@article{RSMUP_1972__48__219_0, author = {Foia\c{s}, C.}, title = {Statistical study of {Navier-Stokes} equations, {I}}, journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova}, pages = {219--348}, publisher = {Seminario Matematico of the University of Padua}, volume = {48}, year = {1972}, mrnumber = {352733}, zbl = {0283.76017}, language = {en}, url = {http://www.numdam.org/item/RSMUP_1972__48__219_0/} }
TY - JOUR AU - Foiaş, C. TI - Statistical study of Navier-Stokes equations, I JO - Rendiconti del Seminario Matematico della Università di Padova PY - 1972 SP - 219 EP - 348 VL - 48 PB - Seminario Matematico of the University of Padua UR - http://www.numdam.org/item/RSMUP_1972__48__219_0/ LA - en ID - RSMUP_1972__48__219_0 ER -
%0 Journal Article %A Foiaş, C. %T Statistical study of Navier-Stokes equations, I %J Rendiconti del Seminario Matematico della Università di Padova %D 1972 %P 219-348 %V 48 %I Seminario Matematico of the University of Padua %U http://www.numdam.org/item/RSMUP_1972__48__219_0/ %G en %F RSMUP_1972__48__219_0
Foiaş, C. Statistical study of Navier-Stokes equations, I. Rendiconti del Seminario Matematico della Università di Padova, Tome 48 (1972), pp. 219-348. http://www.numdam.org/item/RSMUP_1972__48__219_0/
Lectures on Elliptic Boundary Value Problems (Van Nostrand), New York, 1965. | MR | Zbl
) [1]Solutions turbulentes de certaines equations aux dérivées partielles, C. R. Acad. Sci. Paris, 249 (1959), 1456-1457. | MR | Zbl
) [1][2] Sur l'existence des solutions turbulentes des équations de l'hydrodynamique, C. R. Acad. Sci. Paris, 252 (1961), 3392-3394. | MR | Zbl
The Theory of homogeneous Turbulence, (Cambridge Univ. Press), Cambridge, 1967. | Zbl
[1]Integration. Ch. 5. Intégration des mesures. Eléments de mathématiques. (Hermann), Paris, 1967. | MR | Zbl
) [1]Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova, 31 (1961), 308-340. | Numdam | MR | Zbl
) [1]Lectures on Analysis. Vol. II. Representation Theory. (W. A. Benjamin, Inc.). New York, 1969. | MR | Zbl
[1]Vector Measures (Pergamon Press), London, 1967. | MR
) [1]Stochastic Processes. (Wiley), New York, 1953. | MR | Zbl
[1]Sur le passage des équations de Navier-Stokes aux équations de Reynolds, C. R. Acad. Sci. Paris, 244 (1957), 2887-2890. | MR | Zbl
) [1]Linear Operators - Part. I. General Theory (Inters. Publ.), New York, 1958. | MR | Zbl
- [1]Ergodic problems in functional spaces related to Navier-Stokes equations. Proceedings Intern. Conf. Funct. Anal. and Rel. Topics. (Tokyo, April 1969), 290-304. | MR | Zbl
[1][2] Solutions statistiques des equations d'évolution non linéaire. C.I.M.E. Varenna, 1970. | Zbl
Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Ren. Sem. Mat. Univ. Padova, 39 (1967), 1-34. | Numdam | MR | Zbl
- [1]Le comportement asymptotique des valeurs propres d'un opérateur. Séminaire sur les Equations aux dérivées partielles. (Collège de France, 1971), IV, pp. 4.1-4.12. | Numdam
) [1]Functional Analysis and Semi-groups (Amer. Math. Soc. Coll. Publ.), New York, 1957. | MR | Zbl
- ) [1]Turbulence. An introduction and its Mechanism and Theory (McGraw-Hill, Inc.), New York, 1959. | MR
[1]A mathematical example displaying features of turbulence. Comm. Pure Appl. Math., 1 (1948), 303-322. | MR | Zbl
) [1][2] Uber die Anfangswertaufgabe für hydrodynamischen Grundgleichungen. Math. Nachrichten, 4 (1951), 2-13-251. | Zbl
[3] Statistical hydrodynamics and functional calculus. J. Rat. Mech. Anal., 1 (1952), 87-123. | MR
Linear Partial differential Operators (Springer Verl.), Berlin, 1963. | MR
) [1]Incompressible Fluid mechanics (Wiley), New York, 1964. | MR
[1]On the lifting property II. journ. Math. Mech., 11 (1962), 777-795. | Zbl
and (C. T.) [1]Ergodic Theory (Aarhus Univ. Mat. Inst. Lect.), Aarhus, 1963. | MR
[1]Statistical mechanics of continuous media. Proc. Symp. Appl. Math., XIII (1962). | MR | Zbl
[1]TIHOMIROV (V. M.) [1] ε-entropy and ε-capacity of sets in functional spaces, Uspehi Mat. Nauk, 14 (1959), 3-86. | Zbl
-BOGOLIUBOV (N. N.) [1] La théorie générale de la mesure dans son application a l'étude des systèmes dynamiques de la mécanique non linéaire. Ann. of Math., 38 (1937), 65-113. | JFM | MR | Zbl
-Topologie, vol. I (Panstw. Wyd. Nauk), Warszawa, 1958. | MR | Zbl
) [1]Global solution of the boundary problem for Navier-Stokes equations in two spatial dimensions. Doklady Acad. Nauk SSSR, 123 (1958), 427-429. | Zbl
[1][2] The study of Navier-Stokes equations for stationary incompessible flows. Usp. Mat. Nauk., 14 (1959), 75-97.
[3] Mathematical Theory of viscous incompressible flows. (Gordon & Breach Sci. Publ.), New York, 1963. | MR
Mécanique des fluides, Physique Théorique, t. VI. (Ed. Mir), Moscow, 1971.
- [1]Etude de divers équations intégrales non-linéaire et de quelques problèmes que posent l'hydrodynamique. J. Math. Pures et Appl., 9e série, 12 (1933), 1-82. | Numdam | Zbl
[1][2] Essai sur le mouvement plan d'un liquide visqueux que limitent des parois. Journ. Math. Pures et Appl., 9e série, 13 (1934), 331-418. | JFM | Numdam
[3] Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math., 63 (1934), 193-248. | JFM | MR
Quelques méthodes de résolution des problèmes aux limites non linéaires (Dunod-Gauth. Vill.), Paris, 1969. | MR | Zbl
[1]Problèmes aux limites non homogènes et applications, vol. I (Dunod), Paris, 1968. | Zbl
- [1]PEETRE (J.) [1] Sur une classe d'espaces d'interpolation. Institut des Hautes Etudes Sc. Publ. Math., 19 (1964), 5-68. | Numdam | MR | Zbl
-PRODI (G.) [1] Un théorème d'existence et unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, 250 (1959), 3519-3521. | MR | Zbl
-Probability Theory. (Van Nostrand Corp. Inc.), Princeton, 1960. | MR | Zbl
[1]An Introduction to Abstract Harmonic Analysis. (Van Nostrand Comp., Inc.), New York, 1953. | MR | Zbl
[1]Similarity arguments for fully developed turbulence. Suppl. at Nuovo Cimento, 22 (1961), serie X, 376-384.
[1][1] On the analyticity and the unique continuation theorem for solutions of the Navier-Stokes equation. Proc. Japan. Acad., 43 (1967), 827-832. | MR | Zbl
)Statistical hydrodynamics. The Mechanics of turbulence. Part I (Izd. Nauka), Moscow, 1965.
- [1][2] Statistical hydrodynamics. The Mechanics of turbulence. Part II (Izd. Nauka), Moscow, 1967.
Regular Probability measures on function space. Annals of Math., 69 (1959), 630-643. | MR | Zbl
) [1]A kinematic theory of M.H.D. turbulent shear flow (A new approach to the Malkus theory of turbulence). Revue Roum. Math. p. et appl., 12 (1967), 1503-1514. | Zbl
[1]Statistical description of continuous fields. Proc. Geod. Inst. Akad. Nauk SSSR, 1954, no. 24 (151), 3-42. | MR
[1]Un teorema di unicità per le equazioni di Navier-Stokes. Annali di Mat. pura e appl. (IV), 48 (1959), 173-182. | MR | Zbl
[1][2] Qualche risultato riguardo alle equazioni di Navier-Stokes nel caso bidimensionale. Rend. Sem. Mat. Univ. Padova, 30 (1960), 16-23. | Numdam | MR | Zbl
[3] Teoremi ergodici per le equazioni della idrodinamica, C.I.M.E., Roma, 1960. | Zbl
[4] On probability measures related to the Navier-Stokes equations in the 3-dimensional case (Air Force Res. Div. Contr. A.P.61(052)-414. Technical Note nr. 2 (1961)), Trieste, 1961.
[5] Résultats récents dans la théorie des équations de Navier Stokes. Les équations aux dérivées partielles (Colloques Intern. CNRS), Paris, 1962 '. | Zbl
[6] Teoremi di tipo locale per il sistema di Navier-Stokes e stabilità delle soluzioni stazionarie. Rend. Sem. Mat. Univ. Padova, 32 (1962), 374-397. | Numdam | MR | Zbl
On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Phil. Trans. Royal Soc. London, 186 (1894), 123-161. | JFM
[1]Functional Integration theory for incompressible fluid turbulence, The Phys. of Fluids, 10 (1967), 2614-2619. | Zbl
[1]Leçons d'analyse fonctionnelle (Gauthier-Vill.-Akad.-Kiado). | Zbl
- [1]Fourier Analysis on Groups. (Inters. Publ.), New York, 1962. | MR | Zbl
[1]Equazioni differenziali nel campo reale. Parte I. (Sc. Edizione), Bologna, 1948. | JFM
[1][1] Boundary Layer Theory (4th edn. McGraw-Hill), New York, 1960. | MR | Zbl
)Mathematical Principle of Classical Fluid Mechanics (Handbuch der Physik, Band VIII/1, Stromungs Mechanik I), Berlin, 1959. | MR
[1]Etude des fonctions quasi-stationnaires et de leurs applications aux équations différentielles opérationnelles. Bull. Soc. Math. France, suppl. au no. de Juin 1966, mémoire 6. | Numdam | MR | Zbl
) [1]