, hence g^{2} centralizes these intersections, in particular, g^{2} centralizes a_{2}. We have proved that $g^{2} \in\left\langle z_{2}\right\rangle$.

Put $T_{10}:=E_{9}\left\langle a_{2}, t y_{2}\right\rangle$. Then we see that g normalizes T_{10}, and that g centralizes $T_{10} \bmod Z$. On the other hand, we can compute that $t^{g} \in y Z$. If $g x$ is an involution, for some $x \in T_{1}$, then $g^{2} x^{2}[g, x]=1$ and therefore $x \in T_{10}$.

We note that $\left[g, t y_{2}\right]=\left(t y_{2}\right)^{2}=z_{2}$, this implies that if $g x$ is an involution then $g x t y_{2}$ is an involution as well. (It is straightforward to see that $t y_{2}$ is contained in the center of $\left.T_{10}\right)$. So choose $x \in E,\left\langle a_{2}\right\rangle$. We have $\left[g, a_{2}\right]=z$.

Assume $g^{2}=1$. If $x^{2}=[g, x]=1$, then $x \in E_{9}$. But g centralizes E_{9} and so $E_{9}\langle g\rangle$ is elementary of rank 5. Hence, if involutions of this type occur, they cannot be conjugate to t. If $g^{2}=z_{2}$, then $E_{9} g$ does not contain any involutions.

The coset $T_{10} g$ contains 64 elements, but we have already excluded 32 elements. Trivial computations show that not all of the remaining 32 elements can be involutions, so there are less than 32 conjugates of t in $U-T_{1}$. But T normalizes U and T has order 2^{10}. On the other hand, $C_{G}(t)$ has Sylow-2-subgroups of order 2^{5}. Hence U contains $O(\bmod 32)$ involutions which are G-conjugate to t. Altogether, this means that there cannot be any conjugates of t in $U-T_{1}$. Lemma 6.7. is proved.

Lemma 6.8. Take P_{1} to be the Sylow-2-subgroup of $N_{G}\left(Q_{1}\right)$ containing S_{1}. Then $g_{2}:=g^{d_{1}}$ is contained in P_{1}, and we have $P_{1}=Q_{1}\left\langle g, g_{2}, f_{1}\right\rangle$. $S=P_{1}\left\langle f_{2}\right\rangle=N_{G}\left(S_{1}\right)$, and $S_{1}=V\left(\operatorname{ccl}_{G}(t) ; P_{1}\right)$.

Proof. Regard the action of $N_{G}\left(Q_{1}\right)$ on the set $\left\{E_{1}, E_{3}, E_{31}, E_{32}\right\}$. We know that $N\left(Q_{1}\right)$ induces the full symmetric group on 4 letters. R_{1} operates as (E_{31}, E_{32}) and corresponds to a transposition.

Suppose that $g \xlongequal{=}\left(E_{1}, E_{3}\right)$. Then $R_{1}=Q_{1}\left\langle a_{2}\right\rangle$ is isomorphic to $Q_{1}\langle g\rangle$, but $Z\left(R_{1}\right)=Z$ and $Z\left(Q_{1}\langle g\rangle\right)=Z_{1}$, as g centralizes a_{1}, a contradiction. So we must have $g \wedge\left(E_{1}, E_{3}\right)\left(E_{31}, E_{32}\right)$, and $g \in O_{2}\left(N\left(Q_{1}\right) \bmod Q_{1}\right)=$

The group S_{1} contains precisely 64 involutions, which are G-conjugates of t, and 2^{11} divides $\left|N\left(S_{1}\right)\right|$, so $S=P_{1}\left\langle f_{2}\right\rangle=N_{G}\left(S_{1}\right)$.

The factor group P_{1} / Q_{1} is dihedral, so, for determining the elementary subgroups of P_{1}, it suffices to determine those of $S_{1}=Q_{1}\left\langle g, f_{1}\right\rangle$ and of $Q_{1}\left\langle g, g_{2}\right\rangle=O_{2}\left(N\left(Q_{1}\right)\right)$. As we have the action of d_{1}, it is enough to consider the group $Q_{1}\langle g\rangle$.

This group is normalized by P_{1} which is of order 2^{10}, so $Q_{1}\langle g\rangle$ contains $O(\bmod 32)$ involutions which are conjugate to t. On the other hand, $Q_{1}\langle g\rangle \leqslant S_{1}$ and S_{1} contains $64 t$-conjugates. The involution $a_{2} t$ is conjugate to t and lies in S_{1} but not in $Q_{1}\langle g\rangle$, so $Q_{1}\langle g\rangle$ contains precisely 32 conjugates of t. But these must already be contained in Q_{1}. This shows that $Q_{1}=V\left(\operatorname{ccl}_{G}(t) ; O_{2}\left(N\left(Q_{1}\right)\right)\right)$, ans do it follows that $S_{1}=V\left(\operatorname{ccl}_{G}(t) ; P_{1}\right)$. Lemma 6.8. is proved.

Lemma 6.9. The elementary group E_{9} is normal in S. Put $C_{9}:=$ $:=C_{s}\left(E_{9}\right)=E_{9}\left\langle t y_{2}, f_{1}, g, g_{2}\right\rangle$. Then $\hat{S}:=S / C_{9}=\left\langle t, \hat{a}_{2}, f_{2}\right\rangle$ is dihedral of order 8. The inverse images of the elementary maximal subgroups of S are $P_{1}=C_{9}\left\langle t, a_{2}\right\rangle$ and $P_{2}=C_{9}\left\langle f_{2}, a_{2}\right\rangle$.

Proof. Trivial.
Lemma 6.10. Put $P_{3}:=C_{9}\left\langle a_{2}\right\rangle$. Then P_{3} does not contain any involutions which are conjugate to t.

Proof. Obviously, P_{3} is contained in P_{1}, and we know the conjugates of t in P_{1}. It is obvious from our earlier results that so involution which is conjugate to t and appears in R_{1}, is contained in P_{3}. But P_{3} is f_{2}-invariant. The lemma is proved.

Lemma 6.11. Put $P_{4}:=C_{9}\left\langle f_{2}\right\rangle$. Then P_{4} does not contain any involutions which are conjugate to t.

Proof. In proofs of some earlier lemmas, we have seen that C_{9}
does not contain any conjugates of t. So suppose $x f_{2}$ to be an involution, $x \in C_{9}$. Then $x^{2}=\left[x, f_{2}\right]$, and f_{2} centralizes x modulo E_{9}.

Now $\left(f_{1} f_{2}\right)^{2}=g=f_{1}^{2}\left[f_{1}, f_{2}\right]$, hence $\left[f_{1}, f_{2}\right] \in g E_{9} . C_{90}:=C_{C_{9} \bmod E_{9}}\left(f_{2}\right)$ is a group of order at most 2^{7}, and x must be chosen from C_{90}. It is immediate that $x f_{2}, z_{1} x f_{2}, y_{1} x f_{2}$ and $z y_{1} x f_{2}$ have all different squares, so there are at most 2^{5} involutions in $P_{4}-C_{9}$.

On the other hand, P_{4} is normalized by a group of order 2^{10} and therefore contains $O(\bmod 32)$ conjugates of t. But in the proof of lemma 6.6. we have seen that f_{2} is not conjugate to t. So P_{4} cannot contain any conjugates of t. The lemma is proved.

Lemma 6.12. P_{2} does not contain any conjugates of t.
Proof. This is clear from the preceeding lemmas, as P_{2} is the union of P_{3}, P_{4}, and P_{4}^{t}.

Lemma 6.13. $S_{1}=V\left(\operatorname{ccl}_{G}(t) ; S\right)$.
Proof. This follows from lemmas 6.6, 6.8. and 6.12.
Theorem 6.14. Hypothesis 6.0. cannot be satisfied.
Proof. From lemmas 6.8. and 6.13. we conclude that S is a Sylow2 -subgroup of G. Lemma 6.12 . says that P_{2}, which is a maximal subgroup of S, does not contain any conjugates of t. By the Thompson transfer lemma, it follows that G has a subgroup of index 2 , which is a contradiction.
7. $E_{1} \nsim E_{2}$, the «case II» case.

Hypothesis 7.0. $\left[y_{2}, a_{1}\right]=z_{2},\left[y_{1}, a_{2}\right]=z_{1}$.
We use the notation introduced in lemma 5.6. for $i=1$ and $i=2$.
Lemma 7.1. We have $\left[e_{i}, t\right]=z z_{i}, \quad\left[e_{i}, a_{i}\right]=z_{i}, \quad\left[e_{i}, y_{i}\right]=z z_{i}$, $\left[y_{1}, y_{2}\right]=z$, for $i=1,2$.

Proof. The first two relations are immediate from lemma 5.6. and the definition of e_{i}.

To prove the other two relations, use lemma 5.7. and assume that $\left[y_{1}, e_{1}\right]=1$, which implies that $\left[y_{1}, y_{2}\right]=z_{1}$. But then $\left[y_{2}, e_{2}\right]=$ $=\left[y_{2}, y_{1} a_{1}\right]=z_{1} z_{2}$ which contradicts lemma 5.7. for $i=2$. So we must have $\left[y_{1}, y_{2}\right]=z$. The lemma is proved.

Lemma 7.2. Put again $T_{1}:=T_{0}\left\langle y_{1}, y_{2}\right\rangle=N_{G}\left(T_{0}\right)$. Then T_{1} contains precisely 816 -groups, which are:

$$
\begin{array}{ll}
E_{1}=Z\left\langle a_{1}, t\right\rangle, & E_{2}=Z\left\langle a_{2}, t\right\rangle, \\
E_{3}=Z\left\langle a_{1}, y_{1}\right\rangle, & E_{4}=Z\left\langle a_{2}, y_{2}\right\rangle, \\
E_{5}=Z\left\langle t y_{1} a_{2}, y_{1}\right\rangle, & E_{6}=Z\left\langle t y_{2} a_{1}, y_{2}\right\rangle, \\
E_{n}=Z\left\langle a_{1} y_{1}, t y_{1} y_{2}\right\rangle, & E_{8}=Z\left\langle a_{2} y_{2}, t y_{1} y_{2}\right\rangle .
\end{array}
$$

Proof. First, check that the groups listed above, are elementary. But this follows from lemma 7.1.

Now we determine the maximal elementary subgroups of T_{1} with the aid of a suitable factor group. The factor group $\hat{T}_{1}=T_{1} /\left\langle z, a_{1} a_{2} t\right\rangle=$ $=\left\langle\hat{y}_{1}, \widehat{a_{1} t}\right\rangle\left\langle\hat{y}_{2}, \widehat{a_{2} t}\right\rangle$ is the central product of two dihedral groups of order 8 , so T_{1} has precisely 6 maximal elementary subgroups which are all of order 8 . Take $U_{i}, 1 \leqslant i \leqslant 6$, to be their inverse images in T_{1} : Then we have

$$
\begin{array}{ll}
U_{1}=Z\left\langle a_{1} a_{2} t, y_{1}, y_{2}\right\rangle, & \\
U_{2}=Z\left\langle a_{1}, a_{2} t, y_{1}\right\rangle & =E_{3} E_{5}, \\
U_{3}=Z\left\langle a_{2}, a_{1} t, y_{2}\right\rangle \quad=E_{4} E_{6}, \\
U_{4}=Z\left\langle a_{1}, a_{2}, t\right\rangle \quad=E_{1} E_{2}, \\
U_{5}=Z\left\langle a_{1} a_{2} t, y_{1} y_{2}, a_{1} a_{2}\right\rangle, & \\
U_{6}=Z\left\langle a_{1} y_{1}, a_{2} y_{2}, y_{1} y_{2} t\right\rangle=E_{7} E_{8} .
\end{array}
$$

It is easy to check that U_{1} and U_{5} do not contain elementary groups of order 16. The lemma is proved.

Lemma 7.3. Neither E_{3} nor E_{4} is conjugate to E_{1} or E_{2} in G.
Proof. We show that E_{3} and E_{4} contain more than 7 involutions which are not conjugate to t.

As to E_{3}, we have $C\left(e_{2}\right)=C\left(a_{1} y_{1}\right) \geqslant Z\left\langle a_{1}, y_{1}, f_{2}, t y_{2}\right\rangle$, so e_{2} is centralized by a group of order 2^{6} and cannot be conjugate to t. As a_{1} is not conjugate to t either, we are done for E_{3}. Take the involution e_{1} for E_{4}, and use the same argument.

Lemma 7.4. Let $E E$ be the set $\left\{E_{1}, E_{5}, E_{7}, E_{2}, E_{6}, E_{8}\right\}$ Then we have the G-orbits $\left\{E_{1}, E_{5}, E_{7}\right\}$ and $\left\{E_{2}, E_{6}, E_{8}\right\}$. Furthermore, $N_{G}\left(T_{1}\right)$ has order $2^{8 .} 3$.

Proof. Regard the action of f_{1} and f_{2} on $E E$. We find

$$
f_{1} \xlongequal{ }=\left(E_{5}, E_{7}\right)\left(E_{2}, E_{6}\right) \quad \text { and } \quad f_{2} \bumpeq\left(E_{1}, E_{5}\right)\left(E_{6}, E_{8}\right) .
$$

Having the non-fusion of E_{1} and E_{2} in mind, we see that the orbits are as described.

We have seen that E_{1} has precisely 3 conjugates under the action of $N_{G}\left(T_{1}\right)$. As $N_{G}\left(T_{1}\right) \cap N_{G}\left(E_{1}\right)=T_{1}\left\langle f_{1}\right\rangle$ has order 2^{8}, we have determined the order of $N_{G}\left(T_{1}\right)$ and finished the proof of lemma 7.4.

LEMMA 7.5. $J\left(Q_{1}\right)=E_{1} E_{3}, J\left(Q_{2}\right)=E_{2} E_{4}$.
Proof. Regard $\hat{Q}_{1}:=Q_{1} / Z\left\langle e_{1}, t y_{1}\right\rangle=\left\langle\hat{a}_{1}, \hat{t}_{1} \hat{f}_{1}\right\rangle$, which is dihedral of order 8. As usual, take the inverse images of the maximal elementary subgroups. We get

$$
Q_{11}=Z\left\langle e_{1}, t y_{1}, a_{1}, t\right\rangle \quad \text { and } \quad Q_{12}=Z\left\langle e_{1}, t y_{1}, a_{1}, f_{1}\right\rangle .
$$

The group Q_{11} is contained in T_{1}, and with the aid of lemma 7.2. it follows that $E_{1} E_{3}=J\left(Q_{11}\right)$.

Turn to Q_{12}. We can write $Q_{12}=\left\langle z_{2}, f_{1}\right\rangle Y\left\langle a_{1}, e_{1}\right\rangle Y\left\langle t y_{1}\right\rangle$, so Q_{12} is the central product of two dihedral groups of order 8 and a cyclic group of order 4. It is straightforward that such a group has 2 -rank 3. This proves the lemma.

Lemma 7.6. R_{1} is a Sylow-2-subgroup of G.
Proof. Lemma 7.5. implies that $T_{1}=J\left(R_{1}\right)$. On the other hand, we know the order of $N_{G}\left(T_{1}\right)$, and R_{1} must be a Sylow-2-subgroup of $N_{G}\left(T_{1}\right)$.

Theorem 7.7. Hypothesis 7.0. cannot be satisfied.

Proof. By lemma 7.6., R_{1} is conjugate to R_{2}. Regard the normal elementary subgroups of R_{i} of order 16 . We find that $\left\{E_{1}, E_{3}\right\}$ is conjugate to $\left\{E_{2}, E_{4}\right\}$. But this cannot happen. Theorem 7.7. is proved.

8. $E_{1} \sim E_{2}$, final.

Hypothesis 8.0. $\left[y_{1}, a_{2}\right]=\left[y_{2}, a_{1}\right]=1$.
Lemma 8.1. Put $B_{i}:=\left[Q_{i}, D_{i}\right]$. Then B_{1} and B_{2} are homocyclic abelian groups of order 16 and of the same type. We may write $B_{i}=$ $=\left\langle z, a_{i}, e_{i}, f_{i}\right\rangle$ such that $e_{i} \in y_{1} y_{2}\left\langle z_{i}\right\rangle$ and $f_{i}=e_{i}^{d_{i}}$: There are two possibilities:
I) B_{1} and B_{2} have exponent $4,\left[y_{1}, y_{2}\right]=z$,
II) B_{1} and B_{2} are elementary, $\left[y_{1}, y_{2}\right]=1$.

Proof. First of all, we have $B_{i} \leqslant Q_{i 0}$ for $i=1,2$, It is clear that $Z\left(Q_{i 0}\right)=\left\langle z_{1}, z_{2}, a_{i}\right\rangle$. Put

$$
B_{i 0}:=\left[Q_{i 0}, D_{i}\right] Z\left(Q_{i 0}\right)=Z\left(Q_{i 0}\right)\left\langle e_{i}, f_{i}\right\rangle
$$

such that $e_{i} \in\left\{y_{1} y_{2}, t y_{1} y_{2}\right\}$ and $f_{i}=e_{i}^{d_{i}}$.
The involution $a_{j}, j \neq i$, inverts d_{i} and centralizes e_{i} for either choice of e_{i}. Put $f_{1}^{d_{1}}=: f_{i} e_{i} q_{i}, q_{i} \in Z\left(Q_{i 0}\right)$. Then $\left(f_{i} e_{i} q_{i}\right)^{a_{j}}=f_{i}=f_{i} e_{i} q_{i}$. $\cdot e_{i} \cdot q_{1}^{a_{j}}$, hence $e_{1}^{2}=\left[q_{i}, a_{j}\right] \in\langle z\rangle$. Looking at the square of $f_{i} e_{i} q_{i}$ we see that we have $\left[e_{i}, f_{i}\right]=1$ and that $B_{i 0}$ is abelian.

Interchange e_{i} and $e_{i} z_{i}$, if necessary, to see that we can write B_{i} as asserted.

As $\left(t y_{1} y_{2}\right)^{2}=z\left(y_{1} y_{2}\right)^{2}$ we see that $\left[y_{1}, y_{2}\right] \in\langle z\rangle$. Suppose that $e_{1} \in$ $\in y_{1} y_{2} t\left\langle z_{1}\right\rangle$. Then $\left[y_{1}, e_{1}\right] \in\left\{z_{1} z, z_{1}\right\}$ which is not compatible with the operation of d_{1} on Q_{1}. So $e_{1} \in y_{1} y_{2}\left\langle z_{1}\right\rangle$. The same argument holds for e_{2}, and our lemma is proved.

Lemmas 8.3.-8.5. will be proved under
Hypothesis 8.2. B_{1} and B_{2} have exponent 4.

Lemma 8.3. Let T_{1} and Z be as usual. Then T_{1} contains 12 16groups, namely (if $u=a_{1} a_{2} y_{1} y_{2}$)

$$
\begin{array}{ll}
E_{1}=Z\left\langle a_{1}, t\right\rangle, & F_{1}=Z\left\langle a_{1}, y_{1}\right\rangle, \\
E_{2}=Z\left\langle a_{2}, t\right\rangle, & F_{2}=Z\left\langle a_{2}, y_{1}\right\rangle, \\
E_{3}=Z\left\langle u, a_{2} t\right\rangle, & F_{3}=Z\left\langle u, a_{2} y_{1}\right\rangle, \\
E_{4}=Z\left\langle a_{1}, y_{1} y_{2} t\right\rangle, & F_{4}=Z\left\langle a_{1}, y_{2}\right\rangle, \\
E_{5}=Z\left\langle a_{2}, y_{1} y_{2} t\right\rangle, & F_{5}=Z\left\langle a_{2}, y_{2}\right\rangle, \\
E_{6}=Z\left\langle u, a_{1} t\right\rangle, & F_{6}=Z\left\langle u, a_{1} y_{1}\right\rangle .
\end{array}
$$

Proof. Again we use our «factor group method». The group $\left\langle z, a_{1}\right.$, $\left.a_{2}, y_{1} y_{2}\right\rangle$ is normal in T_{1} and the factor group is dihedral of order 8. We get $T_{11}=Z\left\langle a_{1}, a_{2}, y_{1} y_{2}, t\right\rangle=\left\langle a_{1}, a_{2}\right\rangle Y\left(y_{1} y_{2} t, t\right\rangle\left\langle z_{1}\right\rangle$ and $T_{12}=$ $=Z\left\langle a_{1}, a_{2}, y_{1} y_{2}, y_{1}\right\rangle=\left\langle a_{1}, a_{2}\right\rangle Y\left\langle y_{1}, y_{2}\right\rangle \times\left\langle z_{1}\right\rangle$. Both maximal subgroups are the direct product of an extraspecial group of type D_{8} Y D_{8} and a group of order 2 , the list of elementary subgroups now is immediate.

Lemma 8.4. Put $T_{K}:=Z\left\langle a_{1}, a_{2}, y_{1} y_{2}\right\rangle$. For any 16 -subgroup of T_{1}, E say, put $K(E):=E \cap T_{K}$. Then T_{K} is characteristic in T_{1}. Furthermore, $\langle z\rangle$ is characteristic in T_{1}.

Proof. Regard the intersections of the 16 -subgroups of T_{1}, which are or order 8. The only ones occuring more then once are $Z\left\langle a_{1}\right\rangle$, $\boldsymbol{Z}\left\langle\boldsymbol{a}_{2}\right\rangle$, and $\boldsymbol{Z}\langle\boldsymbol{u}\rangle$. These three groups of order 8 generate T_{K}, hence T_{K} is characteristic in T_{1}, and so is $\langle\boldsymbol{z}\rangle=T_{E}^{\prime}$.

Lemma 8.5. 2^{9} divides the order of G.

Proof. Suppose that R_{1} is a Sylow-2-subgroup of G. We choose a maximal subgroup $R_{11}=T_{K}\left\langle f_{1}, y_{1} t\right\rangle$. We see that $Z\left(R_{11}\right) \geqslant Z\left(T_{K}\right)=$ $=\boldsymbol{Z}\left\langle y_{1} y_{2}\right\rangle$. Regarding cosets of involutions of $R_{11} / Z\left(T_{K}\right)$, we easily see that $T_{K}=\Omega_{1}\left(R_{11}\right)$. As t is not conjugate to any element of T_{K}, t is not conjugate into R_{11}, hence G has a subgroup of index 2 , which cannot be the case. The lemma is proved.

Theorem 8.6. Hypothesis 8.2. cannot be satisfied.

Proof. $\left\{E_{1}, E_{4}, F_{1}, F_{4}\right\}$ is the set of normal 16 -groups in $R_{1} ; E_{1}$ and F_{1} are normal in N_{1}. On the other hand, R_{2} has the normal 16subgroups $E_{2}, E_{5}, F_{2}, F_{5}, E_{2}$ and F_{5} are normal in N_{2}.

The action of $T_{1}\left\langle f_{1}, f_{2}\right\rangle$ on the set of 16 -subgroups of T_{1} causes the orbits $\left\{E_{1}, E_{3}, E_{5}\right\},\left\{E_{2}, E_{4}, E_{6}\right\},\left\{F_{1}, F_{3}, F_{5}\right\}$ and $\left\{F_{2}, F_{4}, F_{6}\right\}$.

As $N_{G}\left(R_{1}\right)>R_{1}, E_{1}$ is conjugate to F_{1} or to F_{4}. Suppose that E_{1} is conjugate to F_{1}. Then E_{1} is conjugate to F_{5}, hence N_{1} is conjugate to N_{2}, and as E_{1} and F_{1} are conjugate, E_{2} and F_{5} must be conjugate in G. But this is a contradiction.

Therefore E_{1} is conjugate to F_{4} and F_{1} is conjugate to E_{4}. Again we see that N_{1} and N_{2} are conjugate. We have $E_{1} \sim F_{1}$, but $E_{2} \sim F_{5}$. This again is a contradiction. The theorem is proved.

We have proved that we are in case II) of lemma 8.1., so B_{1} and B_{2} are elementary abelian, and, in particular, $\left[y_{1}, y_{2}\right]=1$.

Lemma 8.7. T_{1} possesses 4 elementary subgroups of order 16 which contain conjugates of t. They are $E_{1}=Z\left\langle a_{1}, t\right\rangle, E_{2}=Z\left\langle a_{2}, t\right\rangle, E_{3}=$ $=Z\left\langle a_{1} y_{1} y_{2}, a_{2} t\right\rangle, E_{4}=Z\left\langle a_{2} y_{1} y_{2}, a_{1} t\right\rangle . \quad N_{G}\left(T_{1}\right)=T_{1}\left\langle f_{1}, f_{2}\right\rangle=: T$ is a group of order 2^{9}.

Proof. The factor group $T_{1} /\left\langle z, a_{1}, a_{2}, y_{1} y_{2}\right\rangle$ is dihedral. We get $T_{11}=Z\left\langle a_{1}, a_{2}, y_{1}, y_{2}\right\rangle$ and $T_{12}=Z\left\langle a_{1}, a_{2}, y_{1} y_{2}, t\right\rangle$. T_{11} has a center of order 16 and does not contain any conjugates of t. T_{2} can be written in the form $D_{8} Y D_{8} \times Z_{2}$ and contains precisely 6 elementary 16 -groups. Two of them are contained in T_{11}, and the other ones are listed above.

It is easy to see that we have $f_{1} \bumpeq\left(E_{2}, E_{4}\right)$ and $f_{2} \xlongequal{=}\left(E_{1}, E_{3}\right)$. As f_{1} and f_{2} both normalize T_{1}, we see in the usual way that the normalizer of T_{1} in G must be as described.

Lemma 8.8. T is a Sylow-2-subgroup of G.
Proof. We will show that $T_{1}=V\left(\operatorname{ccl}_{G}(t) ; T\right)$, then our assertion will follow immediately.

First of all, we show that $T_{1}=V\left(\operatorname{ccl}_{G}(t) ; R_{1}\right)$. To this end, we show that conjugates of t which are contained in Q_{1}, also are contained in T_{1}. In fact, Q_{1} contains an elementary group of order $64, Q_{11}=$ $=\left\langle z, z_{1}, a_{1}, y_{1}, y_{2}, f_{1}\right\rangle$, and the only involutions in $Q_{1}-Q_{11}$ are the conjugates of t in E_{1} and contained in T_{1}.

In the same way, we see that $T_{1}=V\left(\operatorname{ccl}_{G}(t) ; R_{2}\right)$. Put $R_{3}:=T_{1}\langle f\rangle$ where $f:=f_{1} f_{2}$. To finish, we have to show that $T_{1}=V\left(\operatorname{ccl}_{G}(t) ; R_{3}\right)$.

We get from easy calculations that $C_{r_{1}}(f)=Z\left\langle y_{1}, y_{2}\right\rangle$ so $f^{2} \in$ $\in \boldsymbol{Z}\left\langle y_{1}, y_{2}\right\rangle$. If $f x$ is an involution, $x \in T_{1}$, then $f^{2} x^{2}=[f, x] \in Z\left\langle y_{1}, y_{2}\right\rangle$.

Put $T_{11}=Z\left\langle y_{1}, y_{2}, a_{1}, a_{2}\right\rangle$ as above. Then x must be in T_{11}. But $Z\left(T_{11}\right)=Z\left\langle y_{1}, y_{2}\right\rangle$, hence the centralizer of $f x$ has 2 -rank at least 5 . Therefore $f x$ cannot be conjugate to t. The lemma is proved.

Theorem 8.9. E_{1} and E_{2} are conjugate in $N\left(T_{0}\right)$.
Proof. Take $M=Z\left\langle y_{1}, y_{2}, a_{1}, a_{2}, f_{1}, f_{2}\right\rangle$, which is a maximal subgroup of $T . Z(M)=Z\left\langle y_{1}, y_{2}\right\rangle$ is a 16-group, so t cannot be conjugate into M, and G has a subgroup of index 2 , a contradiction. Hence hypothesis 8.0. cannot be satisfied, and we have proved that E_{1} and E_{2} are conjugate in G.

9. The case of conjugation.

In this section we finish the proof of theorem A. We fix some notation. As before, $T_{1}=N_{G} T_{0}$) is a group of order 2^{7}. Put $T_{2}=T_{1} \cap$ $\cap N_{G}\left(E_{1}\right)$ and $Z=Z\left(T_{2}\right)$. We keep the notation $Z=\left\langle z_{1}, z_{2}\right\rangle$ such that

$$
\left\langle z_{i}\right\rangle=Z \cap Z\left(N_{H}\left(E_{i}\right)\right) \quad \text { and } \quad z=z_{1} z_{2}=\left[a_{1}, a_{2}\right]
$$

Furthermore, $N_{i}:=N_{G}\left(E_{i}\right), Q_{i}:=O_{2}\left(N_{i}\right), Z_{i}:=Z\left(Q_{i}\right), i=1,2$.
Lemma 9.1. Put $T_{2}=T_{0}\langle y\rangle$. Then we have $t^{y}=z t$. Furthermore, $\left|N_{i}\right|=2^{7.3}$.

Proof. Suppose that t has 8 conjugates in $N_{G}\left(E_{i}\right)$, then E_{1} and E_{2} are conjugate in $C(t)$, which is not the case. So the conjugates of t in E_{i} split into 2 orbits with 4 elements each under the action of $N\left(E_{i}\right)$. From the structure of $N_{H}\left(E_{i}\right)$ we easily conclude that we must have $t^{y}==z t$. As t has 4 conjugates under the action of $N_{G}\left(E_{i}\right)$, we must have $\left|N_{G}\left(E_{i}\right)\right|=2^{7 \cdot 3}$.

Lemma 9.2. We can choose y to be an involution and to centralize $Z\left\langle a_{1}, a_{2}\right\rangle$.

Proof. T_{2} is a maximal subgroup of a Sylow-2-subgroup of N_{1}. If T_{0} is characteristic in T_{2}, T_{1} must be a Sylow-2-subgroup of N_{1}, but this is not the case. This implies that $T_{2}=J\left(T_{2}\right)$ and in particular that $T_{2}=\Omega_{1}\left(T_{2}\right)$. So we may choose y to be an involution and
to centralize a hyperplane of a 16 -group of T_{0}, and we may assume taht y centralizes a hyperplane of E_{1}. But then we have $\left[T_{2}, E_{1}\right]=\langle\boldsymbol{z}\rangle$. As T_{1} interchanges E_{1} and E_{2}, we get $\left[T_{2}, E_{2}\right]=\langle z\rangle$ and y centralizes a hyperplane of E_{2} as well. Hence, in each of the sets $\left\{y a_{1}, t y a_{1}\right\}$ and $\left\{y a_{2}, t y a_{2}\right\}$ there is precisely one involution. Suppose that $\left[y, a_{1}\right]=z$. Then replace y by $y a_{2}$ or $y t a_{2}$. Therefore we may assume that $\left[y, a_{1}\right]=1$. Replacing y by $y a_{1}$ if necessary, we may assume that y also centralizes a_{2}. Our lemma is proved.

Lemma 9.3. $A_{G}\left(E_{i}\right) \cong \Sigma_{4}$, for $i=1,2$.
Proof. Regard the action of $A\left(E_{i}\right)$ on the orbit of t in E_{i} which is the set $\left\{t, t z, t a_{i}, t z a_{i}\right\}$; the element d_{i} operates as ($\left.\mathrm{t} z, t a_{i}, t z a_{i}\right\}$; the element d_{i} operates as $\left(t z, t a_{i}, t z a_{i}\right), y$ acts as $(t, t z)\left(t a_{i}, t z a_{i}\right)$ and a_{i}, $j \neq i$, interchanges $t a_{i}$ and $t z a_{i}$. So we have the full symmetric group on this orbit.

Lemma 9.4. T_{1} / T_{0} is cyclic, $T_{1}=T_{0}\langle x\rangle$, where x can be chosen to have the following properties:
(1) $a_{1}^{x}=a_{2}, a_{2}^{x}=a_{1}$,
(2) $t^{x}=t z_{1}$.

Let $y_{0}:=x^{2}$. Then y can be chosen to be the unique involution of the set $\left\{y_{0}, t y_{0}\right\}$.

Proof. From lemma 9.3. it follows that $\left\langle z_{i}\right\rangle=Z\left(N_{i}\right)$, hence T_{1} interchanges z_{1} and $z_{2}, Z\left(T_{1}\right)=\langle z\rangle$ is of order 2. Suppose that T_{1} / T_{0} is elementary. Then there are 3 maximal subgroups of T_{1} containing T_{0}. We know that 4 elements of $Z\left(T_{0}\right)$ are conjugate to t, and that a group M with $T_{0}<M<T_{1}$ has a center of order 4 , so we must have $Z(M)=Z$ for any choice of M and therefore $Z\left(T_{1}\right)=Z$, a contradiction. We have proved that T_{1} / T_{0} is cyclic.

It is clear that x acts transitively on $Z\left(T_{0}\right)-Z$. Replacing x by x^{-1} if necessary, we may assume that condition (2) holds.

Suppose that $a_{1}^{x}=z a_{2}$. Then replace x by $a_{2} x$. On the other hand, if $a_{2}^{x}=z a_{1}$, then replace x by $x a_{2}$. So x can be chosen to satisfy condition (1) as well.

Put $y_{0}:=x^{2}$. Then y_{0} centralizes $Z\left\langle a_{1}, a_{2}\right\rangle$, and so does $t y_{0}$. We have seen in the proof of lemma 9.2. that $\Phi\left(T_{2}\right)=\langle z\rangle$, so either y_{0} or $t y_{0}$ is an involution. The lemma is proved.

Lemma 9.5. T_{2} contains precisely 6 elementary subgroups of order 16

$$
\begin{array}{ll}
E_{1}=Z\left\langle a_{1}, t\right\rangle, & E_{2}=Z\left\langle a_{2}, t\right\rangle, \\
E_{3}=Z\left\langle a_{1}, y\right\rangle, & E_{4}=Z\left\langle a_{2}, y\right\rangle, \\
E_{5}=Z\left\langle a_{1} y, a_{2} t\right\rangle, & E_{6}=Z\left\langle a_{1} t, a_{2} y\right\rangle .
\end{array}
$$

Proof. We write $T_{2}=\left\langle a_{1}, a_{2}\right\rangle Y\langle y, t\rangle\left\langle z_{1}\right\rangle$ in order to «see» the elementary subgroups as usual.

Lemma 9.6. Put $R_{i}:=T_{2} Q_{i}$. Then R_{i} is a Sylow-2-subgroup of N_{i}. Set $f_{i}:=y^{d_{i}}, f_{i} y q_{i}:=f^{d_{i}}, q_{i} \in E_{i}$. Then $\left[f_{i}, a_{j}\right]=y q_{i}$.

There are two cases:
I) $q_{i} \in\left\langle z_{i}\right\rangle,\left[y, f_{i}\right]=1, E_{3}$ and E_{4} are not conjugate to E_{1}.
II) $q_{i} \in a_{i} t\left\langle z_{i}\right\rangle,\left[y, f_{i}\right]=a_{i} z$, all 16 -subgroups of T_{2} are conjugate in $N_{G}\left(T_{2}\right)$.

Proof. First of all, $\left(f_{i} y q_{i}\right)^{a_{j}}=f_{i} y q_{i} \cdot y \cdot q_{i}^{a_{j}}=f_{i}$, therefore we get the relation $\left[y, q_{i}\right]=\left[q_{i}, a_{i}\right]$ and we find two cases:

Case I. $q_{i} \in Z$,
Case II. $q_{i} \in Z a_{i}$.
We shall prove that we always are in the same case for $i=1$ and $i=2$. But for the first part of this proof, this does not matter.

Now use the action of d_{i}. We get

$$
\left[y, f_{i}\right]^{d_{i}}=\left[f_{i}, f_{i} y q_{i}\right]=\left[f_{i}, q_{i}\right]\left[f_{i}, y\right] .
$$

In case I , we get $\left[f_{i}, q_{i}\right]=1$ and therefore $\left[y, f_{i}\right] \in E_{i} \cap C(y) \cap$ $\cap C\left(d_{i}\right)=\left\langle z_{i}\right\rangle$. In case II we have $\left[f_{i}, q_{i}\right]=a_{i}$ and $\left[y, f_{i}\right] \in z a_{i}\left\langle z_{i}\right\rangle$.

Furthermore, $\left(f_{i} y q_{i}\right)^{d_{i}}=y=f_{i} y q_{i} \cdot f_{i} \cdot q_{i}^{d_{i}}$, which implies the relation $\left[y, f_{i}\right]\left[f_{i}, q_{i}\right]\left[q_{i}, d_{i}\right]=1$. In case I, we conclude that $\left[y, f_{i}\right]=1$ and that $\left[q_{i}, d_{i}\right]=1$; whereas in case II $\left[y, f_{i}\right]$ must be $z a_{i}$, so $\left[q_{i}, d_{i}\right]=: z$ and $q_{i} \in a_{i} t\left\langle z_{i}\right\rangle$.

From the definition of x, we get $E_{1}^{x}=E_{2}, E_{3}^{x}=E_{4}$ and $E_{5}^{x}=E_{6}$.
Now suppose that for $i=1$ or $i=2$ we are in case I. Then $C(y) \geqslant$ $\geqslant Z\left(a_{1}, a_{2}, y, f_{i}\right\rangle$, hence y is centralized by a group of order 2^{6} and cannot be conjugate to t. As a_{1} and a_{2} are not conjugate to t either, we see that E_{3} and E_{4} cannot be conjugate to E_{1}.

On the other hand, if for $i=1$ or for $i=2$ we have case II, then, if $i=1$ we have $E_{4}^{f_{1}}=E_{5}$ and if $i=2$ we have $E_{3}^{f_{2}}=E_{6}$. In either case, we have $E_{2}^{f_{1}}=E_{6}$ resp. $E_{1}^{f_{2}}=E_{5}$. So if we have «case II» for $i=1$ or $i=2$, then all 16 -groups of T_{2} are conjugate. This proves that we must have case I resp. case II simultaneously for $i=1$ and $i=2$. The lemma is proved.

We will deal with these two cases separately. Lemmas 9.8-9.10. will be proved under

Hypothesis 9.7. We have case I of lemma 9.6.
Lemma 9.8. $N_{G}\left(T_{2}\right)=T_{2}\left\langle x, f_{1}, f_{2}\right\rangle=: T$ has order 2^{9}. The factor group T / T_{2} is dihedral or order 8.

Proof. Put $E E:=\left\{E_{1}, E_{2}, E_{5}, E_{6}\right\}$. It follows from lemma 9.6. that $N_{G}\left(T_{2}\right)$ operates on $E E$, and as $N_{G}\left(T_{2}\right) \cap N_{G}\left(E_{1}\right) \cap N_{G}\left(E_{2}\right)=T_{2}$, $N_{G}\left(T_{2}\right) / T_{2}$ acts faithfully on $E E$.

We compute $f_{1} \xlongequal{\wedge}\left(E_{2}, E_{6}\right), f_{2} \xlongequal{\wedge}\left(E_{1}, E_{5}\right)$, and $x へ\left(E_{1}, E_{2}\right)\left(E_{5}, E_{6}\right)$, there elements generate a dihedral group of order. 8. Furthermore, $N_{G}\left(T_{2}\right) \cap N_{G}\left(E_{1}\right)$ has order 2^{7}, hence the order of $N_{G}\left(T_{2}\right)$ must be 2^{9}; the lemma is proved.

Lemma 9.9. $\quad T_{2} \leqslant V\left(\operatorname{ccl}_{G}(t) ; T\right) \leqslant T_{2}\left\langle f_{1} f_{2}\right\rangle$.
Proof. First we prove that $T_{2}=V\left(\operatorname{ccl}_{G}(t) ; R_{1}\right)$. Involutions of R_{1} are contained in T_{2} or in Q_{1}. It is clear that $Z\left(Q_{1}\right)=Z\left\langle a_{1}\right\rangle$. Determine the elements of $Q_{1} / Z\left(Q_{1}\right)$ corresponding to cosets of involutions. We find 4 nontrivial cosets with representatives t, y, f_{1}, and $f_{1} y$. Note that $Z\left(Q_{1}\left(\langle y\rangle, Z\left(Q_{1}\right)\left\langle f_{1}\right\rangle\right.\right.$ and $Z\left(Q_{1}\right)\left\langle f_{1} y\right\rangle$ are conjugate under d_{1}. So it is sufficient to prove that no involution of E_{3} is conjugate to t. But $E_{3}\left\langle t_{1}\right\rangle$ is elementary of order 32 , and we are done.

Regard the inverse images of the involutions of T / T_{2}. We have see that T_{1} / T_{0} is cyclic, hence $T_{2}=\Omega_{1}\left(T_{1}\right)$. Above we have excluded $R_{1}-T_{2}$. The elements x and f_{1} correspond to representatives of the 2 non-central classes of involutions in T / T_{2}, therefore only the inverse image of $Z\left(T / T_{2}\right)$ is left.

Lemma 9.10. T is a Sylow-2-subgroup of G.
Proof. Put $U:=T\left\langle f_{1} f_{2}\right\rangle=Z\left(T \bmod T_{2}\right)$ and write $f:=f_{1} f_{2}$. It is immediate that $Z=Z(U)$. Regard $\hat{U}:=U / Z(U)$. We get from lemma 9.6. that $\left[\hat{f}, \hat{a}_{1}\right]=\left[\hat{f}, \hat{a}_{2}\right]=\hat{y}$ and that $[\hat{f}, \hat{\imath}]=\hat{a}_{1} \hat{a}_{2} \hat{y}$. It is clear
that \hat{T}_{2} is an elementary 16 -group. Suppose that \hat{U} contains a further maximal group which is elementary. Then \hat{U}^{\prime} must be of order 2. But we have seen that \hat{U}^{\prime} is of order 4 , so \hat{T}_{2} is the only elementary 16 -group contained in \hat{U}, therefore \hat{T}_{2} is characteristic in \hat{U} and T_{2} is characteristic in U.

We get that T_{2} is characteristic in T. Indeed, if $T_{2}=V\left(\operatorname{ccl}_{G}(t) ; T\right)$ this is obvious. On the other hand, if $U=V\left(\operatorname{ccl}_{G}(t) ; T\right)$ then U is characteristic in T; as T_{2} is characteristic in U, we get that T_{2} is characteristic in T again.

Now it follows directly that T is a Sylow-2-subgroup of G.
Theorem 9.11. We have case II of lemma 9.6. for $i=1$ and $i=2$.
Proof. Suppose not. Then we shall derive a contradiction with the aid of the Thompson transfer lemma.
$M:=Z\left\langle a_{1}, a_{2}, y, f_{1}, f_{2}, x\right\rangle$ is a maximal subgroup of T. We conclude from the structure of T / T_{2} that $T_{I}:=\left\langle a_{1}, a_{2}, y, f_{1}, f_{2}, t\right\rangle=$ $=\Omega_{1}(T)$.

Assume that t is conjugate into M. Then t is conjugate into $\Omega_{1}(M) \leqslant$ $\leqslant M \cap T,=: M_{0}$. We have $M_{0}=Z\left\langle y, a_{1}, a_{2}, f_{1}, f_{2}\right\rangle$ and that $Z\left(M_{0}\right)=$ $=\boldsymbol{Z}\langle\boldsymbol{y}\rangle$.

We know that $\left[a_{2}, f_{1}\right]=q_{1} y$ and $\left[a_{1}, f_{2}\right]=q_{2} y$. Because of $(x t)^{2}=$ $=y_{0} z_{1}$, we may interchange y and $y z_{1}$ such that $q_{1}=1$.

Now calculate $t^{f}=\left(a_{1} t\right)^{f_{2}}=q_{2} y a_{1} a_{2} t$, so

$$
t^{f^{2}}=q_{2} y \cdot q_{2} y a_{1} \cdot y a_{2} \cdot q_{2} y a_{1} a_{2} t=\left(a_{1} a_{2}\right)^{2} q_{2} t
$$

but $f^{2} \in T_{2}$, so we must have $q_{2}=1$ and $t^{2}=z t$. On the other hand, $f^{2} \in$ $\in C_{r_{2}}(f)=Z\left\langle y, a_{1} a_{2}\right\rangle$ and f^{2} centralizes $Z\left\langle y, a_{1}, a_{2}\right\rangle$, so we must have $f^{2}=y v, v_{7} Z$.

We look for involutions in M_{0} which can be conjugate to t. As we have seen in the proof of lemma 9.9., we only have to regard $M_{00}:=$ $:=Z\left\langle y, a_{1}, a_{2}, f\right\rangle$. Let $f x$ be an involution, $x \in Z\left\langle y, a_{1}, a_{2}\right\rangle$.

Then $f^{2} x^{2}=[f, x]=y$, and $x \in Z\left(M_{0}\right) a_{1} \cup Z\left(M_{0}\right) a_{2}$. But

$$
Z\left(M_{0}\right)\left\langle a_{1} f_{1}, f_{2}\right\rangle \quad \text { and } \quad Z\left(M_{0}\right)\left\langle f_{1}, f_{2} a_{2}\right\rangle
$$

are elementary of order 32. So we have shown that t cannot be conjugate into M_{00}. But this implies that t cannot be conjugate into M, and we can apply the Thompson transfer lemma. Our theorem is proved.

Lemma 9.12. The order of $N_{G}\left(T_{2}\right)$ is $2^{8.3} . N_{G}\left(T_{2}\right) / T_{2}$ is isomorphic to $\Sigma_{3} \times Z_{2}$.

Proof. Put $E E=\left\{E_{1}, E_{2}, E_{3}, E_{4}, E_{5}, E_{6}\right\}$. Then, by lemma 9.6. and other facts, we get

$$
f_{1} \xlongequal{\wedge}\left(E_{2}, E_{6}\right)\left(E_{4}, E_{5}\right), \quad f_{2} \bumpeq\left(E_{1}, E_{5}\right)\left(E_{3}, E_{6}\right)
$$

$x \bumpeq\left(E_{1}, E_{2}\right)\left(E_{3}, E_{4}\right)\left(E_{5}, E_{6}\right)$. This implies that $c:=f_{1} x=\left(E_{1}, E_{2}, E_{5}\right.$, $\left.E_{3}, E_{4}, E_{6}\right)$. Furthermore, we compute $d:=c^{2}=\left(E_{1}, E_{5}, E_{4}\right)\left(E_{2}, E_{3}, E_{6}\right)$ and $e:=c^{3}=\left(E_{1}, E_{3}\right)\left(E_{2}, E_{4}\right)\left(E_{5}, E_{6}\right)$.

Now it is obvious that order and structure of $N_{G}\left(T_{2}\right)$ are as described.
Lemma 9.13. The order of $N_{G}\left(Q_{1}\right)$ is $2^{9} \cdot 3$.
Proof. There are precisely 416 -groups in Q_{1}, namely E_{1}, E_{3}, $E_{31}=Z\left(Q_{1}\right)\left\langle f_{1}\right\rangle$, and $E_{32}=Z\left(Q_{1}\right)\left\langle f_{1} y t\right\rangle$. The group $R_{1}=T_{2} Q_{1}$ contains 816 -groups. We see that E_{1} and E_{3} are normal in R_{1}, E_{31} and E_{32} have normalizer Q_{1}, finally E_{2}, E_{4}, E_{5}, and E_{6} have normalizer T_{2} in R_{1}. As T_{2} and Q_{1} are non-isomorphic, it follows that Q_{1} and T_{2} are characteristic in R_{1}.

From lemma 9.12. we conclude that $N_{G}\left(R_{1}\right)=R_{1}\langle e\rangle$, hence e normalizes Q_{1}, and all 16 -subgroups of Q_{1} are conjugate in $N\left(Q_{1}\right)$. As $N_{G}\left(E_{1}\right) \leqslant N_{G}\left(Q_{1}\right)$, we must have that the order of $N_{G}\left(Q_{1}\right)$ is $2^{9.3}$.

Lemma 9.14. Put $U:=T_{2}\langle e\rangle$. Then $T_{2}=J(U)$.
Proof. $T:=T_{2}\left\langle e, f_{1}\right\rangle$ is a Sylow-2-subgroup of $N_{G}\left(T_{2}\right)$; as $Z\left(T_{1}\right)=$ $=\langle z\rangle$, we must have $Z(T)=\langle z\rangle$. On the other hand, $\langle z\rangle=T_{2}^{\prime}$ is normal in $N_{G}\left(T_{2}\right)$, therefore d centralizes Z and so does f_{1}. This shows that $z_{1}^{e}=z z_{1}$.

Take e_{0} to be any involution of $U-T_{2}$. Then e_{0} normalizes $E_{1} \cap E_{3}$, $E_{2} \cap E_{4}$, and $E_{5} \cap E_{6}$, so e_{0} normalizes $T_{20}:=Z\left\langle a_{1}, a_{2}, y t\right\rangle$. On the other hand, $\left(E_{1} \cap E_{2}\right)^{e_{0}}=\left(E_{3} \cap E_{4}\right)$, therefore $(Z t)^{e_{0}}=Z y$. As e_{0} centralizes T_{20} modulo Z, we then must have $C_{T_{2}}\left(e_{0}\right) \leqslant T_{20}$.

If U contains a 16 -group which does not lie in T_{2}, choose e_{0} from such a group and outside T_{2}. Then e_{0} centralizes an elementary group of order 8 in T_{20}. But the only groups of this type in T_{20} are $Z\left\langle a_{1}\right\rangle$, $Z\left\langle a_{2}\right\rangle$, and $Z\left\langle a_{1} a_{2} t y\right\rangle$, and no one of these groups can be centralizes by e_{0}, as e_{0} does not centralize Z. Our lemma is proved.

Now we are able to derive a final contradiction. To this end, we want to prove that $R_{1}=J(T)$.

There is a group $T_{2} \leqslant T_{3} \leqslant T$ such that T_{3} is isomorphic to T_{1}, therefore T / T_{2} cannot be covered by an elementary abelian group. So any 16 -group of T is contained in R_{1}, T_{3} or U. But, as we have seen, $T_{2}=J(U)=J\left(T_{3}\right)$. Hence $R_{1}=J(T)$.

On the other hand, we have noted in the proof of lemma 9.13 . that T_{2} is characteristic in R_{1}, hence T is a Sylow-2-subgroup of $N_{G}\left(R_{1}\right)$. This, however, implies that T is a Sylow-2-subgroup of G. But T has order 2^{8} and we have seen in lemma 9.13 . that 2^{9} divides the order of G. This is the desired contradiction. Theorem \mathbf{A} is proved.

10. Proof of theorem B.

Let G be a finite group having no subgroup of index 2, containing an involution t such that $H=C_{G}(t)=\langle t\rangle \approx \Sigma, \Sigma \cong \Sigma_{7}$.

We choose a fixed Sylow-2-subgroup of H, T_{0}, which can be taken to correspond to the one introduced in $\S 1$, when we regard Σ_{6} as a subgroup of Σ_{7}. We use the notation introduced in § 1 .

Lemma 10.1. In H, i_{2} has 21 conjugates, i_{4} has 105 conjugates and i_{6} has 105 conjugates.

Proof. The symmetric group on 7 letters contains $\binom{7}{2}=21$ transpositions. There are $\binom{7}{4} \cdot 3$ involutions operating on 4 letters. The subgroup Σ_{6} contains 15 involutions operating on 6 letters, so Σ_{7} must contain $7 \cdot 15=105$ involutions of this type.

Lemma 10.2. In H, d_{1} has 70 conjugates, and d_{2} has 280 conjugates. In particular, $\left\langle t, i_{6}\right\rangle$ is a Sylow-2-subgroup of $C_{H}\left(d_{2}\right)$.

Proof. There are $\binom{7}{3} \cdot 2$ 3-elements operating on 3 letters. Regard 3 -elements operating on 6 letters. In Σ_{6}, we find $\binom{5}{2} \cdot 4=40$ elements of this type in Σ_{7}. The structure of $C_{H}\left(d_{2}\right)$ is obvious.

We remark that $N_{H}\left(E_{1}\right)$ and $N_{H}\left(E_{2}\right)$ have the same structure as in the case Σ_{6}. So we can take $\S 2$ literally to see that 2^{6} divides the order of G.

Lemma 10.3. 2^{7} divides the order of G. Furthermore,

$$
\left|N_{G}\left(T_{0}\right): T_{0}\right|=4
$$

Proof. The first assertion obviously follows from the second one. So assume that $\left.\mid N_{G}\left(T_{0}\right): T_{0}\right)=2$. If t is conjugate to any other H class of involution, t is conjugate to its representative in $Z\left(T_{0}\right)$ under the action of $N\left(T_{0}\right)$. Our assumption implies that t is conjugate to just one other class, therefore t has 22 or 106 conjugates in H, and as G does not have a subgroup of index $2, T=N_{G}\left(T_{0}\right)=T_{0}\langle y\rangle$ is a Sylow-2-subgroup of G.

Suppose that E_{1} and E_{2} are normal in T. Then t must have 2 conjugates in E_{1} and E_{2}. But this is impossible.

Suppose that $E_{1}^{y}=E_{2}$. Then T_{0} must be a Sylow-2-subgroup of $N_{G}\left(E_{i}\right), t$ is isolated in $N_{G}\left(E_{i}\right)$, therefore $N_{G}\left(E_{i}\right)=N_{H}\left(E_{i}\right), Z\left(N_{G}\left(E_{1}\right)\right)=$ $=\left\langle t, i_{2}\right\rangle$ and $Z\left(N_{G}\left(E_{2}\right)\right)=\left\langle t, i_{6}\right\rangle$. We conclude that $\left\langle t, i_{2}\right\rangle \nu=\left\langle t, i_{B}\right\rangle$. But now either $t^{y}=t$ or t is conjugate to at least 3 elements of $Z\left(T_{0}\right)$. Both is not possible. The lemma is proved.

Theorem 10.4. Suppose that K is a finite group of even order, $t \in K$ is an involution and $C_{K}(t)$ has a Sylow-2-subgroup which is elementary of order 4. Then the Sylow-2-subgroups of K are dihedral or semi-dihedral. In particular, the 2 -rank of K is 2 .

Proof. Let $\langle s, t\rangle$ be a Sylow-2-subgroup of $C_{K}(t)$ and S be a Sylow2 -subgroup of K containing $\langle s, t\rangle$. Suppose that the order of S is 2^{n}. Then t has 2^{n-2} conjugates in S. The commutator subgroup of S has order at most 2^{n-2}, so t cannot be contained in S^{\prime}. On the other hand, $S^{\prime}\langle t\rangle$ is normal is S. This forces $\left|S^{\prime}\right|=2^{n-2}$. By [3], theorem 5.4.5., S is dihedral, semi-dihedral or generalized quaternion. As S contains at least 3 involutions, it cannot be quaternion. The theorem is proved.

Lemma 10.5. d_{1} and d_{2} are not conjugate in G.
Proof. It follows from theorem 10.4. that $C_{G}\left(d_{2}\right)$ has Sylow-2subgroups of 2 -rank 2. Suppose that d_{1} and d_{2} are conjugate in G. Then t centralizes $350=2(\bmod 4)$ conjugates of d_{2}, hence a Sylow2 -subgroup of G can be at most twice as big as a Sylow-2-subgroup of $C_{G}\left(d_{2}\right)$. But G has 2 -rank at least 4. This is a contradiction.

Lemma 10.6. E_{1} and E_{2} are not conjugate in G.
Proof. Suppose they are. Then, as before, we see that t has precisely 4 conjugates in E_{i} under the action of $N_{G}\left(E_{i}\right)$, and that the order of $N_{G}\left(E_{i}\right)$ is $2^{7.3}$. In particular, $\left\langle d_{1}\right\rangle$ is a Sylow-3-subgroup of $N_{G}\left(E_{1}\right)$, and $\left\langle d_{2}\right\rangle$ is a Sylow-3-subgroup of $N_{G}\left(E_{2}\right)$. If E_{1} and E_{2} are conjugate,
then their normalizers are conjugate in G as well, and so are any two Sylow-3-subgroups. But that contradicts lemma 10.5. Our lemma is proved.

Now we are in a position to make use of §§ 5-8, where the lengths of conjugacy classes in H do not matter at all. This remark finishes the proof of theorem B.

REFERENCES

[1] M. Aschbacher, On finite groups of component type (to appear).
[2] M. Aschbacher, Standard components of alternating type centralized by a four-group (to appear).
[3] D. Gorenstein, Finite groups, Harper and Row, 1968.
[4] G. Stroth (unpublished).
[5] G. N. Thwaites, A characterization of M_{12} by centralizer of involution, Quarterly J. of Math., 24 (1073), pp. 537-557.

Manoscritto pervenuto in redazione l'8 maggio 1974.

[^0]: (*) Indirizzo dell'A.: Mathematisches Institut., 6500 Mainz, Saarstraße 21, Rep. Fed. Tedesca.

