RENDICONTI del Seminario Matematico della Università di Padova

NOBORU ITO

On permutation groups of prime degree *p* which contain (at least) two classes of conjugate subgroups of index *p*

Rendiconti del Seminario Matematico della Università di Padova, tome 38 (1967), p. 287-292

http://www.numdam.org/item?id=RSMUP_1967_38_287_0

© Rendiconti del Seminario Matematico della Università di Padova, 1967, tous droits réservés.

L'accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON PERMUTATION GROUPS OF PRIME DEGREE *p* WHICH CONTAIN (AT LEAST) TWO CLASSES OF CONJUGATE SUBGROUPS OF INDEX *p*

NOBORU ITO *)

Let p be a prime and let F(p) be the field of p elements, called points. Let \mathfrak{G} be a transitive permutation group on F(p) such that

(I) \mathfrak{G} contains a subgroup \mathfrak{B} of index p which is not the stabilizer of a point.

B has two point orbits, say D and F(p) - D (cf. [3]). Let k be the number of points in D. Then 1 < k < p - 1. Furthermore $D = D(p, k, \lambda)$ can be considered as a difference set modulo p such that the automorphism group A(D) of D contains \mathfrak{G} as a subgroup (cf. [5]).

Replacing D by F(p) = D, if need be, we always can assume that $k \leq \frac{1}{2} (p-1)$.

Now the only known transitive permutation groups \mathfrak{G} of degree p satisfyng the condition (I) are the following groups:

(i) Let F(q) be the field of p elements. Let V(r, q), LF(r, q)and SF(r, q) be the r-dimensional vector space, the r-dimensional projective special linear and semilinear groups over F(q) respectively

^{*)} This research was partially supported by National Science Foundation Grant GP-6539.

Indirizzo dell'A.: Depart. of Mathematics, University of Illinois at Chicago Circle, Box 4348, Chicago, Ill. 60680 USA.

where $r \ge 3$ and $p = \frac{q^r - 1}{q - 1}$. Let Π be the set of one dimensional subspaces of V(r, q). SF(r, q) can be considered as a permutation group on Π . Identify Π with F(p). Then any subgroup \mathfrak{G} of SF(r, q) containing LF(r, q) satisfies (I) with parameters $k = \frac{q^{r-1} - 1}{q - 1}$ and $\lambda = \frac{q^{r-2} - 1}{r}$.

$$q-1$$

(ii) $\mathfrak{G} = LF(2, 11)$, where p = 5 and $\lambda = 2$.

Now among the groups mentioned above only LF(2, 11) satisfies the following condition:

(II) the restriction of \mathbf{B} to D is faithful (cf. [5]).

Thus it is natural to ask whether this is the only group satisfying (I) and (II). The purpose of this note is to make a first step towards the solution. We prove the following theorem.

Let \mathfrak{G} be a group satisfying (I) and (II). If k is a prime, then $\mathfrak{G} \cong LF(2, 11)$.

PROOF. (a) First of all, we recall the following fundamental equality for the difference set

(1)
$$\lambda(p-1) = k(k-1).^{1}$$

Since k is a prime by assumption, from (1) we see that k divides p - 1. Put

$$(2) p-1 = kN,$$

which implies by (1) that

$$(3) k-1 = \lambda N.$$

(b) Let \mathbb{D} be a Sylow *p*-subgroup of \mathfrak{S} and let $Ns\mathfrak{D}$ be the normalizer of \mathbb{D} in \mathfrak{S} . Then since $\mathfrak{S} = \mathfrak{D}\mathfrak{B}$, $Ns\mathfrak{D} = \mathfrak{D}\mathfrak{Q}$ with $\mathfrak{Q} = \mathfrak{B} \cap Ns\mathfrak{D}$. \mathfrak{Q} is cyclic of order *q*, where *q* is a divisor of *p* - 1. Clearly \mathfrak{Q} leaves *D* fixed. Also clearly \mathfrak{Q} leaves only one point fixed. Thus either $k \equiv 1 \pmod{q}$ or $k \equiv 0 \pmod{q}$. In the former case, by (2)

$$(4) N \equiv 0 \pmod{q}.$$

¹) For the theory of difference sets see [7].

On permutation groups of prime degree p which contain etc. 289

In the latter case, since k is prime,

(5)

$$k = q$$
.

(c) The restriction of \mathfrak{B} to D is doubly transitive.

Otherwise, by assumption (II) and by a theorem of Burnside **B** is metacyclic of order $k\zeta$, where ζ is a proper divisor of k - 1. Hence the order g of \mathfrak{G} is equal to $pk\zeta$. On the other hand, by Sylow's Theorem, g = pq(1 + np), where n is positive, since \mathfrak{G} is clearly nonsolvable. Thus

$$(6) q(1+np) = k\zeta.$$

If k = q, then from (6) $1 + p \le 1 + np = \zeta$. This is a contradiction. Thus $1 + np \equiv 1 + n \equiv 0 \pmod{k}$. Put n = ak - 1. Then from (2) and (6) we obtain

(7)
$$q(aNk + a - N) = \zeta.$$

Since N > 1 and k > 1, $Nk \ge N + k$. Thus from (7) $k < \zeta$. This is a contradiction.

(d) Let \mathbf{k} be a Sylow k-subgroup of \mathfrak{G} contained in \mathfrak{B} . By assumption (II) the restriction of \mathbf{k} to D is faithful. Thus \mathbf{k} is of order k. If \mathbf{k} leaves fixed at least two points, then since \mathfrak{G} is doubly transitive on F(p), the index of \mathbf{k} in \mathfrak{G} is divisible by p-1. This contradicts (2). Thus K leaves fixed exactly one point, say *i*. Then *i* belongs to F(p) - D. Let Ns \mathbf{k} be the normalizer of \mathbf{k} in \mathfrak{G} . Since clearly D is the only block left fixed by \mathbf{k} , Ns \mathbf{k} is contained in \mathfrak{B} . By assumption (II) \mathbf{k} coincides with its own centralizer. Thus the order of Ns \mathbf{k} equals $k\zeta$, where ζ is a divisor of k-1.

(e) Let $\mathfrak{A}(i)$ be the stabilizer of i in \mathfrak{G} . If $\mathfrak{G} \cong LF(2, 11), ^2$ then the restriction of $\mathfrak{B} \cap \mathfrak{A}(i)$ to D is doubly transitive.

Otherwise, by assumption (II) and by a theorem of Burnside $\mathfrak{B} \cap \mathfrak{A}(i)$ is contained in Ns \mathfrak{R} . Since Ns \mathfrak{R} leaves *i* fixed, Ns $\mathfrak{R} =$ $= \mathfrak{B} \cap \mathfrak{A}(i)$. Thus ζ is a proper divisor of k-1. Since $\mathfrak{B} : \mathfrak{B} \cap \mathfrak{A}(i) =$ = p - k, the order of \mathfrak{B} is equal to $(p - k) k \zeta$.

Now let \mathbf{B}' be a minimal normal subgroup of \mathbf{B} . Then \mathbf{B}' is a direct product of mutually isomorphic simple groups. Since the restriction of \mathbf{B} to D is doubly transitive, the restriction of \mathbf{B}' to

²) Read: **G** is not isomorphic to...

D is transitive. Since **R** has order k, **B**' is simple. By Sylow's Theorem **B** = **B**' (Ns**R**). Thus **B**' has order $(p - k) k\zeta'$, where ζ' is a divisor of k - 1.

Now by (2) p - k = (N - 1) k + 1. If $\lambda = 1$, then by a theorem of Ostrom-Wagner ([6]) \mathfrak{G} does not satisfy the assumption (II). Hence by (3) $N - 1 = \frac{k - 1}{\lambda} - 1 \leq \frac{k - 3}{2}$. Therefore by a theorem of Brauer ([1], Theorem 10) either (α) N = 2, $\mathfrak{B}' = LF(2, k)$ or (β) $N = \frac{k - 1}{2}$, $\mathfrak{B}' = LF(2, k - 1)$, $k - 1 = 2^{u}$.

By a previous result ([3]) \mathfrak{G} cannot be triply transitive on F(p). 1f (α) occurs and if p > 11, then by a previous result ([4]) \mathfrak{G} is quadruply transitive on F(p). Thus p = 11. Then it is easy to check that $\mathfrak{G} = LF(2, 11)$.

Suppose that (β) occurs. Then by (3) $\lambda = 2$. Now from $g = pq (1 + np) = p (p - k) k\zeta$ it follows that

$$k^2 \zeta + q \equiv 0 \pmod{p}.$$

By (2) $k^2 \equiv k - 2 \pmod{p}$. Thus

(8)
$$(k-2)\zeta + q \equiv 0 \pmod{p}.$$

Since $p = \left(\frac{k-1}{2}\right)k+1$ and $\zeta \leq \frac{k-1}{2}$, we obtain from (8)

$$\frac{(k-2)(k-1)}{2} + q \ge \frac{k(k-1)}{2} + 1,$$

which implies that

 $(9) q \ge k.$

Then by (4) and (5) q = k. Now again from g + pq(1 + np) = p(p-k)k it follows that

$$k\zeta + 1 \equiv 0 \pmod{p},$$

which implies that

(10)
$$\zeta = \frac{k-1}{2}.$$

290

On permutation groups of prime degree p which contain etc. 291 From (10), $g = pq (1 + np) = p (p - k) k\zeta$ and $\lambda = 2$ it follows that

$$(11) n = \frac{k-3}{2}.$$

Now let \mathfrak{G}' be a minimal normal subgroup of \mathfrak{G} . Then \mathfrak{G}' has order pq(1 + n'p) with $n' \leq n$. Hence again by a theorem of Brauer ([1], Theorem 10) n' = 1 and $\mathfrak{G}' \cong LF(2, p)$. Then $k = q = \frac{p-1}{2}$. Thus k = 5, p = 11, and $\mathfrak{G} = \mathfrak{G}' \cong LF(2, 11)$.

(f) The line through two distinct points i and j is the intersection of all the bloks containing both i and j (cf. [2]). Since \mathfrak{G} is doubly transitive on F(p), every line contains the same number of points. Let s be the number of points on a line. Then

(12)
$$N \equiv 0 \pmod{s(s-1)}.$$

In particular, if $N \ge 4$, then

$$(13) s \le N-1.$$

In fact, the number of lines is equal to

$$\binom{p}{2} / \binom{s}{2} = p (p-1)/s (s-1) = pkN/s (s-1).$$

Since p and k are primes and since $\lambda \ge s$, we obtain (12).

(g) Assume that $\mathfrak{G} \cong LF(2, 11)$. Let 0 and 1 be two distinct points of D. Let $\mathfrak{A}(0)$ abd $\mathfrak{A}(1)$ be the stabilizers of 0 and 1 in \mathfrak{G} respectively. Then by (e) we see at once that $\mathfrak{A}(0) \cap \mathfrak{A}(1) \cap \mathfrak{B}: \mathfrak{A}(0) \cap \mathfrak{A}(1) \cap \mathfrak{B} \cap \mathfrak{A}(1) = p - k$. Thus the orbit of $\mathfrak{A}(0) \cap \mathfrak{A}(1)$ containing *i* contains F(p) - D. Clearly this is the case for every block containing both 0 and 1. Thus the orbit of $\mathfrak{A}(0) \cap \mathfrak{A}(1)$ containing *i* coincides with the line determined by 0 and 1. Now considering the index of $\mathfrak{A}(0) \cap \mathfrak{A}(1) \cap \mathfrak{B} \cap \mathfrak{A}(i)$ in $\mathfrak{A}(0) \cap \mathfrak{A}(1)$ we obtain

(14)
$$\lambda(p-k) = t(p-s),$$

where t is the index of $\mathfrak{A}(0) \cap \mathfrak{A}(1) \cap \mathfrak{B} \cap \mathfrak{A}(i)$ in $\mathfrak{A}(0) \cap \mathfrak{A}(1) \cap \mathfrak{A}(2)$. From (14) we obtain

(15)
$$k = (\lambda - t) p + ts.$$

Since by (13) $ts < \lambda N < k, \lambda - t$ is positive. From (2) and (15) it follows that

$$\lambda - t + ts \equiv 0 \pmod{k},$$

which implies that

$$\lambda - t + ts = k$$

From (2), (15), (16) we obtain

$$k = (k - ts) p + ts = (k - ts) (kN + 1) + ts = (k - ts) kN + k,$$

which implies that

$$(17) p = \lambda + tsN.$$

But by (3) and (13) $p = \lambda + tsN < \lambda + \lambda sN < \lambda + sk \le \lambda + (N-1)k < p$. This contradiction establishes $\mathfrak{G} \cong LF(2, 11)$.

BIBLIOGRAPHY

- R. BRAUER, On permutation groups of prime degree and related classes of groups, Ann. of Math. (2) 44 (1943), 57-79.
- [2] P. DEMBOWSKI A. WAGNER, Some characterizations of finite projective spaces, Arch. Math. 11 (1960), 465-469.
- [3] N. ITO, Über die Gruppen $PSL_n(q)$, die eine Untergruppe von Primzahlindex enthalten, Acta Sci. Math. Szeged 21 (1960), 206-217.
- [4] N. ITO, Transitive permutation groups of degree p = 2q + 1, p and q being prime numbers III, Trans. Amer. Math. Soc. 116 (1965), 151-166.
- [5] N. ITO, On a class of doubly, but not triply transitive permutation groups, to appear in Arch. Math.
- [6] T. G. OSTROM A. WAGNER, On projective and affine planes with transitive collineation groups, Math. Zeitschr. 7 (1959), 186-199.
- [7] H. J. RYSER, Combinatorial mathematics, MAA (1963).

Manoscritto pervenuto in redazione il 17 marzo 1967

292