Rendiconti

del
 SEminario Matematico della Università di Padova

Noboru Ito

On permutation groups of prime degree p which contain (at least) two classes of conjugate subgroups of index p

Rendiconti del Seminario Matematico della Università di Padova, tome 38 (1967), p. 287-292
http://www.numdam.org/item?id=RSMUP_1967__38__287_0

© Rendiconti del Seminario Matematico della Università di Padova, 1967, tous droits réservés.

L'accès aux archives de la revue «Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/

ON PERMUTATION GROUPS OF PRIME DEGREE p WHICH CONTAIN (AT LEAST) TWO OLASSES OF CONJUGATE SUBGROUPS OF INDEX p

Noboru Ito *)

Let p be a prime and let $F(p)$ be the field of p elements, called points. Let \mathfrak{G} be a transitive permutation group on $\boldsymbol{F}(\boldsymbol{p})$ such that
(I) \mathfrak{G} contains a subgroup \boldsymbol{B} of index p which is not the stabilizer of a point.

JB has two point orbits, say D and $F(p)-D$ (cf. [3]). Let k be the number of points in D. Then $1<k<p-1$. Furthermore $D=D(p, k, \lambda)$ can be considered as a difference set modulo p such that the automorphism group $A(D)$ of D contains \mathcal{G} as a subgroup (cf. [5]).

Replacing D by $F(p)-D$, if need be, we always can assume that $k \leq \frac{1}{2}(p-1)$.

Now the only known transitive permutation groups \mathfrak{G} of degree p satisfyng the condition (I) are the following groups:
(i) Let $F^{\prime}(q)$ be the field of p elements. Let $V(r, q), L F(r, q)$ and $S F(r, q)$ be the r-dimensional vector space, the r-dimensional projective special linear and semilinear groups over $\boldsymbol{F}(q)$ respectively

[^0]where $r \geq 3$ and $p=\frac{q^{r}-1}{q-1}$. Let Π be the set of one dimensional subspaces of $V(r, q) . S F^{\prime}(r, q)$ can be considered as a permutation group on Π. Identify Π with $\boldsymbol{F}(p)$. Then any subgroup \mathfrak{G} of $\operatorname{SF}(r, q)$ containing $L F(r, q)$ satisfies (I) with parameters $k=\frac{q^{r-1}-1}{q-1}$ and $\lambda=\frac{q^{r-2}-1}{q-1}$.
(ii) $\mathfrak{G}=L F(2,11)$, where $p=5$ and $\lambda=2$.

Now among the groups mentioned above only $L F(2,11)$ satisfies the following condition:
(II) the restriction of $\mathbb{J B}$ to D) is faithful (cf. [5]).

Thus it is natural to ask whether this is the only group satisfying (I) and (II). The purpose of this note is to make a first step towards the solution. We prove the following theorem.

Let \mathfrak{G} be a group satisfying (I) and (II). If k is a prime, then $\mathfrak{G} \cong L F^{(2,11)}$.

Proof. (a) First of all, we recall the following fundamental equality for the difference set

$$
\begin{equation*}
\left.\lambda(p-1)=k(k-1) \cdot{ }^{1}\right) \tag{1}
\end{equation*}
$$

Since k is a prime by assumption, from (1) we see that k divides $p-1$. Put

$$
\begin{equation*}
p-1=k N \tag{2}
\end{equation*}
$$

which implies by (1) that

$$
\begin{equation*}
k-1=\lambda N \tag{3}
\end{equation*}
$$

(b) Let \mathbb{D} be a Sylow p-subgroup of \mathfrak{B} and let $N s \mathbb{D}$ be the normalizer of \mathbb{P} in \mathbb{B}. Then since $\mathbb{B}=\mathbb{D} \mathfrak{B}, \quad N s \mathbb{D}=\mathbb{P} \mathbb{Q}$ with $\mathbb{Q}=\mathfrak{J} \cap N s \mathbb{P} . \mathbb{Q}$ is cyclic of order q, where q is a divisor of $p-1$. Clearly \mathbb{Q} leaves D fixed. Also clearly \mathbb{Q} leaves only one point fixed. Thus either $k \equiv 1(\bmod q)$ or $k \equiv 0(\bmod q)$. In the former case, by (2)

$$
\begin{equation*}
N \equiv 0(\bmod q) \tag{4}
\end{equation*}
$$

[^1]In the latter case, since k is prime,

$$
\begin{equation*}
k=q \tag{5}
\end{equation*}
$$

(c) The restriction of \mathfrak{B} to D is doubly transitive.

Otherwise, by assumption (II) and by a theorem of Burnside $\mathfrak{J B}$ is metacyclic of order $k \zeta$, where ζ is a proper divisor of $k-1$. Hence the order g of \mathfrak{G} is equal to $p k \zeta$. On the other band, by Sylow's Theorem, $g=p q(1+n p)$, where n is positive, since \mathcal{B} is clearly nonsolvable. Thus

$$
\begin{equation*}
q(1+n p)=k \zeta \tag{6}
\end{equation*}
$$

If $k=q$, then from (6) $1+p \leq 1+n p=\zeta$. This is a contradiction. Thus $1+n p \equiv 1+n \equiv 0(\bmod k)$. Put $n=a k-1$. Then from (2) and (6) we obtain

$$
\begin{equation*}
q(a N k+a-N)=\zeta \tag{7}
\end{equation*}
$$

Since $N>1$ and $k>1, N k \geq N+k$. Thus from (7) $k<\zeta$. This is a contradiction.
(d) Let \mathbb{K} be a Sylow k-subgroup of \mathfrak{G} contained in \mathbb{K}. By assumption (II) the restriction of \mathbb{R} to D is faithful. Thus \mathbb{R} is of order k. If \mathbb{R} leaves fixed at least two points, then since \mathfrak{G} is doubly transitive on $\boldsymbol{F}(p)$, the index of \mathbb{k} in \mathfrak{G} is divisible by $p-1$. This contradicts (2). Thus K leaves fixed exactly one point, say i. Then i belongs to $\boldsymbol{F}(\boldsymbol{p})-D$. Let $N s^{*} \mathbb{k}$ be the normalizer of \mathbb{k} in \mathcal{B}. Since clearly D is the only block left fixed by $\mathbb{K}, N s \mathbb{R}$ is contained in $\mathbb{J B}$. By assumption (II) \mathbb{T} coincides with its own centralizer. Thus the order of $N s \mathbb{R}_{k}$ equals $k \zeta$, where ζ is a divisor of $k-1$.
(e) Let $\mathfrak{Z}(i)$ be the stabilizer of i in \mathfrak{G}. If $\left.\mathfrak{G} \cong L F(2,11),{ }^{2}\right)$ then the restriction of $\mathfrak{J B} \cap \mathfrak{Z}(i)$ to D is doubly transitive.

Otherwise, by assumption (II) and by a theorem of Burnside $\mathfrak{B} \cap \mathfrak{A}(i)$ is contained in $N s \mathbb{k}$. Since $N s \mathbb{k}$ leaves i fixed, $N s \mathbb{K}=$ $=\mathfrak{J B} \cap \mathfrak{Z}(i)$. Thus ζ is a proper divisor of $k-1$. Since $\mathfrak{J B}: \mathfrak{J B} \cap \mathfrak{Z}(i)=$ $=p-k$, the order of $\mathfrak{J B}$ is equal to $(p-k) k \zeta$.

Now let JB^{\prime} be a minimat normal subgronp of JB . Then JB^{\prime} is a direct product of mutually isomorphic simple groups. Since the restriction of $\mathscr{S}^{\mathbf{B}}$ to D is doubly transitive, the restriction of \mathfrak{K}^{\prime} to

[^2]D is transitive. Since \mathbb{T} has order k, $\mathbb{J B}^{\prime}$ is simple. By Sylow's Theorem $\mathfrak{J}=\mathfrak{J B}^{\prime}\left(N s^{\prime} \mathbb{K}\right)$. Thus \mathfrak{J}^{\prime} has order $(p-k) k \zeta^{\prime}$, where ζ^{\prime} is a divisor of $k-1$.

Now by (2) $p-k=(N-1) k+1$. If $\lambda=1$, then by a theorem of Ostrom-Wagner ([6]) \mathfrak{G} does not satisfy the assumption (II). Hence by (3) $N-1=\frac{k-1}{\lambda}-1 \leq \frac{k-3}{2}$. Therefore by a theorem of Brauer ($[1]$, Theorem 10) either (α) $N=2, \mathfrak{J}^{\prime}=L F^{\prime}(2, k)$ or (β) $N=\frac{k-1}{2}, \mathrm{JB}^{\prime}=\operatorname{LF}(2, k-1), k-1=2^{u}$.

By a previous result ([3]) \mathfrak{G} cannot be triply transitive on $\boldsymbol{F}(\boldsymbol{p})$. 1f (α) occurs and if $p>11$, then by a previous result ([4]) \mathfrak{B} is quadruply transitive on $F(p)$. Thus $p=11$. Then it is easy to check that $\mathfrak{G}=L \boldsymbol{F}(2,11)$.

Suppose that (β) occurs. Then by (3) $\lambda=2$. Now from $g=p q(1+n p)=p(p-k) k \zeta$ it follows that

$$
k^{2} \zeta+q \equiv 0(\bmod p)
$$

By $(2) k^{2} \equiv k-2(\bmod p)$. Thus

$$
\begin{equation*}
(k-2) \zeta+q \equiv 0(\bmod p) \tag{8}
\end{equation*}
$$

Since $p=\left(\frac{k-1}{2}\right) k+1$ and $\zeta \leq \frac{k-1}{2}$, we obtain from (8)

$$
\frac{(k-2)(k-1)}{2}+q \geq \frac{k(k-1)}{2}+1
$$

which implies that

$$
\begin{equation*}
q \geq k \tag{9}
\end{equation*}
$$

Then by (4) and (5) $q=k$. Now again from $g+p q(1+n p)=p(p-k) k$ it follows that

$$
k \zeta+1 \equiv 0(\bmod p)
$$

which implies that

$$
\begin{equation*}
\zeta=\frac{k-1}{2} \tag{10}
\end{equation*}
$$

On permutation groups of prime degree p which contain etc. 291
From (10), $g=p q(1+n p)=p(p-k) k \zeta$ and $\lambda=2$ it follows that

$$
\begin{equation*}
n=\frac{k-3}{2} \tag{11}
\end{equation*}
$$

Now let \mathfrak{G}^{\prime} be a minimal normal subgroup of \mathfrak{G}. Then \mathfrak{G}^{\prime} has order $p q\left(1+n^{\prime} p\right)$ with $n^{\prime} \leq n$. Hence again by a theorem of Brauer ([1], Theorem 10) $n^{\prime}=1$ and $\mathcal{B}^{\prime} \cong L F(2, p)$. Then $k=q=\frac{p-1}{2}$. Thus $k=5, p=11$, and $\mathfrak{G}=\mathcal{G}^{\prime} \cong L F(2,11)$.
(f) The line through two distinct points i and j is the intersection of all the bloks containing both i and j (cf. [2]). Since \mathfrak{G} is doubly transitive on $F(p)$, every line contains the same number of points. Let s be the number of points on a line. Then

$$
\begin{equation*}
N \equiv 0(\bmod s(s-1)) \tag{12}
\end{equation*}
$$

In particular, if $N \geq 4$, then

$$
\begin{equation*}
s \leq N-1 \tag{13}
\end{equation*}
$$

In fact, the number of lines is equal to

$$
\binom{p}{2} /\binom{s}{2}=p(p-1) / s(s-1)=p k N / s(s-1) .
$$

Since p and k are primes and since $\lambda \geq s$, we obtain (12).
(g) Assume that $\mathfrak{G} \cong L F^{\prime}(2,11)$. Let 0 and 1 be two distinct
 \mathfrak{B} respectively. Then by (e) we see at once that
$\mathfrak{Z}(0) \cap \mathfrak{Z}(1) \cap \mathfrak{B}: \mathcal{A}(0) \cap \mathfrak{Z}(1) \cap \mathfrak{B} \cap \mathfrak{Z}(1)=p-k$. Thus the orbit of $\mathfrak{Z}(0) \cap \mathfrak{A}(1)$ containing i contains $F(p)-D$. Clearly this is the case for every block containing both 0 and 1. Thus the orbit of
 and 1. Now considering the index of $\mathfrak{A}(0) \cap \mathfrak{Z}(1) \cap \mathfrak{B} \cap \mathfrak{Z}(i)$ in $\mathfrak{Z}(0) \cap \mathfrak{Z}(1)$ we obtain

$$
\begin{equation*}
\lambda(p-k)=t(p-s) \tag{14}
\end{equation*}
$$

where t is the index of $\mathfrak{A}(0) \cap \mathfrak{Z}(1) \cap \mathfrak{J B} \cap \mathfrak{Z}(i)$ in $\mathfrak{E A}(0) \cap \mathfrak{Z A}(1) \cap \mathfrak{E}(2)$. From (14) we obtain

$$
\begin{equation*}
k=(\lambda-t) p+t s \tag{15}
\end{equation*}
$$

Since by (13) $t s<\lambda N<k, \lambda-t$ is positive. From (2) and (15) it follows that

$$
\lambda-t+t s \equiv 0(\bmod k)
$$

which implies that

$$
\begin{equation*}
\lambda-t+t s=k . \tag{16}
\end{equation*}
$$

From (2), (15), (16) we obtain

$$
k=(k-t s) p+t s=(k-t s)(k N+1)+t s=(k-t s) k N+k,
$$

which implies that

$$
\begin{equation*}
p=\lambda+t_{s} N . \tag{17}
\end{equation*}
$$

But by (3) and (13) $p=\lambda+t s N<\lambda+\lambda s N<\lambda+s k \leq \lambda+(N-1) k<p$. This contradiction establishes $\mathfrak{G} \cong \operatorname{LF}(2,11)$.

BIBLIOGRAPHY

[1] R. Brauer, On permutation groups of prime degree and related classes of groups, Ann. of Math. (2) 44 (1943), 57-79.
[2] P. Dembowski - A. Wagner, Some characterizations of finite projective spaces, Arch. Math. 11 (1960), 465-469.
[3] N. ITo, Über die Gruppen $P S L_{n}(q)$, die eine Untergruppe von Primzahlindex enthalten, Acta Sci. Math. Szeged 21 (1960), 206-217.
[4] N. Ito, Transitive permutation groups of degree $p=2 q+1, p$ and q being prime numbers III, Trans. Amer. Math. Soc. 116 (1965), 151-166.
[5] N. ITO, On a class of doubly, but not triply transitive permutation groups, to appear in Arch. Math.
[6] T. G. Ostrom - A. Wagner, On projective and affine planes with transitive collineation groups, Math. Zeitschr. 7 (1959), 186-199.
[7] H. J. Ryser, Combinatorial mathematics, MAA (1963).

[^0]: *) This research was partially supported by National Science Foundation Grant GP-6539.

 Indirizzo dell'A.: Depart. of Mathematics, University of Illinois at Chicago Circle, Box 4348, Chicago, Ill. 60680 USA.

[^1]: ${ }^{1}$) For the theory of difference sets see [7].

[^2]: ${ }^{2}$) Read : $\boldsymbol{6}$ is not isomorphic to ...

