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Abelian Groups whose Endomorphism Ring
is Linearly Compact.

LUIGI SALCE and FEDERICO MENEGAZZO (*)

If G is any abelian group, the finite topology of the endomorphism
ring E(G) has the family of all with X a
finite subset of G as a basis of neighbourhoods of 0. It is well known [F 1]
that, with respect to this topology, E(G) is a complete Hausdorff
topological ring. It has been suggested [F 2] to characterize the groups G
whose endomorphism rings have topological properties stronger than
completeness, such as compactness, linear compactness, etc. E.g., it

has been proved that E(G) is compact (in the finite topology) if and
only if G is a torsion group whose primary components are finite direct
sums of cyclic and quasi-cyclic groups [F 1].

In the first part of this paper we determine the groups G such that
E(G) is linearly compact (in the finite topology); i.e. such that every
family of closed linear varieties having the finite intersection property
has nonempty intersection. In fact, we prove that E(G) is linearly
compact if and only if G = H ~ D, with D a divisible group which
has finitely many non-zero p-components if G is not a torsion group,
.H has no elements of infinite height and H = 0 where, for every

pep

prime p, Hf) is either a torsion-complete p-group or a direct sum

Of) of a torsion-free J,-module Of) complete in the p-adic topology
and a bounded p-group J5p.

According to [B, Ex. 19, p. 110], if A is a topological ring and E is
a Hausdorff linear topological A-module, E is strictly linearly compact

(*) Indirizzo degli A.A.: Seminario Matematico, Universith di Padova,
Via Belzoni 7 - 35100 Padova (Italy).

Lavoro eseguito nell’ambito dei Gruppi di Ricerca Matematica del C.N.R.
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if it is linearly compact and every continuous A-homomorphism from
E is an open map. With arguments very similar to those used in the
first part of the paper, we show that E(G) is strictly linearly compact
(in the finite topology) if and only if =(@9)@(@(@jD))

A 

where Bp is a bounded p-group, Dp is a divisible p-group, and only
finitely many DD’s are non-zero if .~1. ~ Q~.

In [L 1] Liebert defined the p-finite topology for the endomorphism
ring of a Jp-module M without elements of infinite height, and
determined all torsion [L 1] and torsion-free [L 2] Jp-modules lVl such
that is complete in this topology. It turns out that they are preci-
sely the torsion and torsion-free reduced Jp-modules such that 
is linearly compact in the finite topology. The situation is different
in the mixed case, where we prove that is complete in the

p-finite topology if and only if either lVl is complete in its p-adic topology
or M is a p-pure fully invariant subgroup of the p-adic completion
t(M) of its torsion subgroup t ( M ) .

1. Throughout the paper, « group » means « abelian group ». If G

is a group, t(G) is the torsion subgroup of G, is the p-component

the endomorphism ring of G. If g E G the orbit Eg of g is the E-submo-
dule the annihilator U g is the left ideal 

(obviously the annihilator Ux of the subset X of G is
the left ideal = 01; o(g) is the order of g and if G is a

p-group o(g) = h(g) is the p-height of g; N is the set of natural
numbers, Z the ring of integers, Q the (additive) group of rational
numbers, Jp the ring of p-adic integers, J the natural completion of Z,
P the set of prime numbers.

It is well known that E = E(G), being complete in the finite to-
pology, is linearly compact if and only if E/ Ux is linearly compact as
a discrete E-module for every finite subset X of G; and E is strictly
linearly compact in the finite topology if and only if E/ Ux is an artinian
E-module [B, Ex. 16 6, p. 109 and Ex. 19 y, p. 111].

LEMMA 1.1. E = E(G) is linearly compact in the finite topology
if and only if for every g E G Eg is linearly compact as a discrete

E-module. E is strictly linearly compact in the finite topology if and
only if for every g E G Eg is an artinian E-module.

PROOF. If E is (strictly) linearly compact, then Eg, being isomorphic
to the quotient module E/ Ug , is linearly compact in the discrete topo-
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logy (artinian). Assume now that for every g E G Eg is linearly com-
pact as a discrete E-module (an artinian .E-module); if X = ... , 

is any finite subset of G, Ux is the kernel of the diagonal map 99: E -
- (EjUg1) X ... X of the natural homomorphisms q, : E - E/ U9 .
So EjUx is E-isomorphic to a submodule of a finite product of linearly
compact discrete (artinian) E-modules, and is itself linearly compact
in the discrete topology (artinian).

LEMMA 1.2. Let H be a fully invariant subgroup of G, and assume
E(G) is linearly compact in the finite topology. If H is contained in

an orbit, then it is complete (not necessarily Hausdorff ) in every topo-
logy which has a basis of neighbourhoods of 0 consisting of E-modules.

PROOF. Since B~ c Eg is a linearly compact discrete E-module, the
lemma follows from [B, Ex. 16 y, p. 109].

Lemma 1.2 will be used to infer completeness of H in the topology
induced on H by the natural (or p-adic) topology of 0 (it will be Haus-
dorff if and only if H r1 G~ = 0, or H 0) and in its own natu-
ral (or p-adic) tonology (it will be Hausdorff if and only if H~ = 0,
or pa) H = 0).

2. In this section we begin the discussion of the groups such that
E(G) is linearly compact in the finite topology; our first goal is to get
rid of the elements of infinite height.

LEMMA 2.1. If G is any group, G[pl] is contained in an orbit for
every prime p and natural number k.

PROOF. If G has a cyclic direct summand a&#x3E; such that o(a) = pk
then G[pk] S Ea. Otherwise t~(G) = B ~ D where 0 and D is
a divisible p-group, and G[pkJ C E(b + d) where b is an element of max-
imum order in B and d is either 0 (in case D = 0) or an element of
order pk in a quasi-cyclic direct summand of D.

LEMMA 2.2. If G is not a torsion group, then the divisible part D
of G is contained in Bg for every g 0 t(G).

PROOF. For every d E D and rational number r 0 0 there is a homo-
morphism ar : Q - D such that = d. For g E t ( G ) there is a
monomorphism q : ((g) + - Q which extends to a homomor-
phism 1p: G-+Gjt(G) is the canonical map, then

r = ~(~(g) ) ~ 0, is an element of E(G) such that d =
= fl(g) E Eg.
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LEMMA 2.3. If E ( G) is linearly compact in the finite topology,
then G eo is divisible.

PROOF. Suppose we must show that for every prime p
and natural number k there is b c- G. such that = a. Since a E G~ ,

for some g E G; moreover, for every there is gn E G
with but pk(g - n !gn) = 0, i.e. is a Cauchy
sequence in G[pk] with respect to the topology induced in G[pk] by the
natural topology of G. By Lemma 1.2 and Lemma 2.1 {g - has

a limit h E if we put b = g - h, then bEG eo and pk b = pk g = a.
We can now prove the reduction to the Hausdorff case.

THEOREM 2.4. Let G = H (D D where D is the divisible part of G.
The following statements are equivalent:

i) E(G) is linearly compact in the finite topology;

ii) E(H) is linearly compact in the finite topology, H has no
elements of infinite height, and, if G is not a torsion group,
then D has only finitely many non-zero p-components.

PROOF. i) ~ ii) : E(H) can be identified as the subring of E(G)
consisting of those 99 E E(G) such that q(H) C H, q(D) = 0. The finite

topology of E(G) induces on E(H) its own finite topology: thus, if V~
is the annihilator in E(.H) of the finite subset X of H and if UY is the
annihilator in E(G) of the finite subset Y= ~y1= dl,... , yn = hn + dnl
of G(hiEH, di E D), then Vx = E(H) r1 Ux and E(H) n UY = 
Furthermore, E(H) is closed in E(G) : assume q (E(H) + U y) = 

y

where Y runs in the family of finite subsets of G ; then f or d E D,
with CPI E E(H) and CP2 E Ud, whence = + CP2(d) = 0 ;

and = ~3 + CP4 with q~3 E E(H) and 99, E Uk, whence _

i.e. This proves that E(H), as a closed sub-
module of a linearly compact Hausdorff module, is itself linearly com-
pact ; H being reduced, Lemma 2.3 implies .H = 0. Suppose now
that G is not a torsion group; by Lemma 2.3 D is a linearly compact
discrete E-module, so it cannot contain an infinite direct sum of

E-submodules [B, Ex. 20, p. 111] ; in particular, D has only finitely
many non-zero p-components.

ii) =&#x3E; i): We have to prove that for every E(G)g is linearly
compact as a discrete E(G)-module; if g = h + d with d E D,
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E(G) g 9 E(H) h (D D’, where D’= D if g is torsion-free, and D’= ffi tf)(D)

if g is torsion; D’ is in either case an artinian E(G)-module, hence a
linearly compact discrete one; E(H)h is likewise linearly compact as
a discrete E(H)-module. Let (r, + family of linear E(G)-
varieties contained in E(G) with the finite intersection property; if

G - D are the proj ections, then Ei = I

’TtH(Ei) = Ei r1 H is an E (H) - submodule of E(H) h, nD(Ei) - Ei r1 D is
an E(G)-submodule of D’, + and + have

the finite intersection property, so there are h’ E n 7rH (xi -+- Ei), d’ E

3. In view of Theorem 2.4, we shall now proceed to classify all
groups G with G~ = 0 such that E(G) is linearly compact.

LEMMA 3.1. Assume E = E(G) is linearly compact in the finite

topology, and G~ = 0. Then G is a J-module.

PROOF. Suppose a E J is the limit of Cauchy sequence
of integers with respect to the natural topology of Z. Then 
is a Cauchy sequence in Eg with respect to the relative topology of
the natural topology of G; from Lemmas 1.1 and 1.2 it follows that Eg
is complete (and Hausdorff, since G~ = 0 ) in this topology, so we

can define ag = It is easily checked that this product is well
defined, and that the module axioms are indeed fulfilled.

LEMMA 3.2. Under the hypotheses of Lemma 3.1, if é~= (0, ... ,
0, 1, 0, ... ) E J (1 is in the p-th place), and if g E G, for
almost all primes p.

PROOF. Otherwise Eg would contain the infinite direct sum of
E-submodules O E1)Eg.

pep

THEOREM 3.3. Let G be a group without elements of infinite height.
E(G) is linearly compact in the finite topology if and only if G = Q+ Gp

yEP

where, for each prime p, G1) is a J1)-module without elements of infinite
height such that is linearly compact in the finite topology.

PROOF. Assume that E(G) is linearly compact in the finite topo-
logy. For Ep = (o, ... , 0, 1, 0, ... ) E J (with 1 in the p-th place) put

then GII is a J9-module, and From
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Lemma 3.2, y for every we can write which
pcp

shows that G = (~+ Gp. Furthermore, since Hom,(G,, Gq) = 0 
pep

the finite topology of E(G) coincides with the product

topology of the finite topologies of the and, considering 
as an E(G)-module, the E(G)-submodules are precisely the E(G)-
submodules. It follows that E(Gp) is linearly compact in the finite
topology for every prime p. Conversely, y if G = (B G 0

pep 
P

and linearly compact in the finite topology, then clearly G = 0
and E(G), being algebraically and topologically isomorphic to
is linearly compact in the finite topology.

4. We are thus led to determine which ones of the Jp-modules if
without elements of infinite height are such that E(M) ( = 
is linearly compact in the finite topology. We shall deal separately
with the torsion, torsion-free, and mixed case.

THEOREM 4.1. Let if be a p-group without elements of infinite

height. The following statements are equivalent:

1) E = E ( 1V1 ) is linearly compact in the finite topology.

2) .M is torsion-complete.

PROOF. 1) =&#x3E;2): For every k E N, is complete in the relative
topology of the p-adic topology of if by Lemmas 1.2 and 2.1; M is
therefore torsion-complete [F 1, 70.7, p. 28].

2) =&#x3E; 1): If a E M, with o (a) = pk, then

[F 1, 65.5, p. 4]; according to Lemma 1.1, we shall show that every
orbit Ba is a linearly compact discrete E-module, by proving that
for every n E N is linearly compact. If 31 is bounded, then
it is easily seen that there are only finitely many orbits, so 1Vl as well
as every M[pn] is even an artinian E-module. If .1t2 is not bounded,
for every k E N select with o(ak) = pn. Obviously
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is open in the topology zn induced in lV1[pn] by the p-adic topology
of .NI, so is a basis for in, M[pn]jEak has only finitely many
E-submodules, and zn) = lim M[pn]jEak because (M[pn], in) is

complete. It follows that in) is a linearly compact E-module.

Now if H is an E-submodule of with r h, and if
r-1 

ac E H has maximum order H D r1 M[pr] is open,
i=O

hence closed in with respect to the topology zr, so that it is

closed in as well. Hence, if fxa + is a family of cosets of

M[pn] modulo E-submodules H~, having the finite intersection pro-
perty, every coset xa + Hi is zn-closed + .g,) 0 because

(M[pn], zn) is linearly compact. I c- A

THEOREM 4.2. Let M be a reduced torsion-free J¡¡-module. The

following statements are equivalent:

1) E = E(M) is linearly compact in the finite topology.

2) lVl is complete in the p-adic topology.

PROOF. then ac = pk g with M= J~ g ~
@ M’ [K, p. 32]; it follows that and that for every orbit
linear compactness is equivalent to completeness in the p-adic topology.
Since M itself is an orbit, this remark proves the Theorem.

THEOREM 4.3. Let .lVl be a mixed Jp-module without elements of
infinite height. The following statements are equivalent:

1) E = E(M) is linearly compact in the finite topology.

2 ) .M = B @ C, where B is a bounded p-group and C is a reduced
torsion-free Jp-module complete in the p-adic topology.

PROOF. 1 ) =&#x3E;2): We shall show first that M/t(M) cannot be divi-
sible. Thus, by Lemmas 1.2. and 2.1., for every n E N, is com-

plete in the relative topology of the p-adic topoloty of if, so t(M) = T
is the torsion subgroup of its p-adic completion T, and if .1V1/T is divi-
sible, then T C M C If B = 3 Bn is a basic subgroup of T (where Bn

M6JV

is either 0 or a direct sum of cyclic groups of order p"), then B is not
bounded and T can be viewed as the subgroup of consisting of

~tEN

all sequences (xn)neN such that tends to infinity; in this
representation T is identified with the subgroup of T consisting of
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all sequences where is bounded. For every i E N the

projection IT Bn -?- Bi induces an endomorphism of M; it follows that
nEN

if g E M, then t(Eg) is unbounded. On the other hand, t(Eg)
is a linearly compact discrete E-module, so it is complete in its p-adic
topology, hence it is bounded: this contradiction proves that M/t(M)
is not divisible. But then there is g E M, g ~ T, such that M = J, g 
for this choice of g, Eg = .lVl and Lemmas 1.2 and 2.1 imply that M
and t(M) are complete in the p-adic topology, so t(M) = B is bounded
and M = B Q C where C is likewise complete in the p-adic topology.
2) =&#x3E; 1): If M = B Q C with B and C satisfying the above condi-

tions, then for g E B, Eg is artinian, while if g = b -f- c with b E D,
h(c) = k, is linearly compact in the discrete

topology, since so are B and B + pk C.

REMARK. From 4.1. and 4.3. it follows that if T is a torsion-com-

plete unbounded p-group and !P is its p-adic completion, then 
which is isomorphic to E(T), is not linearly compact in the finite to-
pology, while E(T) is.

5. In this section M will always denote a J~-module without ele-
ments of infinite height; the p-finite topology of E(M) ([L 1] and [L 2])
has the family of all left ideals where
n E N and X is a finite subset of G, as a basis of neighbourhoods of 0;
it is a Hausdorff topology since 0.

LEMMA 5.1. If .E(M) is linearly compact in the finite topology,
then it is complete in the p-finite topology.

PROOF. The p-finite topology is weaker than the finite topology;
so [B, Ex. 16 y, p. 109] applies.

LEMMA 5.2. If M is either torsion or torsion-free, then E(M) is

linearly compact in the finite topology if and only if it is complete
in the p-finite topology.

PROOF. Compare 4.1 and 4.2 above with [L 1] and [L 2].

LEMMA 5.3. If M is complete in the p-adic topology, then E(M)
is complete in the p-finite topology.

PROOF. E with the p-finite topology is embedded as a closed sub-
space in MM with the product topology of the p-adic topologies of
the factors.
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THEOREM 5.4. Let if be a mixed Jp-module. The following state-
ments are equivalent:

1) E(M) is complete in the p-finite topology.
2) T = t(M) is torsion-complete and either M is complete in the

p-adic topology, or M is a p-pure fully invariant subgroup
of the p-adic completion T of T.

PROOF. 1) =&#x3E;2): That T is torsion-complete can be seen exactly
as in [L 1]. Since for every natural number n and finite
subset X of G, the p-adic topology of E is stronger than the p-finite
topology; it follows that E is complete in the p-adic topology. For

every g E M, 1lg: E -+ Eg defined by for every ffJ E E is a
continuous map with respect to the p-adic topologies of E and Eg,

is closed, since p" ( Eg) = (pnE) g = 1lg(pn E) 1lg is open, so
that the p-adic topology of Eg is the quotient topology of 1lg. It follows
that, for every g E M, Eg is complete in the p-adic topology. In parti-
cular, if M/T is not divisible, there is g E M, g torsion-free, such that
M = Jpg 0 M’, and M = Eg is complete in the p-adic topology. If

M/T is divisible, then T C M is p-pure in 1’ and the restriction
map e: E(M) -+ E(T) is injective; we shall prove that it is also surjec-
tive. Take a basic subgroup B = EB Bn of T, where for each n E N

Bn is either 0 or a direct sum of cyclic groups of order pn ; M admits the
decompositions with Kn==Bn+1EÐKn+l’ Let

for each define ffJn: M by: 9’IBl E)... 
= 0. For every x and i E N there is j E M such that for 

if x = b1+ ... + bn + kn with bi E Bi, l~n E Kn, then bn E piB; this implies
that for _ E pi M, Le. is Cauchy in the
p-finite topology of E(M) ; if 1p == lim ggn, then 1pIT = If now a is an

arbitrary endomorphism of 1’, there is such that = 

is 0 on the dense subset T of .lkT, so 

and M is fully invariant in 1.

2) =&#x3E;-1): Assume first that t(M) =:: T is torsion-complete and M
is p-pure and fully invariant in In this case we make the identifi-
cations : .E = E(T) = E(M) = E(T), and remark that the p-finite topo-
logy of E does not depond on which group E operates: thus for g E T
and for every n E is open in all three topologies; and if g 0 T
for every n E N there is tn E T such that if

g E M) : from T E Utn it follows that
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i.e. U n and U" is open in the p-finite topology of E regarded
as the ring of endomorphisms of T. To end the proof, take G = M
if lVl is complete in the p-adic topology, G == T if M is a p-pure fully
invariant subgroup of P; E = E ( M ) = E ( G ), M and G induce on E
the same p-finite topology, so E is complete in the p-finite topology
by Lemma 5.1.

REMARK. p-pure fully invariant subgroups of the p-adic comple-
tion P of a Hausdorff p-group T have been determined by Mader
in [M]: there it is proved that the Ulm sequences of the elements of T
are a meet-semilattice H (meets are taken pointwise) with respect to
the obvious ordering; if N is a fully invariant subgroup of TB {H(x) N}
is a filter of H, and in this way one gets an isomorphism of the lattice
of fully invariant subgroups of T’ onto the lattice of all filters of H;
a filter 0 of H corresponds to a p-pure fully invariant subgroup if

and only if for every n E N and h = ( ho , hi , ... , h~ , ... ) e 16, n -f- h =
- 7 ...) c- 0; a filter of H is principal exactly when it corre-
sponds to an orbit of T.

6. In this last section we characterize the groups G whose endo-

morphism ring is strictly linearly compact in the finite topology.
THEOREM 6.1. A necessary and sufficient condition for E(G) to

be strictly linearly compact in the finite topology is that

where, for every prime p, B~, is a bounded p-group, Dp is a divisible
p-group, and almost all Dls are 0 if 0.

PROOF. Assume E = E(G) is strictly linearly compact. If p is a

prime, G[p] is an orbit, so the descending chain IG[n] r’1 of

E-submodules becomes stationary after a finite number of steps by
Lemma 1.1; this implies that where B1J is bounded
and Dp is divisible, and so tp(G) is a direct summand of G. If ~~: G -~ 
is a projection, then for every 9 E G, E tp(Eg) ; the artinian

E-module Eg cannot contain an infinite direct sum of E-submodules,
so tp(Eg) = 0 for almost all p E P, hence = 0 for almost all

p E P. We can define 1p: G -+ t(G) by is a

projection, proving that t(G) is a direct summand of G. Glt(G) is di-

visible : thus if g E G the descending chain of E-modules
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is stationary, so there is r E N such that, for every m E N,
in particular with q e E, hence

r ! (g - mg’ ) = 0 for a suitable gc- G. To end the proof that the condi-
tion is necessary, we only need to show that if t(G) the Dp’s
are almost always 0; but this follows from Theorem 2.4. Conversely,
let G be as in the Theorem. If A = 0, G is a torsion group; we have
only to prove that E(tp(G)) is strictly linearly compact in the finite
topology for every PEP; but this is obvious since t~(G) is an artinian
E(tp(G) )-module. If l =1= 0, write any g E G as g = gl -E-- g2 with gl E 0153 Q,

A

g2 E 0153 tD(G) where J is a finite subset of P which we may assume to" 

~EJ

contain all the primes p such that D,, 0 0; it follows that Eg C (p 
@ (0153 an artinian E-module, and the proof is complete.

PEJ
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