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SUMMATION OF QUASI - VECTORS ON BO-
OLEAN TRIBES AND ITS APPLICATION
TO QUANTUM THEORIES. I. MATHEMATI-

CALLY PRECISE THEORY OF P. A. M.

DIRAC’S DELTA FUNCTION

Memoria (*) di OTTON MARTIN NIKODÝM (a Gainbier, Ohio) 1 ~

This paper may be considered as generalization and, at
the same time, as simplification of the paper (14) by the
author in which a mathematical apparatus for Quantum
Mechanics is exhibited. Its background are Boolean lattices
whose elements are closed subspaces in the separable and
complete Hilbert-Hermite space. It yields a kind of gene-
ralized orthogonal system of coordinates (in this space)
which is so well adapted to the continuous spectrum of

selfadjoint operators, as the ordinary saturated orthogonal
system of vectors is to the discontinuous spectrum. The
theory deals with the notion of «trace» (french and

of «quasi - vectors », and uses a special kind of integrals
which resemble the Burkill - integral. The theory, in the

general setting, has given a simple canonical representation
of maximal normal operators, (22), (11), (26) which has

(*) Pervenuta in Redazione il 15 maggio 1958.
Indirizzo dell’ A. : Kenyon College, Gambier (Ohio, U. S. A.).
~) Made under the grant from the U. S. A. National Science Foun-

dation.

An account of this paper was presented May 2-1958 at the Mathe.
matical Colloquium of the Pardue University (Lafayette Ind.)



2

make possible to visualize the notion of multiplicity of the
continuous spectrum.

The latter was till then wrapped in complicated formulas
and thus was not transparent at all. The canonical reprc-
sentation of normal operators has supplied a very natural
and simple theory (22) of Stone’ s « operational calculus »

(16) for normal operators, and also a simple theory of 
mutable normal operators, (22).

The present paper develops several variants of the inte-
gration mentioned above which correspond to various kinds
of approximations, [§ 1], and also yields a precise set-

ting of the genuine Dirac’ s Delta Function (33), giving not
only, [§ 7], a correct definition but also proofs of its

basic properties. At the end of this paper the reader can
find a list which compares the theorems as stated by Dirac
with those which are proved in our paper.

The Dirac’ s Delta Function was always a very fascina-
ting problem for mathematicians, because it seemed to

escape every precise approach, (the L. Schwartz « Dirac’s
8-measure » is f ar f rom bein g a suitable equivalent (34)),
though it yielded, as if by a mysterious witchcraft, in the
hands of physicists, many correct and important results.

To have our apparatus more useful, we have admitted
a very general approach to it, by taking as substratum

general Boolean lattices, and developping several kinds of

’approximations of elements of that lattice by special ele-
ments called g complexes &#x3E;&#x3E; [§ 1]. These approximations
yield, in turn, various sorts of integration. The theory of

traces, which is only sketched in (11), (and in rather special
setting in ( 14)), is now exhibited with detailed proofs [§ 3],
and the same can be said of the general system of coordi-
nates (sketched in (14)), which is now exhibited with details
in [§ 5]. The same is with various kinds of integration,
mentioned above, [§ 2] and [§ ~4J.

The analysis of the properties of the 8-function led to
our opinion that it should be considered not as a. function

of a single variable but as the f u n c t i o n y) o f two

v a r i a b 1 e s, which is however, translation-invariant. Indeed
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the function is a kind of a kernel of integral-equation.
Another modification was needed: the variables x, y could

not be numbers. In our setting they are « traces ».

The paper contains more than needed for the delta

function, because the author intends to have some other

application of this apparatus to Quantum Theories.
Numbers in fat parentheses refer to the list at the end

of this paper.

1. - Preliminaries. We like to use the term t r i b e, (35),
(Boolean tribe) to denote the complementary and distri-
butive lattice (4). Thus the tribe will be conceived as an

ordering (commonly called « partial ordering », « partially
ordered set », (37)). The element of a tribe will be termed
soma, (36). The tribe will be termed finitely, denumerably,
completely additive whenever all finite, denumerable, all lat-
tice joins are meaningful. Of course, finite joins always exist.
The ordering will be denoted by « ~» and lattice operations
(somatic operations) by +, ., , co (complement), ~, II.

If the somata of the tribe are sets, we shall use Bourbaki

symbols (38), v, ~B cc, U, fl . If we introduce the

addition » -~- (symmetric difference) defined by
~+~~(~2013~)+(~2013~)? (18), the tribe will be organized
into a commutative riu.g with unit, (Stone’ s ring). The

and the unit-soma will be denoted 0, 1 respecti-
yely. If the somata are sets, and the ordering relation the

inclusion of sets C , the zero will be the empty set and

denoted by 0. Since the tribe can be conceived as a ring,
the notion of ideal can be applied, (5). The somata a, b
are said to be di sj oi nt whenever a ~ b = 0.

Z. - Remark. Notice that somatic operations depend not
only on somata operated but on the totality of the tribe.

3. - Every theory, axiomatised or constructed, has a

specific notion of equality, with respect to which the genuine
operations and relations should be invariant.

E. g. for additions of somata we have: « if a = a’ ,
b = b’ , c = c’ , a + b = c, then a’ + b’ = c’ &#x3E;&#x3E;. According to
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the situation, that notion of equality may be axiomatised,
constructed or taken over from another theory.

We shall call it « groverningr (3), (2), (10).

~. - Let h’’, F" be two tribes. We shall denote with

prime, (double prime), the notions in I’’, (F"). We say that F’
is a finitely genuine subtribe of 1’" whenever the following
takes place (5): 1) The elements of F’ are also elements
of 2) the following are equivalent for somata a, b, c of’ F’:

These four conditions are independent from one another.
(If similar equivalences also hold true for denumerable

(all) operations, ’We say that F’ is denu-titerably (cosrtptetety)
genuiiie subtribe of F". The isomorphism A which attaches
to a and its =’-equa.ls in P’ the element a and its ="-equals
in F" . plunges in some way lr’’ into h’". If the elements of
F’ do not belong to F", but there is a correspondence c8

preserving operations such that em F’ is a finitely genuine
subtribe of F", we say that 1~’’ is a finitety genuine subtribe
of F" through isomorphism B. If the equality =’ is just
the equality =" restricted to F’ we say that F’ is a finitet J
genuine strict subtribe of F".

5. - E. g. Let F’ be the tribe whose somata are finite
unions of half-open c intervals » (a, p) where 0  a, p :!!9- 1,
with ordering relation ~’ defined as inclusion C of sets.

Let 1~’’’ be the tribe of all Lebesgue-measurable subsets of

(0, 1) with ordering relation ~" defined bi. :

The governing equality =’ on F’ is the identity of sets,
that =" on F" is equality modulo the ideal of nullsets in

(0, 1). Here F’ is a finitely genuine subtribe of F". The
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correspondence t1 attaches to every set a of F’ the sets
where meas M = mea.s N = 0. 

’

If we take the tribe whose ordering relation is c"
and somata are a + M N; with a E F’, then F’ will be a

finitely genuine strict subtribe of F".
Notice that F’ is not a denumerably genuine subtribe

of F".

6. - Concerning the notion of homomorphism and iso-

morphism we refer to our paper (3), where some subtle

possible confusions are clarified.

7. - Let F be a tribe. Let us attach to every soma a E F

a non negativP number 2~ with the conditions: if a b = 0,
then + b) = + a = b implies ~(a) _ ~,(b). 
shall call the function finitely additive measure on F.

If Oit a2 , ..., a,, , ... denumerable in number are disjoint, and

, has a meaning and , then we say that

p is a denumerably additive measure on F. Usually we
consider denumerably additive measures on tribes, which are
themselves denumerably additive, (see (5)). The measure
on Boolean tribes was introduced independently in (36)
and (6).

The measure is said to be effective whenever p(a) = 0
implies a = 0. The usual term « measure algebra » will be

not applied.

8. - In this paper we shall pay special attention to

tribes whose somata are closed subspaces of a Hilbert-

Hermite space, (1), (14).

9. - Russell-Whitehead «relations» (40) will be termed
correspondences. Functions will be considered as correspon-

2) a E P means that a is an element of the domazn of the tribe.

Though an ordering and its domain are logically different notions, we
shall be allowed to use the same letter F for the tribe and for its

domain.
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dences. If we like to emphasize that a letter denotes a
variable we provide it with dot, ex. f (x). If R is a corre-

spondence, its domain will be denoted by (I B and its range
by DR. The correspondence R, restricted in the domain to

the set E, will be denoted (40) by E 1 R. The symbol
w( · x - ) ~ will denote the set of all q(z) such that x

satisfies the condition w( · x · ). The sign =df means « equal
by definition &#x3E;&#x3E;.

10. - We shall consider Hitbert -Hermite spaces (16),
(41), which be of finite or denumerably infinite

dimensions. We shall consider only the case where the

space iT is_separable and complete. The 
of the vector X will be denoted the (Hermitean)
scalar product will be written ( X , Y ).

11. - By linear variety in H we shall understand a non
empty set E of vectors such that if x, y E E, then 
whatever the complex numbers may be.

A closed linear variety will be termed subspace, or

simply, slnace. Thus ( 0 ) and 1-1 are subspaces. A vector x
is said to be orthogonal to the space a if x’i. y for all y E a ;
we write x I a, a I x. Two spaces a, b are said to be ortho-

gonal, a I b, if x J- y for every x E a and every y E b.
If a is a space, then the set u of all vectors orthogonal

to a is also a space and is termed (orthogonal) complement
of a. We write b = co a.

1Z. - If x is a vector and a a space, there exists a unique
decomposition x ~ x’ -~ x", where x’ E a, x" E co a. The vector
x‘ is termed projection of x on a and denoted by Proja x
or Proj (a)x. The operation of projection is a selfadjoint
hermitean operation which carries tl onto a. The following
properties are known:

If a C b , then Proja Proj,, x = Proja x.



7

13. - S t o n e (16) has studied the following operations
on spaces. I f a2, ... are spaces, then by their sum at +
-f- a2 + ... , we understand the smallest space containing
them all, and by their product at . · a2 , ... , Hiai we understand
the greatest space included in each of them, i. e. their
set-intersection. These operations a re also considered for

any not empty class of spaces.
If we denote the whole space H by I, write 0 instead

o f ( () ), and put a - b df a · co b, we have the following rules :

The distributive law (a -~- b) · c = a · c -~- b · c is

not in general true, neither a - b = a - a · b.

14. - Iii (14) we have introduced the following notion :
two spaces a, b are said to be compatible (with one another)
if (a - ab) I (b - ab). The following properties are equivalent :
1) a, b are compatible; 2) Proj a b C b ; 3) Proj a b C a · b ;
4) Proj a b = a · b ; 5) Proj a b = Projb a ; G) a - b = a - ab ;
7) a ab C a b ; 8) a = ab + a - · co b ; 9) Proja Projb x ==
Proj, Proj a x for every vector x, (42) ; 10) there exists

a space c such that Proja Projt, x = Projc x for every
vector x .

1~. - Concerning compatibility, the following theorems
hold true : If a, b are compatible with one another and
with c, then a -~- b, a - b, co a, a b, a -~- b are also compa-
tible with c. If all spaces of a non empty collection t
are compatible with one another and with c, then ’.1’ a,

(a E and fl a, (a E N # ) are also compatible with c.

16. - Let T be a non empty set of spaces such that

1) if a, b E T, then a -E- b E T, 2) if a E T, then co a E T, 3) if
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a, b E T and a · b = 0, then a. I b. This set T if ordered by
the inclusion-relation C of sets, is organized into a Bo-
olean finitely additive tribe T, where the lattice opera.
tion coincide with spacial operations introduced above (39).
The spaces of T are compatible with one another. The
distributive law holds true within T.

If the condition 1) is replaced by the following one:
oo

if a 2s ... s an, ... ET, s then 2; an ET, T will be denu-
n=i

merably additive. If any sum of spaces of T belongs to T,
the tribe will be completely additive.

If T is a non empty set of spaces such that 1) if a, b E T,
then a -~- b E T ; 2) if a E T, then co a E T, then a necessary
and sufficient condition that T be a tribe set, is that all

spaces of T be compatible with one another.

17. - The following theorems are proved in (39) :
If T is a tribe of spaces, then there exists a denume-

rably additive tribe T’ of spaces, such that T is a subset
of T’ and is closed in T with respect to finite addition and

complementation:
If T is a denuinerably additive tribe of spaces, then it

is al so completely additive. (For a more general theorem
for abstract tribes, see (12)).

18. - If T is a tribe of spaces, p a space, then a neces-

sary and sufficient condition that there axist a tribe T’ of

spaces such that T C T’, p E T’, is that p be compatible
with T (i. e. with all spaces E T), (14). The same condition
is required, if T is denumerably additive. The smallest T’
containing both T and p is the set of all spaces a · p + b co p
theorems where a, b E T.

19. - A tribe T of spaces is said to be saturated if for

every tribe T’ with T C T’ we have T = T’. The following
hold true :

For every T there exists a saturated T’ such that T C T’.

Every saturated tribe is completely additive.
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Z0. - Let T be a tribe of spaces and E a not empty set
of vectors. By the radiation space of E lvith respect to T,
(champs de rayonnement (14)) we understand the set MT(E)
of all vectors r such that for every E &#x3E; 0 there exist com-

plex nnmbers aa, vectors ç. E E and spaces a; E T, i =1, 2...., n);
(n = 1. 2, ...), where :1 x - E.

is the smallest space containing all vectors

For sets E composed of a. single vector see Stone’ s book
(16), the general case is mentioned in (43).

A necessary and sufficient condition that a space p be

compatible with a tribe T’ is that there exists a set E such

that p - MT(E).

vector w is called generating vector of the space
~l with respect to T, if MT(( w )) = I =- H. The following
two properties are equivalent : 1) there exists a generating
vector of l~~ with respect to T. 2) for every set E ~= ~ of

vectors there exists a vector ~ such that

If w is a generating vector then for every a E T we
have a = MT«(Ploja tO )).

A necessary and sufficient condition that there exists a

generating vector of I with respect to T, is that T be satu-

rated, (16), (44). 

22. - For every denumerably additive tribe T of spaces
there exists an effective, non negative measure on it.

23. - If w is a generating vector of the space with

respect to T, and if we put = II Proja L2 for a E T, we
obtain a denumerably addi tive, effective non negative,
(finite) measure on T. (Every denumerably additive measure
can be given by an analogous formula).



10

§ 1. - Approximation of somata by complexes.

This [§ 1] is of auxiliary capacity and contains defini.
tions of some notions and proofs of their properties which
are needed for foundation of a kind of integration in [§ 2].
First we introduce the notion of the base B of a finitely
additive tribe 1/’ and give some of its properties. The tribe
Z~’ will be extended to a denumerably additive tribe G which
admits a denumerably additive, non negative measure 11. The
notion of between two somata of G will be

introduced [5] and studied. Later, G will be admitted to be
the Lebesguean extension of The notion of a

complex will be introduced [9] and special approximations
of somata of G by complexes will be discussed. The reader
interested mainly in application of our theory, may omit
reading quite complicated proofs of theorems [18.1] and [19.1].

1. - In this [§ 1] we admit the following hypotheses refer-
red to as Hyp FBG, (compare (11)).
F is a nor, trivial, finitely additive tribe; its somata

f, g, h, ... will be termed figures.
7~ is a subset of F, satisfying the conditions :

1 ) 0 E B, I E B,

2) if a, bEll. then a 7~,

3) if f E Ii’, then there exists a finite number of somata
of B whose sum is f.

The somata a, b, c, ..., p~ q, ... of will be termed bricks.
The set ~ will be termed base of F -).

G is a denumerably additive tribe. ~Ve suppose that ~..,

is its finitely genuine subtribe and denote by 6[ the corre-
sponding isomorphism from into G.

3) Though the tribe is an ordering, and hence it differs logically
from the set of all its elements, nevertheless, to avoid complications
in notation, we shall use the same letter to denote the tribe and the
set of all its somata.
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2. - We shall need some lemmas valid for any tribe 
The letters will denote its somata.

‘:.~. - Lemma. The somata ql , ... , i n [2.2] are

disjoint.

Proof. Let 2 ~ z  k. We have

Hence

which gives

We have hence, by (1),

qiqk c Pi co Pi = 0, so qi, qx are disjoint.

Now let i = 1. We have qk = px - (Pi + ... + hence

qk ~ co pi . Since ql = pl , il follows qkq, :5" co pl PI = 0.
The lemma is proved.

3. - We shall consider the following new ypothesea :

(Hyp. Ad.). If a E B, then co a can be represented as a
denumerable sum of mutually disjoint bricks, where the

infinite summation is taken over from G. This statement

shall be understood as follows: If a E B, then there exist

disjoint bricks ai, as , ... , a" , ..., denumerable in number,
such that where é1 is the

isomorphism mentioned in [1].
Another hypothesis is:

(Hyp. Af.). If a E 11, then there exists a finite number

of disjoint bricks lit,..., an such that co a = al + ... -~- an .
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Of course (Hyp. Af.) implies (Hyp. Ad.). For _our main

purpose (Hyp. Af) is sufficient.
However. since we have further generalizations in mind,

we prefer to work under the less restrictive hypothesis
(Hyp. Ad.). The complication which our approach will
imply, is not too great.

3.1. - Example. Let F be the tribe whose somata are

0 and finite unions of half-open segments (a, ~) where
0~o&#x26;p~l. Bricks are just those segments. (Hyp. Af.)
is satisfied.

3.2. - Theor. If

1 ) F is a finitely additive tribe,
2) 
3) 0 E -B’ , I E B’ ,
4) if a, then a · b E B’.

5) if a E B’ , then co a is a finite sum of mutually
disjoint elements of 1?’ ,

6) F is the smallest strict subtribe of F containing 
then

1) every is a finite sum of mutually disjoint
elements of B’ .

2) every finite sum of mutually disjoint elements of
B’ belongs to F,

3) l~’ i s a base of F.

Proof. Denote by Fl the set of all somata of ~’ which
are finite disjoint sums of elements of B’. We shall first

prove that F1 is a strict subtribe of j~B
Let p E Fl . ~Ve have p = al + ... + a" where a, 6 

n ~ 1. Hence co p = co (at -~- ... + = co at ... co a" . By
hyp. 5 we have for i = 1, 2, ... , co ai = aft -~- ai2 -f- ... where
the sum is finite and the elements are disjoint. Hence

The terms of this sum are, by hype 4, elements of B’
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and they are disjoint. Indeed a~lx, ... ... = 0 all

the time when one of the inequalities xl ~ ~31, ... , a" =f= pn
is true; hence different terms are disjoint.

Consequently co p E 
Thus we have proved that

(1) then co p E Fi .

Now let p, q E We have

where the terms of each sum are disjoint elements of B’,
and the sums are finite.

We get The terms of this sum are

disjoint elements of B’ .

Thus we have proved that if a, b E ~ i , then a b E b"l .
This result and (1) imply that Il’l is a tribe. Its unit is I
and its zero is 0. It is a strict subtribe of F and contains

Hence, by hy.p. 6, F= It follows that B’ is a

base of F.

3.3. - There exists a tribe F and a base 11 of h’ such

that (Hyp. is not satisfied-hence (Hyp. Af.) neither.

Example. We shall consider vario us half open subinter-
vals ,a, B) of 1,0, 1). Denote by a(0), b, the intervals

respectively, an put a(O) ’l-J b.

b" df b u a(1). We divide into three equal parts a(0, 0),
b(o), 0(0, 1), and we do the same with o(l), getting 0).
~(1), a(1, 1). We put

Suppose We have already defined all (X2,..., 
where ai, (X2,..., mr are 0 or 1 and r is given. We divide
this interval into three equal parts :



14

and def ine :

Thus we have defined inductively all ac(al , ... , a,,) for

n =1, 2,.... Then (1) defines all b(a1, ... , x") and (2) defines
all &#x26;’(xi,..., a") and b"(ai , ... , x")·

Denote the class of sets composed of 0, (0, 1),
b, b’, b", and all b(tXt,..., 0153,.), b’(ff-l ~ --- , xr,), b"(x1 , ... , 
Denote the smallest tribe of sets which contains R.
Under the above circumstances B is a base of F, but

(Hyp. Ad.) is not satisfied.

3.4. - There exist F and 13 where (Hyp. Ad.) is satisfied
but (Hyp. Af.) is not satisfied.

Example. We consider the segments denoted by b,
without or with primes and indices as before, but of all

kinds: open, closed, half open on the right and half open
on the left. They, and all their endpoints 4) will constitute
the base.

If we consider the smallest tribe containing that base,
we have satisfied (Hyp. Ad.), but n ot (Hyp. Af.).

3.5. - After this preliminary discussion, we shall prove
some lemmas under (Hyp. Ad.) or (Hyp. Af.). To simplify
writing of formulas which involve infinite operations, we

00

shall make the following agreement. We shall write S fn
"=-1

and instead of and respectively. If

special clarity is needed we shall say that the infinite

denumerable operations, performed on somata of are

taken from G &#x3E;&#x3E;.

3.5. - Lemma. Under (Hyp. Ad.) if al, ..., an are bricks,
(n &#x3E; 2), then co (al + a2 + ... + a,,) is the sum of a denume.

4) We mean single point-sets.
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rable number of mutually disjoint bricks (infinite sumnia-
tion are taken from (~).

Proof. We have co (al -~- ... -~- a,~) = co a1 ... co an , and by

(Hyp. Ad.) , where

disjoint bricks. Hence

Now (alkl ... a",~n) .= 0 all the times when at

least one of the inequalities kl ~ ~1, ... , holds true.

Hence all the termes in (1) are disjoint. They are bricks
on account of [1]. The lemma is proved.

3.5.1. - Lemma. Under if Oi~...,~ are bricks

(n ? 2), then co (a, -~- ... -~- an) is the sum of a finite number

of mutually disjoint bricks.

Proof. Similar to that of [Lemma 3.5.].

3.6. - Theor. Under (Hyp. Ad.), if f E ~’, then f is the

sum of a denumerable number of mutually disjoint bricks.
(Infiiiite summation is taken from f~).

Proof. By [1] we have f = al -f- .·. -~- a,z where ai are
bricks. We may suppose n ~ 2, since we can add as many
zero somata as we like. Indeed, 0 is a brick.

Put g$ a f a~ - al , ... , an - (at + ... + We

have by [2.2], and [2.3],

Since
n

we have, by [3.5],
, are disjoint bricks.

We get so, by (1), the lemma is proved.
8=1

3.6.1. - Theor. Under (Hyp. Af.), if f E F, then f is the
sum of a finite number of disjoint bricks.

Proof. Similar to that of [3.6. Lemma].

4. - Def. By a covering (brick-covering) we shall understand
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an at most denumerable sum of bricks, [i. e. A-images of

bricks] -). Hence 0 is a covering.
We shall prove that, under (Hyp. Ad. j, a covering can

always be considered as E can , where a,, is an infinite
n=1

sequence of disjoint brickq. To do that we need some

lemmas.

~.1. - Lemma. If ,S is a denumerably- additive tribe,
then for its somata El . E2, ... , En’." we have 

We have El * B, E2  B.... , hence, by definition of

the lattice sum, A ~ B. On the other hand we have El c A,
~W..... , hen ce ~~. so the lemma is proved.

4.2. - L.emma. If g is a denumerably additive tribe, then
for an infinite sequence of its somata E1, E2 ... , En , ....
we have :

2) The somata FZ .... , F,t , ... are all disjoint.

Proof. The thesis 2) follows from [2.3]. We have, bj- [4.1],

thpn L can be considered as the 

E h and all gn are disjoint.

5j There must be at least one brick in the sum, since we do not

consider - empty , sums-for reasons given in (:3). We can define a
oo

covering as z ii.,, where ai, ; I is an infinite sequence of bricks. Since
M==i

0 is a brick. we always can replace finite sums by infinite ones.
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Proof. This follows from [4.2. Lemma].

~.3. - Theor. Under (Hyp. Ad), if L is a covering, then
it is a denumerable sum of mutually disjoint bricks.

Proof. We have, by [Def. 4], L = al + Q2 + ... + an + ...,
where ai are bricks.

f3 g a. 
- (a1 + a2), ...

We ha;e, by [4.2], L = 11 + f ~ + ..:, where all f = are

disjoint. On the other hand, since fs E h, the figure fi is,
by [3.6], a sum of a denumerable number of disjoint bricks.
This completes the proof.

4.4. - Cor. Under (Hyp. Ad.), if L = f1 + f3 + f8 + ... +
+ f n + ..., where f n are figures, then there exists an infi-
nite sequence of mutually disjoint bricks ai, a2, , a" , ...

such that 1) L = a1 + a~ + Os +... 2) for every I there

exists j such that ai ~ 

Proof. We take over the proof of [Theor. 4.3], getting
L = g~ -~- 92 -~- ... -#- g" -f - ... where gi , gz , ... , gtl,... are figures
and where gl ~ f 1, ~2~/2?....

Now, by [3.6], We can decompose each g" into disjoint
bricks gn = an1 + an2 + ... (n = 1, 2, ...).

Since the set = 1, 2, ... is denumerable it can

be represented by an infinite sequence. We have 
so the theorem is proved.

5. - In this subsection till [12], but [12] excluded, we
shall consider a general denumerably additive, non trivial

tribe !r. We shall not admit neither (Hyp. FBG), nor (Hyp.
Ad.). The topic we shall deal with will be later applied to
the circumstances conditioned by (Hyp. and (Hyp. Ad.).

We admit the hypothesis (Hyp. G admits a non

negative measure {i which is not trivial i. e. we have

&#x3E; O. The measure should be 0 invariant, i. e. if E G F,
then p.(E) _ 
We take such a measure and will keep it fixed.

The measure may be effective on G or not. It induces
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in a subtribe IJ1 of G a measure, also denoted by ji, which
is finitely additive on ~’. It may be effective on /1’ without

being effective on G. We do not suppose anything about
the effectiveness of ~,.

5.1. - Def. Under (Hyp. we define on (; the notion

of tL distance bettveen two somata E, F of ~S; (see (7)) : ~V’e
define it by:

where + denotes a 1 g e b r a i c a d d i t i o n in the S t o n e’ s

r i n g f~ (see Preliminaries).
The notion is G - equality - invariant i.e.~ i f’

5.2. - We shall have some theorems concerning that

notion of distance. They are based on some properties of
the algebraic addition.
We mention the following -f- F, E -+- E =

- 0, the associative and commutative law for the algebraic
addition 1).

We have ~,(E) r.. [ U, E ~~, .

gives by induction: .

6) We shall usually write I instead of 11’11’-’ when no
ambiguity can result.
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Applying [5.7.1] and afterwords [5.9], we prove the state-
ment.

The above lemmas yield proofs for the following proper-
ties of the distance of somata of G.

Proof by [5.7.1].
Proof by [5.8].

Proof. By [5.12] we have EH, PH I ~ E, F ~ -~- i H, ~1;,
from which, by [5.4], the statement follows.

Proof. We have
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Since
Hence for some With , I

Proof. We have E EF +(E - F), where both terms

ou the right a,re disjoint somata. Hence EF = E (E - F),
which gives, a s E - ~’ ~ E, I1(E. F) = - F).

From the hypothesis it follows that ~,(E - F) ~ ~, hence
we get p(EF) - p(E) - r. The proof of the second thesis is
similar.

By hypothesis, [5.12] and [5.19] it follows that E, E’
Similarly we get the inequality ; F,

The second thesis follows from

6. Theor. For somata of Q~ the following are equivalent:
I. 11 is an effective measure on G.

II. E, F lpo = 0 implies E G F.
Proof. Suppose II is not true. Then there exist E, F

such that
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Hence

I say that either E F ~ 0 or F - E ~ 0. Indeed, if not,
we would have E F = ~), F - E = O, and then E · co F=0.
F co Since E = EF -~- E co F, co E,
we would have E = EF. F = FE, and then E = Ir’, which
has been excluded in (1 ).. ,

If we get, by (2), and if F -
- E # 0, we get, by (2), E) = 0, so p is not effective,.
The above arguments show that I implies II. To prove tha t
II implies I, suppose I is not true.

There exists such that ~,(E) .= 0. Hence, [5.2J,
0, E ~ = 0. Hence, by II, which is a contradiction.
The theorem is proved.

6.1. - Suppose that [L is effective. We have the following:

and E, h’ ,~; = 0 is equivalent to E = F.
This all by [5.3], [5.5], [6] and because the notion of

distance is G-equality invariant.
Hence the notion of distance of somata organizes the

tribe G into a HAUSDORFF - metric space, hence into a topo-
logy (7).

6.2. Def. Now let us drop the hypothesis that p is an

effective measure on ?. Introduce for somata of G the

following new notion of equality E =f1- F, defined by

~E, F~,~=o.

6. ~.l . - This notion is invariant with respect to the fa-equa-
lity. It satisfies the usual axioms of identity.

Indeed, we have, by [5.4], E =11 E. If E =P- F; then

Proof. Suppose that E =P- F and have
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6.’.’~. - The notion of distance is invariant with

respect to the 03BC-equality. Indeed, suppose that 

We have

hence F’) ~ F).
Similarly we get [L(E + F)  ~,(E’ ~- F’), which completes

the proof.

6. ~.3. - The above shows that the notion of distance

F,~, organizes G into a HAUSDORFF metric topo-
in which however not = G is the governing equality

but =w.

Indeed the relation F IIJ. = 0 is equivalent to E ==11. F.

6.2.4. - The notion of measare p is invariant with respect
to =F, i. e. if then = 

Indeed we have ~,(E) _ ~ E, -O ~ ~. , O j ~, . Since
the notion of distance is we have ’ E, 0’~,=~~’,
0 1,L,. hence p(E) = 

~.3. - The set ~T of all somata E with p(E) = 0 is a

additive ideal in the tribe C..

Proof. If ... , E" , ... E J; then -f - E2 + ...) = 0,
and then El -~- ... E J.

On the other hand we have: if E E J and E’ S E, then

E’ ~ ~I. Indeed ~,(E’) ~~ = 0.
6.3.1. - The equality defined as h- in (6.2] coin-

cides with the equality modulo ~T in the tribe G, i. e. with
E (see Preliminaries).

Proof. We define E =JF 6 J where - is the

algebraic subtraction in the Stone’s ring G.

Since the subtraction coincides with the addition, 
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can be written as E -~- i. e. + F) = 0.

~.~.2. - Def. If we introduce on /I the defi-
ned : by « E C F F means ji(j~2013F)==0~ then will
be an ordering, and G will be organized into a BOOLEAN

lattice with governing equality =p.. (See Preliminaries).
The operations induced

by the ordering Cll have the properties : 
F, E ==p. E - F and we

H 1so have Ip. == p. I, O ~ _ ~ 0.

In addition to that: E1 + IJ. E2 +1J.... == 1’- El + E2 + ..., and

similarly for infinite products.
The measure p is denumerably additive and effective

on the tribe i. e. on f~ taken module ~T, (see [6.3]).
The above auxiliaries and some remarks, given in Preli-

minaries yield the following:

6.3.3. - Theorem. The relation E C p. F, defined by
;~(E F) = 0, in an ordering on G. It organizes G into a

denumerably additive BOOLEAN lattice Gj with E =P- F.
defined in [6.2], as the governing equality. The operations
in GJ satisfy the conditions [6.3.2.]. Gj is just the tribe

G, taken modulo the ideal ~T of all somata of ~ whose

03BC-measure equals 0. The measure p is =03BC-invariant, denu
merable additive and effective on Gj. The notion of

distance E, F Ip. is =03BC-invariant. It organizes Gj into a

HAUSDORFF-metric space. The antho r has proved in (7)
that this space is complete.

. - Def. The notion of distance induces in (~ the
. 

notion o f lilnit of an, infinite sequence of sotJtata of 0.
If E, El . El , ... , we say that the sequence

i E. t It-tends to E, whenevei· lim ~ E" , = lim 

The limit. if it exists, is We write

6.5. - The notion of limit is =03BC-invariant.

6.6. - Using methods of the theory of metric-spaces and
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properties [5.11]-[5.14] we prove the following: ]

Proof. By we have

Hence, since
we get lim F",  ~ F 1. We also have

Consequently
which completes the proof.

then

Proof. - We have hence, by

7. - This subsection and some following ones (7-11.2)
are devoted to various kinds of extension of BOOLEAN tribes.
The character of this discussion is general. We need it

because the topic which is rather subtle, will be applied
later in our main discussion. The hypotheses ’We admit are
the following: There are two tribes and (~, where P is

finitely additive and a finitely genuine subtribe of G which
is supposed to be denumerably additive. Let A be the cor-
responding isomorphism from .If’ into ~~:. We do not consider
any base B of F.

7.1. Def. - By the Boreliatl, extension of F within G we
shall understand the smallest tribe h’b whose somata E G,
and such that:

1) if f E F, then df E G,
2) Fb is a denumerably genuine strict subtribe of (-J.

(See Preliminaries), so the notions of orderi n g, equality.
zero, unit and finite and denumerable operations in Fb are
taken from G,

3) if A E then co A E 
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7.1. - The existence of J1"JfJ can be proved by taking the
intersections of all strict subtribes of 1 having the

above properties. This can be done, because G satisfies

the above conditions.

~.;’. - The tribe Ipb can be constructed by tra,nsfinite

recurrence, by defining the sets 2!~ Bx of somata of G,
where are ordinals, 1) as folluws : d.l it aF,
A 2 is defined as the set of all denumerable sums PI -~- P2 +
-~- ... ~-- P,~ -~- ... where PnEA1vBl, and B2 is defined as

the set of all co P, where PEA2.
In general, let x ~ ~ be an ordinal. We define A" as

the set of all sums Pl + P2 + ... + P,~ + ... where Pn E
E U [Af3 u and we define Bx as the set of all Romata
gi

co P, where 
We have for 01531  ~2:

Now, we define:

where the union is taken over denumerable ordinals.

7.~. - We shall prove that G’ = 

Proof. First we shall show that G’ is a denumerably addi-
tive tribe, and, at the same time organized into a denume.
rably genuine strict subtribe of f~. Indeed, let Pl , P2, ... ,

Pn , ... E G’. There exists, by (2), ordinals a(1), %(2), ... , a(n),
...  Q such that There exists (n . -1, 2, ...).

00 
’

with We have, by (1), Hence E
’ 

"=1

C G’. Let we have for some a  Q, P E Ax. Hence
G.

Thus is denumerably additive. If we take on f~’’ the

ordering restricted to G’, we get the statement to be

proved, because (}’.

(7) Concerning a precis setting of the theory of ordinals. see (8).
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Now C G’, because FL has the minimum-property
j ~ ]. On the other band we can prove, by induction, that

Indeed, because [7.2].
Suppose that for all ordinals B  a, where a &#x3E; 2, we have
A~ C ¡i’b. It follows that Ba C Fb, and C 

Take P E We have P = Pi + P2 +... + P" + ... where

some ordinals oc. We get, by (1), Pi, ... E 111b, and

then Thus we get Fb, and then, by induction,
we have proved that for a  Q we have A’ 9 Fb. Taking
account of (2), we obtain Thns we have proved
that G’=Fb.

7.4. - We can prove that the set Jt1b is the smallest class

G" of somata of which satisfies the conditions 1), 2), 3)
of [71, but instead of 4), the following one:

4’) if Pi, PZ , ... , I Pn .... E G", and are all disjoint, then

7.5. - We can get .,Fb by inductive construction, fitting
[7.4], as follows. We define and we define

as the collection of all somata of G, having the form
P, ~- P2 + ... + Pn -f- ... where P. E U [CP ~ Dgj and where

p«
all Pn are disjoint. We define Dx as the collection of all

somata co P, where We prove that

7.6. - Remark. The above is general and can be applied
whenever we have a finitely additive tribe which is a fini-
tely genuine subtribe of a denumerably additive tribe. If
we take for G a wider tribe, but with not changed notion
of equality, Fb will not change. We emphasize that in P,6
the governing equality and operations are taken from (~. The
tribe Fb is a denumerably genuine strict subtribe of G.

8. - The of F6 within G.
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Let us admit that G possesses a denumerably additive
measure f1’E). The set J of all E, for which p(E) = 0, is a

denumerably additive ideal in 0, (see (5), [6.3] and (fi.3.3J),
Consider the set FF of all somata of ~~ having the form

P -E- P’ P" where = ~(P") = 0, and P’, P" E G.
In other words FF is the set of all somata of G which
are equivalent modulo J to somata of Fb. The set .F I. is,
within G, organized into a tribe with ordering, equality
and operations taken from G. It is a denumerably additive
tribe. The set is the set of all such that there

exists with E. P I;~ _:= 0. The null-sets in Fw are

the same as in G.

Remark - If we amplify G with preservation of measure.
but with not changed equalitj- then FR may also be

amplified, since we may have more null-sets. Thus tlie

03BC-null-set-extension of Fb within (z depends on G.

9. - The Lebesgue-covering 03BC-extension of F within (;.

In this subsection we shall refer to [1] but we shall not

admit any measure on the denumerably additive tribe G.
We shall suppose a finitely additive non negative measure
tL on P, which is a finitely genuine subtribe of G though
the isomorphism t1 which preserves the equality of somata
and finite operations. We shall imitate the LEBESGUE’s
extension-device from F into G by means of some kind
of coverings. We refer to our paper (2). We define

for all f E F. Let E E G. We define the « exlerior »
nteasure of E by

. 

where the infimum is taken over all sequences, f,, f,
00

~, 
.=1

We define the measure of B by:
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If = 03BC1(E), the soma E will be termed 
coverings-measurable or L-measurable and we put

It will be termed L-measure.

9.1. - Let E be measurable in the above sense. There

exists an infinite sequence of infinite sequences

such that

for all k, and

By [Lemma 4.2] we have

Hence

The somata ..., gxn, ... are disjoint,. We have:

Since we have 03BCgkn  03BCfkn. It follows that

We have E F.

Thus we have proved that if E is measurable in the

sense considered, then there exists an infinite sequence of
infinite sequences
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of somata of F such that dl, [7.2], the somata (1) are
disjoint. E C Pic where

and where

The sequence of sequences I (k = 1, 2, ...) yields the
infimum spoken of in 19].

9.2. - In (2) we have proved that for every f E F the
soma Af is L-measurable. We have also proved that the

set Fr· of all measurable somata of (~ constitutes a denu-

merably additive tribe. The equality governing on FL, is

that of G, so is the the unit of FL, so is the ordering
on J4"tL, and so are all finite and denumerably operations
in The tribe L/’ is a finitely genuine subtribe of FL, and
P’L is denumerably genuine strict subtribe of y. The 03BCL-null
sets in FL are those sets E, that for every 11 &#x3E; 0 there

’ ° 

00

exists an infinite sequence ... , In, ... with Afn, .
tI=

0000

v Using the device, shown in [9. 11, we prove
M==l

that the above condition is equivalent to the following:
For every &#x3E; 0 there exists an infinite sequence 11’ 12, ....
f s: , ... of disjoint somata of F, such that

The measure pL is denumerably additive on FL.

9.3. - Under the general circumstances considered it is

not true, that if f E F, then (see (2)): We only
have ~ pf.

Now, we have proved, in (2), that a necessary and suf-

ficient condition that = ’rtf is the following 
stated in (9) : 

--
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(of course if

9.~.1. - Now let us go back to our main case, conditioned

by hypotheses in [1] and (Hyp. in [5]. There a measure [t
was given in G, and it induced the measure in F. Take that
measure on F and extend it, by special coverings as in

[9], in G. Since is denumerably additive in satisfies
FRÉCHET’S condition: if E1 ¿ E2 ¿ ... b En &#x3E; ... are somata

of G with then (LEn - 0. Hence,. a fortiori, this

condition is satisfied by ’1 &#x3E; 12 2 ... &#x3E; fn &#x3E; ... Eli’ with
00

S - 0. Consequently, by [9.3], 11(f) for In
n=i

the sequal we shall be interested only in that case, though it
does not mean that n coincides with the set of all L-mea-
surable somata.

9.4. - Concerning the collection of all sets and

that of all 03BC-null sets, we must remark, that they may
differ: there may be more ji-null sets, than pL-null sets.

9.5. - We shall prove, by induction, that the borelian
extension Fb is a denumerably genuine strict subtribe of

FL, (see [7]).

Proof. From [9.2] we know that if f E F, 
We take over the topic of [7.2]. Suppose that if U BT,
then P E this for all ~ less than a given ordinal a where
1  a  8. Let Q E Ax. There exists a sequence { Qn j I where

Q. E ~~~’~~ ~ for some 0(,n)  a, and such that Q = Q1 +
+ ... ~- Q,~ + .... By hypothesis Q. E FL. Since ~’~ is denu-

merably additive, [9.2], we get Thus we have proved
that if P E Bx, then P E FL. Since

it follows that pb C FI·. Q.E.D.

9.6. - Under (Hyp. Gp) we shall prove that if P E Pb,
then (1P, (see [9.3.1]).

Proof. By [9.3.11 we have: if f E F, then
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= We take over the topic in [7.4] and [ ~ .~]. Suppose
that 1  :-  Q and that if ,

We shall prove that i f i

with disjoint terms, where for some

ordinals 0(n) a. By hypothesis we have - Since
both measures are denumerably additive [9.~1, we have =

have proved, I

pletes the proof.

Proof. Let q &#x3E; 0. There exist ,

Since this happens for everv q &#x3E; 0. we get aE = 0.

Proof. Let Hence ~(~-J-F)==0: hence
by [10], ._-_ 0, and then E, l~ ~~, - 0.

11. - We shall prove that if E E FL, then pE.

Proof. Let By [9.1] there exists an infinite

sequence of infinite sequences of somata of F:

such that for a fixed k, they are disjoint, E S;. whpre

where and where the
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sequence : the infimum, spoken of in [9-11. We have

Since tt is denumerably additive on G and gk2 ... disjoint,
we have

Past

We have I We have

Hence

On account of [9.6] we have hence

Consequently

because

Hence, by (2), 
_

By [10.1] it follows that

and hence
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which gives

n=1

From (2) it follows pL(E) = 

11. l. - We shall prove that if we extend FO by adjunction
of all 03BCL-null-somata of (-1, we get J4,L i.e. is the

03BCL-nullset-extension of Fb within G, (see [8]).

Proof. Denote this extension by ~. If E E F’, then

E - P + P’ - P", where PEFb, P’, P"EG with 
Since P ~ FL, by [9.5], and since P’, P" E FL, it follows
that Thus

Conversely, let E E Referring to arguments in [11J, we have

for some somata Qn which belong to Fb. Hence E equals
00

II Qn modulo the ideal of somata whose L-measure is zero.
n=l

Hence, (see Preliminaries),

We have proved that

From (1) and (2) the statement follows.

11.2. - Remark. Suppose we have, in a denumerably
additive tribe G, a denumerably additive ideal J, and

introduce on Gx the new equality f2 i. e. that modulo ~T.
Let E~, ... , Ell ... be an infinite sequence of somata

of G which are mutually J-disjoint, i. e. for 

Then we can find an infinite sequence

such that
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and all somata are mutually disjoint, i. e. E¡= 0.
To prove it, we define in G:

12. - We are going back to the circumstances conditioned
by hypotheses (Hyp. BFG) in ~1]. We admit (Hyp. Ad) 3]
and (Hyp. [5], and also the folloving hypothesis (Hyp. 

(Hyp. The tribe ~~, its measure p and the subtrihe

1/’ satisfy the condition

(J coincides whith the LEBESGUE covering extension of F.
as defined in [9].

12.1. - The 03BC-null somata in G coincide with the I1L-null
somata. G is the 03BC-null-somata-extension of Fb within (1-,

[8]. We have I1LE for all E E G.

12.2. - The following are equivalent for En, E E ~~.
(n ^ 1, 2, ...), I. En - F E, [6.4], 11. From each subsequence
- t of ~ i it can be extracted another one ]
such that

is the equality modulo the ideal of all lL-nll11-
somata in (J, (see (1)) (8). -

t8) The theorem is proved in (1) for denumerably additive tribes
whose somata are sets of abstract elements, and where on the tribe

a non negative measure is admited, which is denumerably additive.

Now, since the proof in (1) does not use the relation E of belonging
of an element to a class, the proof is valid for all abstract denumera-
bly additive tribes.

Compare (4).
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~~.:i. - Under hypotheses [12]~ if E E G then
there exists an infinite sequence Ul, g2, ..., y", ... of disjoint
figures (i. e. E F), such that

Proof. By [9.1] and [12.1] there exists n sequence ~l.

~~2 ..., gn,.... of disjoint figures, such that

and

are disjoint, we have

and, then, by (1),

12.4. - Under hypotheses [ 12], if E E G and Y! &#x3E; 0, then

there exists a figure f, such that  ~.

Proof. Bv [12.3] we can find disjoint figures c~2 .... ,

gn, ... such that

If ’We put

(1)

we have

Now, since the series (1) converges, there is an index
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it such that

Hence

The soma is a f igure. Hence f ro m a nd (2)

13.5. - Under hypotheses [12J, if E &#x3E; 0, there

exists an infinite sequence of disjoint bricks a2 , ... , an;
... , such that

Proof. By [12.3j, there is an infinite sequence i of

figures with

Now, by (Hyp Ad)

where anl, I anz, ... are disjoint bricks. Since the set ,

(n = 1. 2, ...), (k .-. 1, 2, ...) is denumerable, the theorem
follows.

1~.6. - Under hypotheses [12], if and 7j &#x3E; 0, there
exists a finite number of disjoint bricks al , ... , (n &#x3E; 1)

Proof. By [12.4], we find a figure f, such that

By (Hyp Ad) we have
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where a~ , ... , a., ... are disjoint bricks. We can find n
such that 

’

hence

From (1) and (2) the theorem follows.

In the sequel we shall use brick-coverings of somata
of G, defined in [4], and often apply the theorems [12.3 -
12.6]. By a covering of E E G we shall -understand any
covering L such that E c L. To simplify notations, we shall
write, for figures, f instead of df, and the same will be

for bricks. In the case of infinite sums we shall take sum-
mations from rf, as explained in {:3.5j.

13.1. - Remark. It does not seem true that in the case

where the measure {i in effective, the (Hyp Ad) follows.
Indeed, if f E F we can find a brick again in

f - a, another brick a2 , etc. But f - (a1 + u2 + ...) may
have a positive measure, though it may not contain any brick.

13.~. - The following two theorems can be proved, under
hypotheses [12j : If E E G, then there exists an infinite

sequence of coverings of E, Ll ~ L2 ~ ... ~ Ln ~ ... such

that = lim an d limp- Ln = ~ E.

13.3. - Under hy potheses [12], if

are coverings of E,
are coverings of F,

13.4. - As we mentioned in [6.23], the notion of distance
! E, organizes the tribe G, with governing equality =J1,
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into a metric space, hence into a topology. This topology is
is necessarily complete ~), but it may be not separable (11).

Later on, in [21], we shall discuss the condition of sepa-
rability.

14. - Hypothesis. To facilitate the discussion we shall
often admit that the measure p is effective on G. This

hypothesis does not affect much the generality. Indeed, if

the measure [L is not effective, we replace G by the same
tribe, taken modulo the ideal J~, of null-sets in G.

To get general theorems from those which Were derived
under Hyp [14], we only need to change =, ~ into -J,
~ i, e. =1’, respectively. The relation means

= 0, [6.3.2.].
14.0. - Theorem. Under hypotheses [12] and [14], the tribes
and ~L coincide.

14.1 - Def. By a complex we shall understand a finite

(even empty) set of mutually disjoint bricks. A not empty
complex P will be denoted by pl , p~ , ... , (n 1) or

i pi 1, where pi are bricks.

By the soma of the complex we shall understand pl +
+ P2 + ... + pn where n ~ 1, and the soma 0, if the complex
is empty. We shall write som P, if P denotes the complex.

By the measure of the complex P, we shall understand

p(som P). We shall write 03BC { pi }, 03BC(P) or p4som P).
, If P, Q are complexes and E E G, then by 

we shall understand j 6t som P, lil ~t som

P ~ ~ , , a som P, E 1,, respectively.
14.2. - Under hypotheses [12] and [14], if E E G, q &#x3E; 0,

then there exists a complex P such that E, P  I.

Proof. This follows from [12.6]. -

(9) This means, that the existence of the limit, [6.4], limik E. for
is equivalent to the f or every -q &#x3E; 0 there

exists n, such that we have 8.1110 5 7j.
(I’) i. e. it may be not trtxe that there exists a denumerable set of

somata E G which is everywhere dense in G.
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14.3 - Under hypotheses [12] and [14], if E E G and A is
a brick-covering of E, q &#x3E; 0, then there exists a complex P
such that ~ P ~ ~, C ~, som P ~ A.

Proof. By [14.2] we find a, complex Q with I
We have E ~ ~. By [4.3] there exists a sequence of mutually
disjoint bricks ... , an , ... a~,, . Let Q =
= qi , q2 y ... , y i where qi are disjoint bricks, (~n ? 1). Con-
sider the bricks anqi, for all n and i. They are disjoint. We
have som Q A = ~ because som Q .- ~ qi. We have

n, s i

Let us arrange the bricks into a, sequence; denote it

by pi , P2, .... If i t is f inite, the complex pi, I p2 , ... ~ I yields
the thesis. If it is inf inite, take m such that

tK so

From (1) and (2) we get | E, E Pia I  n, E pk  A: the com-
k=l k=l

plex P elf ... , Pm I yields the thesis.

15. - Lemma. If

3. all Eft are disjoint,

then

1) there exists i with (L(E¡) = ~.
2) the number of all j, for which = q is finite.
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Proof. Suppose that there does not exist any index

with J1(E.) = q. There exists an infinite sequence of indices
with Hence,

starting from some k we have

Since ~(E) _ + -~-- ... it f ollows that &#x3E; 

+ 03BC(Ea(k+1)) + ... and then 03BC(E) &#x3E; m - 71 for all m = 1, 2, ... ,2
which is impossible. Hence there exists i with = 1].
Now the nulnber of those indices i must be finite, because
if not, we would have m for all m = 1, 2, ... which

is impossible.

15.1. - Def. By a partition of a 80Jna E E ~,~ we shall

understand an at most denumera.ble sequence of mutually
disjoint subsomata E1, E2, ... , E", ... of E, with E = E1 +
+ E2 -f- ... , but where we do not take care of the order in
which Ei, E2 , ... are written. (For a more precise setting
see [(10), § 2]).

15.2. - Def. Given two partitions
A: E = El -~- EZ -~- ... and

B: E = Fi + lJ’2 + ... of a given soma E E F;
by the product A - B of them we shall understand the partition
E = ~ E~Fk where the terms E;Fk may be arranged, in any

=k

way, into a sequence.

16.3. - Given two partitions E Ei and E Fk of E, we say
i k

that the second partition is a subpartition of the first, whene-
ver for every k with 0 there exists i with 
This index i is unique for a given k.

15.4. - If E Ei, E Pi, ... is an infinite sequence of parti-
i i

tions of E, we say that this is a nested sequence of partitions
of E, whenever every partition, starting from the second, is
a subpartition of the preceding one.

15.5.. If are partitions of E, then their product
is a subpartition of A and of B.
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15.6. - We shall be interested in partitions whose ele-

ments are either bricks or figures.

15.7. - Def. Given a partition Ei or a complex 
by the 91P of the given partition or

complex we shall understand th e maxilnum of the numbers

respectively. If the comphx P is empty we
define DZP as the number 0.

1~.8. - If P is a not empty coinplex n &#x3E; 1,
its bricks constitute a partition of som P. If P’ is a complex
which constitutes a subpartition of P. then DZP.

16. - In § 2 we shall introduce a kind of integration which
will be based on approximation of the given soma of y

by complexes. The integration requires « small particles &#x3E;,
i.e. complexes whose elements should have « small » measures.
This is, however, impossible in the case where ~~ possesses
atoms. To master this difficulty, several lemmas will be
introduced concerning special notions of « smallaess » when

atoms are taken into account. We start with the case where
there are no atoms in «.

16. - Lemma. 1) Under hypothesis [12], hence especially
(Hyp L[i), and (Hyp we have the following: if 2) the

tribe G has no measure-atoms (11) 3) a is a brick, 0.

4) 11 &#x3E; 0, then there exists a partition of ~c : a = a1 + a2 +
-~- ... + an -f- ..· into an at most denumerable number of

disjoint bricks ai, such that

i. e. the net number ÐL ai s of the partition is  r.

16... Proof. We may admit that [t is ef fective, so the
measure atoms coincide with genuine atoms. First of all

(it) This means that if and then there exist El,
with · E~ - o, J1(Bt) &#x3E; 0, &#x3E; 0, Et + E’s = -~. If J1 is ef-

fective, measure atoms coincide with ordinary at.oms.
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we recall, that for any partition g : a = ul + a2 +... + a" -~- .·.
of a into an at most denumerable number of bricks, the
set of all numbers p(an) admits a maximum [15 Lemma],
which we shall denote by [15.7]. The theorem says
that there exists a decomposition g of a with 
Suppose this be not true. Hence, if we take all possible
above decompositions of a we shall have

Hence there exists an infinite sequence Å1, AZ .... , A,,....
of partitions of a such that

Take the sequence of partitions 
Å.2 . ... (the products of partitions [15.2]). They

make up a nested sequence of partitions ([15.4], [15.5], B1,
... where Bn+i is a subpartition of B1, ... , Bn ,

(n = 1, 2, ...). We have

16. b. - Denote by Xn the number of disjoint bricks b in
B,~ with &#x3E; a. Their number is finite and ~ 1. Indeed,
we a S hence

If À. Were - 0, all bricks in Bn would have the measure

 a, which is excluded. In the infinite sequence

we have

because ; l is nested.

Hence, by ( 1 ), starting from an index no, all ~n are equal.
= .... We 1. We shall call À,

temporarily in this proof, characteristic number o f the sequen-
ce i B,~ :
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Thus we have proved that if the theorem is not true,
then there exists, among all sequences yielding the inf-

imnm a, a nested sequence of partitions Bn j of a with
&#x3E; &#x3E; ... - a with characteristic number a ~ 1.

Consider such a nested sequence with the smallest
characteristic number. Denote this number by X. We have
~ &#x3E; 1. Denote the sequence of partitions by Dn ! . We have

Denote the bricks in Dn whose measure &#x3E; a by dn2,
... , I Since the partitions Dn are nested, we can admit that

Put

These somata may not be bricks, but they E G. We have
&#x3E; a, ... , I &#x3E; a.

16.c. - We shall prove that f or at least one index 1~ we

have = a. Suppose this be not true. Hence for all

indices i = 1, ... , ~ we have Hence there exists

80 with

Consider the partition Dn. There are only X bricks for which
~x(b) &#x3E; a, namely dni , ... , d.1; for all other bricks b of D,i
we have ~,b Now the numbers ... , 2 are all

&#x3E; a + 8. Hence &#x3E; a + 8 which contradicts (2).

l~.d. - Take k such that

Since and (~ has no meaisure-atoms, there exist
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two somata E, F’ of (J with

E + lf’ = c~. We have, by (4),

Take such sets ~, ~’. Take q &#x3E; 0 such that

Since ~.rl’) C a, we have

&#x3E; 0 such that

and consider n such that

16.e. - Having that, consider figures e, f, such that, [12.4],

We have, [5.15],

From (6) we get 6n  I min [ti(JE) - 03BC(F)]. Hence
2
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and then

Hence, by (11),

Taking the right-band-side inequalities in (11), we get, by

and similarly

together with (13) gives

We have from (11) a - 12-q ~ ~(6~) + ~(f).

Thus we have I and,

16.f. - The brick is thus decomposed into three disjo-
int d"k (8k + ek and f’k, all with a measure
smaller than a. If we decompose, (see (Hyp A.d)), each of

the figures g, ¡’Ie into bricks, the measure of every brick
will be surely  a. If we do this, the partition Dn will be

changed into another partition D’ of a, where the part
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outside d,,k is not changed, and only dnx is replaced by a

partition with max. measure of bricks less than a.

Consider the sequence D1D’, D,D’, ... , ÐnÐ’, ....

This is a sequence of nested partitions of a with

x, but with characteristic number  X or without

any one, which is a contradiction, since X is the minimal

characteristic number.

16.1. - Under hyp. [12] and [14] suppose that 1) r has
no measure-atoms, 2) we have a partition A of a soma of

/ into an at most denumerable number of disjoint bricks,
3) -q  0.

Then there exists a subpartition B of A into bricks such
that the net-number DZB  -q.

Proof. This follows from [Lemma 16].

17.1. - Lemma. Under [12] and [14]. If A is an atom of
~~, E E G, than either A. S’ E or A  co E, disjointedly.

Proof We have A = AE + A co E. If AE == 0. then

3 = A co E and then A  co E. If A co E = 0, we get
A ~ E. The remaining case is and A co E ~ O is

impossible. Indeed we would 111 AE) &#x3E; 0, co E) &#x3E; O.
so A were not an atom.

17.2.. Lemma. Under Hyp. [12] and [14], if

1. A is an atom in G.

2. pl, P21 2013 9 p" , ... are disjoint different bricks.
3. A  ~ then there exists one and only one index

~i such that A  Pn.

Proof. First of all we cannot have two different indices

i, j with A Pi =t= 0, A · Indeed, by [Lemma 17.1],
we would have hence A  co p_f because pi:5 co 
and the bricks i are dif ferent. Hence, since A 

[17.1], we would have A = 0, i. e. A is not an

atom. Now, by hyp. 3., there exists an index n with

A - Hence, [17.1], we have A C p~, . This index n is
unique by virtue of what just has been proved. The lemma
is established.
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17.3. - Lemma. Under Hyp. [12J and [14J, if 1. A is an

atom in z; 2. E E (J, 3. ; A, E ,  r, r &#x3E; 0. 4. ~  p(A),
then A.  E.

Proof. We have

Suppose that the inclusion A  E is not true. Then. [17.1],
hence A - E == 0. Since A=(A-E) + ...4.E, we

get A = A. - E, and then, by (1), A) + E) =
_ p(E - A) + hence ~, which contradicts h3.p.
4. The lemma is proved.

174. - Lemma. Under Hyp. [12] and [14], if ~2 are

two different atoms of G, then there exists a partition of

7 into different bricks an j 1 such that AI" ~2 are lying in

distinct bricks: d.2  a, , where ai aj = 0.

Proof. We have &#x3E; 0, &#x3E; 0. Take q &#x3E; 0 such that

n  1 min [03BCA1, 03BCA2]. Find, [14.2], complexes P1; P2 such3 
that I A1, A2, P21  YJ. Since A1A2 = 0 we get,
[5.20], ~ Ai , somP1- som P21  3YJ, d2 , som P2- som f  311.
We also have 3q  3,1  I1(A2). Appliyng [17.3], we get

Pl som som P2 som P,.
Since som Pi som P2 and som P2 - som P, are figures,

they can be, partitioned, (Hyp. into an at most denu-

merable number of disjoint different bricks. By [17.2] there
exists in som P1 som P2 one brick of the partition, which
contains Ai, and in som P2 - som Pi there exists one brick,
containing Az. ·

Since som Pi som P2 and 80m P - som Pi are disjoint,
the mentioned bricks are also disjoint and different. Having
this, decompose the figure I [(som Pl - som P2) + (som
P2 som P1)] into a denumerable number of disjoint bricks,
(Hyp. Ad). Thus we shall have a partition of I into bricks,
such that A. are lying in two different bricks of that

partition. The lemma is proved.
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17.5. - Lemma. Under hypotheses (12] and (14], if 1) P is
a partition of I into bricks. 2) A.1, A~, ... , A.,i , ... are some

or all ntotns of G. finite or infinite in number, 3) these
atoms are tying in distinct bricks of P. (Nrver two atoms
in one brick). 4; Q is a subpartition of P, then the above

atoms are also lying in distinct bricks of Q.
Proof. By [17.2].

1 ~.6. - Lemma. Under hypotheses [12], [14] let Ai, ~2 ,
... , An, I !n &#x3E; &#x3E;; be some different atoms of G. (They may
be all atoms or not.). Then there exists a partition P of I
such that all ~.1..... An are lying in distinct bricks of the
partition. (Never two atoms in one bricks).

Proof. Consider a not ordered couple (Ai; Aj) where
Take, by [17.4]. a partition Psi of I such that Ai

and Al are lying in different bricks of Pil.
The product P’ =df 

&#x3E; 

taken for all different above
(i, j)

couples of indices, is a partition of I into a denumerable
number of bricks. [ 15.2]. and is, [15.5], a subpartition of all

By [17.5]. the atoms A~, Ai, are lying in different
bricks of P’. This being true for any couple i, j of indices.
the lemma is established.

~7.~. - Lemma. Admit the hypotheses [12] and [14). If

1. A.1, As..... (n ~ 1)~ are some, (or all), different
a toms of G.

2. -q &#x3E; 0.
then there exists a partition of I into different bricks:

such that:

1) The atoms Â2, .... All are lying in different
bricks (1).

Proof. Relying on [17.6]. find a partition P of I into

different bricks such that each atom Ai, ... , 1, Aft is lying
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in a separate brick of P, i. e, two diff erent above atoms
are lying in different bricks. Let 

’

where al, .... A" are bricks of P. Take TJ’ &#x3E; 0 such that

... , By [142] f i nd complexes PI, ...,

P" such that

Since q’  and ] A;,  ~~’, we get, by ~17.3],

From (1) and (3) we get

From (2) we have, by [5.15]~ a¡ 80m Pi  q’.
Hence, by (1),

Hence, by (4),

Having this, replace the brick ai, (i = 1, 2, ... , n), by the
two different figures ai som P~ , ai som Pi, whose sum is
ai, and partition these figures into bricks. Since ai belongs
to P, we get, in this way, a subpartition P’ of P. Since the
atoms ... , 7 All are lying in separate bricks of P, therefore
they are also lying, by [17.5], in separate bricks of P’, say in

... , an respectively. I say that som Pi.

Indeed, by (4), som Pi and, by (1), The

brick a’i is contained either in ai som Pi or in a,-som Pi .
In the second case we would have ~.~ ~ co som Pi which
is a contradiction. Thus

(6) som Ps .

We have, by (6), lL(aj) som Pi - Ai) =, by (5),
= lL(ai som Pi) - ~ ’YJ’  7},

Thus we have got a partition P’ wich satisfies the requi.
rements of the thesis.

18. - Def. There exists an at most denumerable

4
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number of mutually disjoint measure-atoms, say ~2’ ...

... , .... Let 1’2’ ... , pn l be
a non empty complex. Then by the reduced net-number of
P, we understand the number

A similar definition we admit for any at most denumerable

partition into disjoint bricks, (see [15]).
18.1. - Theorem. If we admit hyp. [ 12] and [14], then

for every n &#x3E; 0 there exists a partition of I into bricks

such that [Def. 18].
18.1.a - Proof. First consider the case, where G is purely

atomic i. e. , every soma of G, which =t= 0, is the sum of
an at most denumerable number of somata Ai, Å2, ... , .~n,
... with for n = 1, 2, ... where all An are different
measure-atoms. In that case I. We have pi - ~ - 0,
hence f or any partition P. In that case the theorem
is true.

18.lb. - Suppose that t~ has no atoms at all. Then we
are in the conditions of [16.1], applied to I. Hence if q &#x3E; 0,
there exists a partition P of I such that If
P = P21 ... J, we have max tt(Pi) = max p(pi - 0)  q.

i i

Hence  TJ, so the theorem is true in our case.

18.lc. - The case where t~ is not purely atomic, but has
only a finite number of atoms, will constitute a simplified
version of arguments which will follow in the discussion
of the case where we have an infinite number of atoms.

18.1d. - Thus we direct our attention to the case where
6 is not purely atomic; but has a denumerable infinite
number of different atoms, say: Aa, ..., g",,, .... We may
suppose that

Let ~Pe can f ind n such that

Applying [17.1], take a partition P of I into dif-
ferent bricks ch, ... , such that
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and 2013 Ai)  -q.

Putting

we get

have Ai + ... -~- An S al + ... + an , but there may also
exist atoms among

which are included in a1 + ... + a". If all atoms (7) are

included in a1 -~- ... + an , the arguments which follows will
be simplified. Let

finite, or infinite in number, be all atoms taken from (7)
which are not included in cr~ -~- ... -~- an . Then they must
lie in co [ai -f- ... + a,.]; this by [17.1].

Let

be all atoms among (7) which are lying in [al -~ ... -f- 
The sets (8) and (9) make up the whole set (7). These sets

are disjoint.
18.1f. - We have

Find, by [13.2], a covering B of ~k~l, -t- Å’H2) + ... such that.

The soma co (ai + ... + is a figure, hence it is also a

covering [Def. 4]. Hence

is a covering of Ak,,,, -~- -~- ... , such that

Let us partition B’ into disjoint different bricks

Since, by (2), + Â"(2) + ...) C ~, we get, by [5.17], from
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(13), [iB’2~ and then It follows that

for all bricks (15).

18.1g. - Define

Since

i. e. all atoms of G are disjoint with C. We have

If co + ... + an) _ O, the thesis is proved, and so is if
C = 0. Suppose that co (al + ... + an) =t= 0 and that C =t= 0.
Consider the tribe

its zero is 0 and its unit I’ _-__ co (ai -f- ... + an). The tribe

G’ is the Lebesgue’s-03BC covering extension of the tribe

The set B’ of all somata a I’, where a E 13, constitute a
base of F’. Its bricks are the bricks of R contained in I’.
We have supposed that Consider the tribes

Take account of (19), and notice that C may not be a figure.
Denote by 8" the set of all somata a - C where a E B. We
see that G" is the Lebesgue’s-03BC-covering extension of F",
and R’ is a base of F".

18.1h. - The tribe G~" has no atoms, so we can apply
[Lemma 16]. By its virtue the B"-brick C (which is the
unit I" of 6y~ can be partitioned into a denumerable number
of disjoint B"-brieks pi, 1’2, ... , pu ... , y such that
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Now, pn = qn - C where qn is a B’-brick. We have qn E G’.
Since C ia the unit of G", we have C E 0", hence C E G’.
Consequently

18.1i. - There exists in G’ a covering of pn : Qn = 2

Qn2, ... ~ I such that

and then q,,1c are disj oint F’-bricks, hence F-figures. By
(23), (25), by virtue of [5.17], we get and then

 2y¡ for all indices n, k. Let us decompose every
which is an F-figure, into disjoint B-bricks 

rnk2 ~ ... !’
In this way every pn is covered by a denumerable number

of B-bricks rnkj, such that

Thus C is covered by a denumerable number of B-bricks.
The soma B’ is also covered, by [18.1f], by a denumerable
number of B-bricks. The soma ai + ... + an is also covered

by the bricks ai, ..., an . For all those bricks c we have
either  2q or p(c - ~)  2q, (see (16), (6), (26)). Hence
for all of them we have - ~)  2q.

Thus we have a denumerable number of bricks c whose
sum equals I E G. Applying [cor. 4.4], we get I decomposed
into a denumerable number of disjoint bricks d1, ... such
that each dn is lying in one of the bricks c. Hence we get
for every n : - ~)  2r¡, so the theorem is established.

18.2. - Remark. The presence of atoms hinders making
partitions with small « meshes », so the notion of reduced
net-number helps. Now, if the tribe G is composed of atoms
only, the reduced net number will always be = 0, so another
kind of net-number shall be introduced-just to cover all
possibilities. Therefore we introduce the following definition:

19. - Def. Under hypotheses [12] and [14], if a # 0 is a
brick, put
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where the maximum is taken over all atoms A included
in a ; of course, this happens, if there exists an atom A

included in a. If a does not contain any atom, we put
~(a~). If P i s a complex ... , p. 1, (n ~ 1 ), then

by the atom-net-number of P we shall understand the non
negative number

If P is an empty complex, we define 0.

A similar definition is admitted for partitions into bricks.
We can do this because the maximum spoken of always
exists (compare [Lemma 15]).

19.1. - Theorem. We admit the hypotheses [12] and [14].
For every 11 &#x3E; 0 there exists a partition P of I into disjoint
bricks, such that  1J.

19.la - Proof. If G has no atoms, then the theorem

follows from [Lemma 16]. If G has a finite numbers of

atoms, the theorem follows from [Lemma 17.7].

19.1b. - Suppose that G has an infinite number of atoms.
It must be denumerable. Let Ai, AZ, ..., d.",, ... be all dif-

ferent atoms, arranged so as to have

This can be done, because the number of atoms whose
measure is ~ e, where e &#x3E; 0, is at most finite. Let 7l &#x3E; 0.

Find n such that, i f we p u t JL~A,,-{-i+~+2+...? we have
03BCA  n.

Relying on [17.7] we can find a partition P of I into

disjoint bricks, such that the atoms A1, £1.2, ... , A.. are

lying in separate bricks, say a¡, ... , aft, so that we have

..., and that {i(o,)2013~(A,)T}fort=l,3,...~.
On account of (1) we have

because there does not exists any atom in ai whose measure
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Suppose that because if A = I the

thesis follows.
Consider the tribe 0’ df co A1 G. The unit I’ of G’ is co A;

it is a figure. The atoms of G’ are An+2, ... if any.
By [18.1] we can find a partition q , , ... ~ of co A=

== 7~~ so that max - A.’), - A’), ...]  where A’

is the sum of all atoms of G’. Since A’  ~, we get 
and max - A), t1(q2 - A), ...]  TJ.

The only atoms contained in qj are among those of A’.
Since ~,A’ ~ ~, it follows  TJ -~- ~ = 2~.

Hence

Now ... , an , 9 q2 , ... I is a partition of I into bricks.
From (2) and (3) it follows that if b is any brick of this

partition, we have p(b) - max  21J, so the theorem
is proved. 

19.Z. - If 1. A is a partition of I into bricks, 2. Ð’LRA  1J,
3. B is a subpartition of A into bricks, then 1J.

Proof. Let b E B. There exists a EA with b  a. We have

- fi)  q, consequently - ~)  r. This being true for
any b E B, the lemma follows.

19.3. - If
1. A is a partition of I into bricks a1, a2, ...,

2. Ð’LA(an)  ~ for all n = ~1, 2, ... ,

3. B = ~ b2 , ... ~ i is a subpartition of A into bricks,
then  ~ for n = 1, 2, ....

Proof. Let b E B. There exists a E A with b :5;- a. Now
-- max  q, where the maximum is taken for all

Aa
atoms A which are included in a, if they exist. We have

if no atoms, lying in a, are available. Let

be all different atoms included in a with ... = I1A, =
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Now b ~’ a. Concerning the atoms ... , ~~ , each one of

them is either included in b or in a b. Suppose that one
at least of (1), say A_, is in a - b. Since - 8  ~ and
since b W a ~.x , we have and then a fortiori

- max  ~.
A~b

Now suppose that no one of (1) is in a b. Hence they
all are in b. Hence Hence 03BC(a) - 

The remaining case is, where no atom is included in

a, then no atom is included in b; hence c ~,{a)  1J. The

theorem is proved.

20. - Theorem. Under hyp. [12] and [14], if E E G and

-q &#x3E; 0, then there exists a complex ... , p. I such
that 1) ~ E, P lpo  ~, 2) if fi is the sum of all atoms of G
in the case they exists, and 0 = 0, if there are no atoms

in G, then ~3), ... , 
- ~) C ~ i. e. DTR(P)  -q.

Proof. First we find a complex P such that E, P Iv  2
é.J

co som P is a figare; hence it can be partitioned into an

at most denumerable number of disjoint bricks. This par-
tition, together with P = ~ P2, ... 1, make up a partition
Q af I into an at most denumerable number of disjoint bricks.

By [Theor. 18.1] we can find a partition S of I into

disjoint bricks such that  YJ. Take the product Q 8.
This is a subpartition of S and of P. Hence, by [19.2].
MR(QS)  YJ. If we confine that partition to som P, we have
partitioned som P into a denumerable number of disjoint
bricks with reduced net-number  ~. Let this partition of
som P be pi, p2, .... For sufficiently great n we have

and if we put .-. , p2 ], we

have |P, P‘ l,  1; hence E, P’ |  n and  TJ. Thus2
the theorem is proved.

20.1. - Theorem. Under hypoth. [12] and [14], if E E G
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then there exists v complex P = [Pi’ ... , p"J such
that: 1) 1 E, P ~u C r~ ; 2) if A2’ ..., are a.ll atoms of G,

there does not exist any above i. e. , DZA(P)  T¡.

Proof. The proof is similar to that of [Theor. 20]. The
difference is that instead of relying on [18.1], we rely on
[19.1] and [19.3].

20..‘~~. - Under hyp. [121 a:id [141, if E E G then

there exists a complex P such that 1) E, Pip. 1], 2) 
3) 9lR(P)  1].

Proof. The proof follows the pattern of the two preceding
proofs. Take a complex P such that ’ E, P I",  n. The soma2
co som P is a figure; hence it can be partitioned into an
at most denumerable nunlber of disjoint bricks, getting a

partition () of I. By theor. [18.1] we can find a partition
~91 of I into bricks such that By theor. [19.1] ]
we can find a partition 82 of I into bricks such that

’¿JtA(82)  r~. The product is a partition of I

into a denumerable number of bricks. By theor. [19.2] we
have  "1, and by theor. [19.3] we have 9llA(R)  ~.
Let tis confine the partition R to som P; we get a partition

som P. For suff iciently great n ’We have put.

ting P’’ a - ; p’1, ... , p’n, |P’, P"|03BC  n2 which gives df 2 2
We also have DZA(P")  ÐI8’P")  So the theorem is

established.

20.3. - Theorem. Under hyp. [12], [14], if E E ~, A is a

brick-covering of E, (hence 7~A~ ~&#x3E;0 then there exists
a complex P such that
1) som P c d, 2) 1 P, E 1¡J-~1], 3) 4) -q.

Proof. We rely on [14.3] and apply [20.2].
21. - The ~-topology on G is always complete but it

may be not separable, (see [ 13.4]). In farther sections we
shall need an important property (see [21.2]) of complexes
approximating somata of (,~, this property being strongly
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related to separability. Therefore, in what follows in this

§ 1, we shall admit, in addition to hypotheses [12] and [14],
the following hypothesis (Hyp. 8) of separability:

21.1. - (Hyp. S). There exists a denumerable sequence

of somata of G such that for every soma E E G we can
find a subsequence of I such that E lpo - 0,
for n - oo.

We have
The following important theorem:

21.2. - Theorem. Under hypotheses [12], [14] and (Hyp. s~,
if 1) E E G, 2) A is a brick-covering of E. then there exists
an infinite sequence Tn ) I of complexes such that

4) for every soma F ~ E there exists for every a

partial complex B. of Tn, (i. e. such that F,
B" I,, - 0.

21.2. - Proof. Since the 03BC-topology is separabl e, there
exists a denumerable set of G,

Let I’ E G and I’  E. We can find a subsequence 
(’11 = 1, 2, ...), of (1) such that P 111 - 0. We have,
by [5.15], Mx~~~ · E, 1 -+ 0; hence 
· E, F ~ 2013 0, for n --- oo. Thus the set of all is

everywhere dense in the topology restricted to E.

Having this, let q &#x3E; 0 and find a complex Pl
such that and where

[14.2]. Find another complex Ql with som [14.3],
such that
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Put

Bi, Ci are figures. We have

Let Ri , Sl be complexes such that, [20.3],

is a complex because of (2) and (3). From (4) it follows

[5.11], i.e.IT1, 
S2TJ. Hence, since 
and hence, by (1.1),

21.2.c - We have (1.2) : ~ I M1 . E,  11, E, Pi)  ~. Hence

~M1·E·E, som Pl som Qi ) :5. E, Ql I + I E, P11  211,
[5.12], i. e. , ~ I M1 . ~ E, som Pl · som  2q; i. e. , (1.3),

Since, we get, by
(4) and (~.1 ),

Now I~1 is, by (4.1) a partial complex of Ti.
Thus we have found a complex Ti such that som 
Tl ~ c 3r~, S 1J.  11, and found a partial

complex Rl of Ti such that Ml · E, Ri  3YJe This can be
done for every q &#x3E; 0.

21.2d. - Let us consider the somata E, M1E and ~ZE.
We like to find a complex T2 within A, approximating E
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and such that it would contain one partial complex Rz,
approximating M2E and another one approximating M2E.

First find complexes P2, Q21, Q22, all within A, and
such that

Let us agree, for the sake of simplicity, to use the same

symbol for the complex and its soma. Consider the figures

where, in general, X means co ~Y. They are all disjoint
figares, which may be also null-figures. We have

and

Find complexes

contained in the figures P2Q21Q22, P2Q21Q22, P2Q21Q22, P292i9M
respectively, such that their atom-net-numbers are  YJ,
their reduced net-numbers and that

Since the figures (7) are all disjoint, so are the complexes.
(8). Hence if we put
complex, for which all (8) are partial complexes.

21.2e. - Now we have, by (7.1) and [i7.11.1],

Hence, since by (6.1), I P2, E ~ C ~, we get, [5.7],
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Since, by (8.1),

we get from (10):

Since R12 v Ri"2 and R12 v Rî2 are partial complexes of TZ ,
we have found a complex T2 such that E, T2 4~, the

atom-and-reduced-net number of T2 are  q, and which
contains a partial complex with ~ ( C 4r~, and
which also contains another partial complex with

I M2E, C 4q. This can be done for every 11 &#x3E; 0.

21.2f. - Using a similar method we can prove that for

&#x3E; 0 there exists a complex Tn contained in d, with

| E, Tn |  (2n -E- 1)n, with the atom-and-reduced-net-num-
ber  "I. T,~ is such that it contains partial complexes: 

... , t such that ~ R~n~, ~ 2"~. This is true for

every r~ &#x3E; 0. We leave to the reader to develop this argu-
ment with details.

21.2g. - Taking , we can find for every n

a complex T. such that som T.:!!g- A, I T., |  1 with re-
I 

I&#x26;

duced-and atom-net number  1, and such that it contains
n

partial complexes (i = ly 2, ..., n), such that
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21.2b. - Having the sequence ~ Tn ~, let E, and take
e&#x3E;0. Find mo such that

rrzo with . There exists a par-

- tial complex l~n of Tn such that ; / . By

(12) we get ~ h’, -~- £ = e for sufficiently great n. The2 -j

theorem is established.

21.3. - Def. The sequence t having the properties 1..
3., 4., expressed in [21.2], will be termed contpletely dis-

tingui8hed for E.
The property 4. will be termed property (8) for E.

21.3.1. - Corollary. A slightly modified argument yields
the following theorem: Under hypotheses [12], [14] and

f Hyp. S), if 1. E E G, 2. 9 ... , I As 9 ... is an infinite

sequence of coverings of E. then there exists a completely
distinguished sequence Tn j i of complexes for E such that
som T,~ ~ An.

21.4. - Remark. The validity of theor. [21.2] implies the
hypothesis (Hyp. S).

21-5. - Considering the item [21.2dJ, in the proof of [21.2],
we had (6.1): P2, M1E, and 
and we have found the complex T2 = R12 v R£2 

with T$, (in [21. ~e]), getting partial
complexes and Rï2, approximating M1E, M2E
respectively up to [21.2o].

A similar remark can be said of the general case where
MIE, ... , M"E are approximated by subcomplexes
Ri"), ... , 9 ~;~"~ of a complex Tri, where We get



63

Now let { Qn 1 be a sequence of complexes such that
E -. 0. We can find a subsequence J Q/&#x26;(n) I of ~ Qn s

such that . Taking the corres-

ponding we have ~ E -. 0, and in each 
we can find partial complexes i With 0,
(i = 1, 2, ... , n(k)). This allows to state the following:

21.5.. Corollary. If P" , L~’ ~ -. U, then there exists a

subsequence k(n) of indices, and 8J sequence of complexes
~ Tn ~ 1 such that som Tn W som and that T;, ~ is com-

pletely distinguished with respect to E.

21.6. - If ~ Tn i has the property (8) for E E G, then any
subsequence { Tk(n) i of it also has that property.

21.7. - If 1. E · I~’ = 0, 2. t has the property (fl f or E,
3. Q,~ has the property (S} for ~’, 4. soli P. - som on = 0,
then i has the property for E -i- F.

Proof. Let H S’E + F, H E G. We E ~ E,
H · By theorem [21.2] there exist partial complexes

Q3 of P,~ , Qn respectively, such that

Since som som Pn , som we have som P§, . ·
- = 0. Hence P2 9 Qn is a partial complex of Pn v Q~.
We have ) I P., E I - 0, I Qn , F I --- 0. Hence ; I Q/¡,

and from (1) we have 
i. e. , N. P’ 1--J I - 0, which completes the proof.

21.8. - If 1. ~ E G, 2. The sequence i P,~ ~ of complexes has
the property with respect to E. 3. P  E, F E G, 4.

Qn C = 1, 2, ... , 5. 1 Q., P lpo --· 0 then

j has the property with respect to F.

Proof. Let G E G, F. Since l has the property
with respect to E and since G ~ E, there exists, for

every n, a partial complex Sn of Pn with
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We have

and som By (hyp ,5,~ and (1)
we get som Sn som I’G i = ~ Isom 8t1 som G -- 0. Hence

From (2) and (3) the theorem follows.

21.9. - If 1. ~ I is a completely distinguished sequence,
for E, 2. ~’  E. 3. Q. C P. for all n=1, ~, .... 4. Qn, F j --~ 0
then on I is a completely distinguished sequence for F.

Proof. Follows from [21.8].

21.10. - If 1. E F = 0, 2. 1 P. I is a completely distin-

guished sequence for E. ~. ~ Qn I is a completely distingui-
shed sequence for 1~’. 4. som P,~ . som Q. = 0, (n = 1, 2, ...),
then P* 1 is a completely distinguished sequence for
E -t- F.

Proof. Follows from [21.7].

21.11. - If 1. E E G. 2. 1 P. i has the property (S) for E
and I P., for n = 1, 2, .... 3. P2 j I is a complex
whose every brick is contained in a brick of ~ 4. 7

- 0 for n = 1, 2, ... , then I also has the property
(jS) for E.

Proof. Let F ~ E. By hyp. 2, we can find a partial
complex Q. of P. such that I P, Qn -.0 for n = 1, 2, ....

Denote by Q’ the maximal partial complox of P~ whose
bricks are contained in the bricks of Q. . We shall prove
that

Let pM2? ... 1. Suppose that k is such that p,,~
contains at least one brick of P2 . Denote these bricks by

... and their sum by If does not contain



65

any brick of P2 , put plk = O. We have som P,~ som 
= - p~~). Since the somata p"x p;,~, (k = 1, 2, ...)
are disjoint, we have Pn som P3) = - 

If we confine ourselves to those indices k’ only, for which
we shall get

From (1) and (2) we deduce that F, 1- 0, which comple-
tes the proof.

21.12. - If 1. E E G. 2. The sequence Pn ) I of complexes
has the property (S) with respect to E,

then we can find complexes { Qn I such that

1) each brick of Qn is contained in some brick of P.,
2) i Q. i is completely distinguished for E.

Proof. We partition every brick p of P. into a denu-

merable number of bricks so as to have the reduced net num-
ber and the atom net number tending to 0 f or n -. oo. Having
this we take for each brick p a finite number of meshes

of partition, sufficiently great so as to have p approximated
with error  k(n) denotes the number of bricks

n . Jk(n) 
in Pn. The theor. [21.8] will complete the proof.

21.1~. - If. 1. EE G. 2. Pn is a completely distinguished
sequence for E, then there exists a subsequence of

indices and a sequence I such that

1) som som = 0,

2) 1 Pk(.) V i is a completely distinguished sequen-
ce for I.

3) is completely distinguished for co E.

Proof. We have Pn , E ( --- 0. Hence, [5.13],
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The soma co som Pri is a figure, hence a covering. Hence,
[4.3], it can be represented as a denumerable sum of mutually
disjoint bricks, say anl, ..... Hence there exists a finite
number of them, say bni, 1 ... , such that ( an~ ~ asi2 -~ · ·. , Y

It follows from (1), that I bn1 ~-- btl2 -f- ... , co E ~ I --r 0.

b ~2 ... ~ I is a complex, f or which Rri , eo E ( -. 0.
Hence we can apply [21.51, by virtue of which there

exists a subsequence of indices, and a complex 
such that

1) som  som :5*’CO 80m 

2) I is completely distinguished for co E.
Now I is, [21.6], completely distinguished for E,

I Qk(n) ~ I is completely distinguished for co E, som som

= 0, hence = 0 . Hence, [21.10], the sequen-
ce ~ t Pk(n) V Qk(n) I is completely distinguished for I. The

theorem is established.

~1.14. - If 1. p=~=0 is a figure. 2. Ps= is a completely
distinguished sequence for 1. 3. Q,, is a partial complex
of Pn with I ---~ 0, Q" _ ~ qnl , · ... f, then, by [21.9],
1 on ) I is completely distinguished for ~. 4. Let ani and e.i

be those among q~x for which p, and p 4= 0,
respectively, then

co p) --r 0.

Proof. Since E Qn, p -. 0, we have p som p -. 0.
Now the bricks of Qn whose soma of their sum contributes
to p - 80m Q", are an2 , ... and .... Hence p som

Qn - -E- pJenk, so the first part of the thesis is proved.
Now we have

where bnk are all bricks in ~n for which p bnk = 0. Hence
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By subtraction of (1) and (2) and by [5.14] we get I -~-

p ~ ---- 0. p ) - 0.
By subtraction we get ~ co p, o ~ I = 0, hence · co

p) -- 0, wich completes the proof.

§ 2. - Vector fields on a tribe
and their summation.

1. - We shall consider the tribes F, G and the base B
as before under (Hyp. FBG), [~ 1; 1]. We also admit the

;Hyp. [§ 1: 3]. To simplify arguments we admit that

F is a finitely genuine strict subtribe of G, and that it
is an effective e1) denumerably additive measure on G.

The tribe G is supposed to be the It-figure-covering-Lebe-
sgue’s extension of F, [§ 1; 9, 9.3.1, 12, (Hyp The

hypothesis of separa.bility of the p-topology on G, [§ 1;
b.l, ~ l, (Hyp will be especially important.

1.1. - Hypothesis. Let V be a F. Banach-v e c -

t o r s p a c e, complete. Its elements x, y, ... will be termed

vectors. The n o r m of x will be denoted by ~ (20), (21).

~. - Def. By a on B we shall understand any
function q (a) where a varies over B and y (a) E V.’

2.1. - Def. In t§ 1] we have studied infinite sequences
P,,! s of complexes which have approximated a given soma
E of G. They ha.ve the following property: I E, Pn lpo - 0.
we shall call this property D-property. We may subject
the sequences i Pn i to additional conditions, as 0,

- 0, [§ 1: 18, 19], called (R), (A)-properties, and if

(Hyp S) is admitted. the sequence may have the pro-

perty 4), expressed in [§ 1; Theor. 21.2, Def. 21.3], called

(SI-property.

1 i:1 I The hypothesis that ~’ is a strict subtribe of G is a non-essential
restriction. It can always be obtained by taking and a(B) instead
of F and fi respectively, (see [§ 1; 1] 1. ~ similar remark can be

made concerning the effectiveness of measure, (see r~ 1; 1~~1.
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We shall consider various kinds of sequences but
all with (D)-property; we shall call then distinguished
sequences for E and denote then by (D), (DR), (DA) (DAR),
(DS), (DAB), (DRS), according to the specific pro-
perties admitted. The (DARS)-sequences will be termed

completely distinguished, as in [~ 1; 21.3].

2.1.1. - To each of these kind of approximating sequences
there will correspond a notion of summation of

vector-fields, to be soon introduced. The existence of

(DRA)-distinguished sequences has been proved in [§ 1; 20.3],
and under hypothesis (S) of separabilit.y, the existence of

(DRAS)-distinguished sequences has been proved in [§ 1;
21.1]. If we shall speak in general of a distinguished se-

quence without specifying its character, we shall say simply
~ distingruished p (D’-sequence).

2.1-2. - Remark. We do not know whether (DS) does
imply or not. At present we do not need to be

interested in this question.

2.2. - Def. Let cp be a J7" -vector field on Band E E (}-.
We say that i 18 summable on E ’With respect to the given
kind (D’) of distinguished sequences, whenever for every

D’-distinguished sequence Pfl2, ... 1 for E the
sum cf (P.) §7(pn;) converges f or n -. oo in the topology

s

of Y. We call this limit t 8uPi of the field y on E (with
respect to D’) ~ and denote it by BE p or 

2.3. - Remark. If instead of G we consider the tribe

f 1 G restricted to a given figure, and suppose that E f,
the notion of summability in E m a y c h a n g e. Thus the
notion d e p e n d s o n the totality of the vector-field.

S. - We shall be mainly interested in distin-
guished sequences so the theorems which
follow will concern that case. Changes in statements will
be given in remarks.

The sums introduced above constitute, some way, a
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generalization of Weierstrass-Burkill integrals (17). They
are more general than these in (14).

:3. - Theorem. Under hypotheses [§ 1; 12, 14] and [1.1],
if 1. E E G, 2. cp is a V-vector field in B, 3. q is (DRA)-sum-
mable in .E, 4. n &#x3E; 0, then there exists 8 &#x3E; 0 such that if

where P is a complex, then

Proof. Suppose the theorem not true. For every 8 &#x3E; 0

there exists a complex P such that DZR(P)  8, 
and E, P 1tJ- ~ 8, but nevertheless

Take and find

cording to the above. We have

The sequence I is (DRA)-distinguished for E. Hence,
by Hyp. 3,

This, however, contradicts (1). The theorem is proved.

3.1. - Remark. A similar theorem holds for the following
kinds of distinguished sequences (D), (DA), (DR), but the

above proof cannot be used for the sequences (D8), (DAB),
(DR8), (DAR S).

4. - Theor. Let us admit hypotheses [§ 1, 12, 14], (Hyp. 8)
and [1.1]. We shall consider (DARS)-summations.
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If E E G, 2. P E, F E G, 3. exists, then

also exists.

Proof. Suppose that does not exist. There exists
a completely distinguished sequence for ~’, [2.1],

such that q (Qn) does not tend to any limit. Hence, since

V is complete, there exists &#x3E; 0 and a subsequence

of (1) such that

(2) is completely distinguished for F, [§ 1; 21.6]. We have

Hence by [§ 1, 5.16]

The soma

is a figure. 
’

Consider any sequence Pi, P2, ... , Pn , ... completely
distinguished for E with

We have

From (6) and (4), by virtue of [§ 1, 5.14],
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Put

The soma .dn is a figure. We have

By [~ 1~ Theor. ~1.5] there exists a subsequence k(n) of

indices and there exists a completely distinguished sequence
t Sft 1 f or E 1~’ such that

~ som - 0, som - 0.

Hence Sn v Qk(n) , Qk(n) are complexes. Since 1 is

completely distinguished for E F, and since Qk(n)
are both completely distinguished for F, it follows, [~ 1,
21.7], that t and l are both completely
distinguished for E. Hence

hence which contradicts (3).

4.1. - Corollaries. The theorem [4] holds true for any of
the summations with character (DAB), (DNS), and the
proof is similar. Denoting these categories by I, II, III

respectively, we make the following changes in the proof of [4],
respectively. Instead of the completely distinguished sequen-
ce on j I in (1) we suppose its character to be (D) in I,

in II, in III. The sequences { Q’n 1, t Q"n } I have

the sa.me character respectively. The sequence I will

be supposed to be (DS), (DAB), (DN8) respectively. The

remaining arguments will be not chanched.
The theorem [4] is also true for the summations of

character (D), (DA), (DN), Denote then by I’, II’, III’,
IV’ respectivey. We take { of the given character. The
character of I will be the same. Having obtained
the relation (7), we shall not need to select a subsequence
k(n), but we shall stay with A~. We shall choose s. with
som sn ~ ,A.", and with properties I’, II’, III’, IV’ respectively.
The sequences ~;~ ~, u Q’" ~ I will be the required
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distinguished sequences, yielding the final contradiction.
Thus we can state the following theorem:

4.1a. - Theorem. Admitting the hypotheses [§ 1, 12, 14]
and (Hyp S), if needed, take any character D’ of summation.
If and exists, then cp exists too.

2. from every sequence I another subsequence ! ~~t~", ~
can be extracted, such that lim y, then lim cpn 

Proof. Suppose that I does not converge. Then, since
V is complete, there 0 and subsequences I,

I such that

Extract from subsequence ) with

We get from (1)

Now from I another 8subsequence I can be

extracted with

From (3) we get

Since, by (2), -qss’t’(n) - I we get from (4): 0 h q which is

a contradiction.
Hence cfn converges. There exists a par-t

tial sequence tending to i Hence T = q.

6.L - Theorem. Admit the hypotheses [§ 1; 12, 14], [1.1]
and (Hyp 8). We shall consider Let 1. E, El ,
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4. y is (DRAS)-summable on E,

Proof. Let i An I be a sequence of complexes with

By [Theor. 4], ’=P is summable on En . Find, for every n = 1,
2, .. a complex Pn such that

Let ¡ P"(t1)! be a partial seqaence of We have

Consider the figure

Since -. 0, we have ~ I

It follows, [§ 1; 5.14], from (0) and I

By [§ 1; 21.5] there exists a sequence of indices 1, 2,
.., and a complex Tn  such that T", I has the pro-
perty (S) with respect to E, and in addition to that;

It follows that
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Since and som Pkl(n) are disjoint, it follows that som

T~ and som PAlen) are disjoint.

is a complex. By (2) and (6), we have

(8) 0, 0.

T* J - 0 and, by (~), ~ (~, I -- 0, it follows

Tn has the property that for every F E G, 1~’  E there
exists a partial complex T2, (n =1, 2, ...) with F ~ -- 0.
Now T’ is also a partial complex of R~ = Tn U Hence,
by (8), (9), I has the property with respect to E. It

Hence, by (6.1 ) --- Õ. If we take account of (0.1)
we get

Thus we have proved that from every increasing sequence
k(n) of natural number another sequence kl(n) can be extracted
so as to have (11). It follows, [Lemma 5], that SEta T -- 0.

i.9. - Coroharies. In [Theor. 5.1] we have considered
(DAR8)-sums. Now the theorem holds true for any one of

the following summations: (DAB), The proof is
almost the same. In these three cases, denoted by I, II, III,
respectively, we shall drop 0, 0 in I,
we shall drop 0 in II and 0 i n III.
The theorem holds also true for summations I’, II’, III’,
IV’ of the character (D), (DA), (DR) and (DAB) respectively.
The proof is even simpler. We omit the conditions

0, 0 in I’, omit 0 in II’,
omit 0 in III’. We do not choose any partial



75

sequence ; but stay with ~ Pn ~. So we get, instead of
(51, I Qn, E I -.~ 0. Now, instead of (6) we find Tn  with

can be completed. Thus we can state the general theorem:

5.3. - Corr. Admitting hypotheses [1.1], [§ 1; 12, 14] and
(Hyp 8), if needed, consider sums of any kind (D’). If 1.,
2. as before and 3’.. ~ is (D’)-summable, then

6. - Theorem. Take the hypotheses [1.I], 19 1: 12, 14],
and (Hyp S) if needed. Suppose that E E 6~. Let (D’ he any
kind of summation. Suppose that exists. then

Proof. We apply the [Theor. 5.1], taking E. = 0. We
get 0. Hence, since this is a constant sequence,
we have

6.1. - Theorem. If exists, then 

Proof. This follows from [6], because 0  0.

6.2. - Theorem. If exists, then = 0.

Proof. The sequence O ;, {O 1, { 0 1, ... is a sequence
of complexes each of which being composed of the single
brick 0. This sequence is distinguished of any character
considered. Let q;:df -;;(0). have lim p (; 0 f ) = cpo . Since

‘I . 

d f 
‘I - - 

,

exists, we have S0, (D’) q = To. Hence, by [6.1],
cpo = 0, which proves the theorem.

6.3. - Theorem. If exists for some E, then
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Proof. By [4], the sum CP exists; hence, by [6. 2j
-~ (U) = 0.

7. - Theorem. Consider the hypotheses [1.1], [§ 1; 12, 14
and (Hyp S). We shall consider (DARS)-summation.

If 1. Ei, G, 2. E2 = 0, 3. exists,
then

Proof. By [4], the sums Szgi exist. By [§ 1; 13.2]
we can find coverings L13 ~ ... ~ Lln ~ ... of E
such that El  Lin , (n = 1, 2, ...) and

Similarly we can find coverings .
of 2?2 with and

Since El · E~ = 0, we have, [§ 1; 13.3],

Find complexes ... , P2, I ... such that

and complexes P", P2, ..., Pri , ... such that

Since som i we have, by (3),

Consider the figures

They are disjoint.
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In the same way we obtain

Having this, apply theor. [§1; 21.5]. getting a subsequence
k(n) of indices and a completely distinguished sequence
i 1, f or E1, y such that

Since, by (9),

we get, by the same [§ 1; 21.5], a subsequence 1 of

the indices I (kn) J, and a completely distinguished sequence
; 1 for E2, such that

Since som Rn, are disjoint, so are som Q’ ki(n), som 
and then, by (9.1) and (11), so are Rkl(K). By [~ 1:
21.6], is a completely distinguished sequence for E1,
and is a completely distinguished sequence for E2.
Hence, by [§ 1; 21.10], i df 1 Rkl(fI) U } is a completely
distinguished sequence for Ei -~- By hyp. 3, lim 

exists and equals Sin ce exist, and
since I and i are completely distinguished
sequences for E1, EZ respectively, we have

Since
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it follows that

7.1. - The above theorem is valid for the following kinds
of summation (DA8), The proof is almost the

same. Indeed, instead of taking completely distinguished
sequences &#x3E; Rkl(n) we take only those of the characters,

(DAS), (DRS) respectively
The theorem also holds true for any of the following

kinds of summations:

The proof will be even simpler. Having obtained i and
j and the relations (7) and (8): Q;,/ 2013 0, E2, -- 0.
we shall not need to consider subsequences, but we shall

find 7~,, R;; so as to satisfy the corresponding condition (1)
with som 1?;,  Thus we can state the

7.1. - Coroll. Under hypotheses [1.1], [§ 1; 12, 14] and
(Hyp S) if needed, consider any kind (D’) of summation.

If El · E. = 0. D&#x3E;’$ exists, then

S. - Theorem. Let us admit the hypotheses [1.1], [1; 12,
14]. (Hyp $). We shall consider (DARS)-summations.

If 1. E, F E G, 2. E - F = O, 3. 7i is (DARS)-summable
on E and on F. then q is (DARS)-summable on E + F.
Hence, by I

Proof. Consider a completely distinguished sequence
j P" ~ of complexes for E -~- F. There exists a partial com-
plex R,, of P" . ;~a = 1, 2, ...), such that ! R,,, E If-’- --- 0. Let

P,, = R,, U 8,, where R,, fl 8" = ~ . We have ~ Pn, E -t- 0
and E - 0. Hence. [§ 1; 5.14],
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By virtue of [§ 1: 21.9], 1 R. I is a completely distinguished
sequence for E and completely distinguished sequence
for F. By hyp. 3 we have

It follows, from (1), that lim cp exists. Since the

completely distinguished sequence was any one, the

field q is summable on E -f- h’. Applying [7] we get the thesis.

8.1. - Corollaries. The theorem is valid for summation
of the character (DAS), and (DS). For proof it is

sufficient to drop, in the forgoing proof, the condition

, or both respectively.

8.2. - Remark. The theorem 7 is not true for summations

(D), (DA), (DR), (DAR), even if we admit (HypS). The fol-

lowing example shows it:
Let B be composed of all half-open rectangles

F is defined as the finite union of those rectangles and G
as the tribe of all Lebesgue’s measurable subsets of the

square ~))0~1, 0~/1~ ~ will be the

Lebesgue’s measure. Define

y (a) = qo, and for all other bricks b_ put cp (b) = 0. The
sums 8si = F cP = 0 exist, but does not exist if
we do not use the (S)-property for complexes, yielding
the sum.
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9. - Theorem. If 1. E E G, 2. Sg, exists, ~. 1 Pn I is

a sequence of complexes with --- 0 for n - oc, then

~ CPn~ --’ ~.

Proof. { Pn I is distinguished of every kind for 0. Since
SE, (DI) cp exists, therefore, [f J, SO, (D’) 4) = 0. We have

So, = lim cp (Pn) ; hence, = 0.

9.1. - Theorem. If 1. E E G, 2. SE, ~ exists, 3. a &#x3E; 0,
then there exists B &#x3E; 0 such that if P is a complex with

Proof. Suppose that the thesis is not true. Then for

every &#x3E; 0 we can find a complex P such that and

Putting P 1 1 ..., 1 ... and finding the corresponding1 2y "") nl 
...

Pn , we have 03BC(Pn) - 0: hence, by [9], which
contradicts (1).

9.2. - If 1. E E G, 2. SE, exists, 3. a &#x3E; 0, then there
exists fi &#x3E; 0 such that, if S ~, G, then ~ ~ 

Proof. Similar to that of [9.1], through contradiction
with [5.1].

10. - Theorem. Under hypotheses [1.1], [§ 1; 12, 14] and
(Hyp 8), if needed, we have: If 1. Eel , E2’’’.’ 2~, ...~ FE G,
2. exists, where (D’) is any fixed of summation,
3. E d f El -~- EZ - f - ... -~-- En -E- ... , 4. E ~ F, 5. Ei, E2, ... are

disj oint, then

where E is understood as convergent in the V-topology.

r~ 

Proof. By hype 2 and by virtue of [4.1a], the sums SE-~P
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exists. By [7.1],

Since G is denumerably additive, we have 0; hence,
. Consequently I

10.1. - Theorem. Under the same hypotheses as in [10],
if 1. E E G and p exists, 2. we put for all F  E.

then K(F) with variable is

denumarably additive. Hence I~ is a kind of .vector valued
measure, (see (6) ).

Proof. Follows from [10].

11. - Remark. We can prove the following: Under hypo-
theses [1.1], [§ 1; 12, 14] and (Hyp S) consider any of the

summations (Dfl, (DAB), (DRS), Suppose that I.Ei,
E2, ... , E,~, ... are al l disj oi nt. 2. Put E ~~i + ~ +... + ~ + ....
3. Suppose that exists for all n = 1, 2, ..., then SE q
exists too, and we have

The theorem is not true for the s ummations (D), (DA), (DR),
(DAR), even if (Hyp ~S) is admitted.

12. - Theorem. Under hypotheses [1.1], [§ 1; 12, 14] and
(Hyp S), if needed, consider any kind (D’) of summations.
Let E1, y 9 ... , Els y ... , I E E G, F E G. Suppose that En _~ F,
E S F. If 1. SF q exists, 2. | En , -- 0, then SE" 
- SE cp f or n -- oo in the V-topology.

Proof. We rely on [4.1a] concerning the existence of
sums to be now considered. We have
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by [7.1 cor]. Since ~20132~) 2013 0, we have, by [5.3],

Hence

(1)

We have

by [7.1 cor]. Since - E) - 0, we have, by [5.5],

Hen ce, by ( 1 ), we get

12.1. - Remark. The theorem [12] says that con-

sidered as the function of E, is 

nuous for any kind of summation considered.

13. - Theorem. Let (D’) be any kind of summation oft
Suppose that y is (D’~-summable on I. Put for

every brick a, then jET is (D’)-summable on I and we have

/ 

for every E E G, SE p.

Proof. Let E E G. Consider a (D’)-distinguiahed sequence
of complexes = P,.2, ... ~ i for E. Put

We have
df 

i

[4.1 aJ, [7.1 cor]. Since som P.. I E lpo - 0, we have, by [121,

This being true for any (D’)-distinguished sequence t P. 1
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for E, it follows that K is summable on E, and we have

From (1) and (2), the theorem follows.

14. - Theorem. Admit the hypotheses [1.1], [§ 1; 12, 14]
and (Hyp Sj; if needed. We shall consider any kind (D’)
of summation. If 1. 7¡ is (D’)summable on E, where E E G,
2. À is a number (real or complex, depending on whether
Y is a real vector space or a complex one). 3. We define
for all bricks a the vector then y isf
also (D’)-summable on E, and

1~. - Under previous hypotheses, if ~1 and I are two
vector fields, both (D’)-summable on E, then the vector-field
(~3(0) af cp1 a) + CP2(a) is also (D’)-snmmable on E, and we have

Proof. Both [14] and [15] follow from the linearity of

the vector-field Y.

lb. - The existence of the (D)-sum requires more
than the existence of any other (D’)-sum on E. Generally,
the « addition » of a letter  increases &#x3E;&#x3E; the size of sum-

mable f ields. ’

17. - Let q &#x3E; 0 and let A be an atom of G, then, by
[§ 1; 14.2], there exists a complex P such that P, 

1
If We take 7)  1 03BC(A), then, [§ 1; 17.3], we get A  P. Hence,2 

by [§ 1; 17.2], there exists one and only one brick p of P
with

Since P, g ~ ~  ~, we have hence,
by (1),
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Thus, if A is an atom of ~, then for every  0 sufficiently
small there exists a brick p such that  1J.

17.1. - Let ~n -. 0. We can find, by [17], a brick pn with
A S pn , - A)  qn . If we put qn = ~1... (rt = 1, ‘~, ...),
We get bricks

with

Thus if A is an atom of G, there exists an infinite sequence
of bricks (2), satisfying the condition (3).

17.2. - Now, suppose that A is an atom of G. Suppose that
7i is (D)-summable on 1. Then 7i is (DARS)-summable on
the set iAl composed of the single soma A, [4.1a]. Consider the
sequence (2) in [17.1] with properties (3). The sequence of

complexes

satisfies the conditions (R) and (A), and also (S) for ; A ~ i
because the only subsoma of A, differing from A is 0.
Thus (4) is a completely distinguished sequence for }A{.
It follows that

17.3. - Let d1, AI, ... , An... be a finite or infinite se-

quence of different atoms, (some ones or all), of G. Sup-
pose that 7 is (DARS)-summable on 1. Then, by [10], [7.1],

17.4. - Since the hypothesis of existence of the 
on I is less restrictive that each one concerning (Dfl, 

the above holds true for those summations too. But,
even if (Hyp 8) is not supposed, our arguments are valid
for hence for any one of the sums of character

(D), (DA), too.
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18. - Suppose that §7is (D)-summable on I. Let a be a

brick. Since { a }, , ... is a (D)-distinguished sequence
for ; ~) I we have

If a = ai -~- a2 ... -~- an + ... is a finite or denumerable sum of

disjoint bricks, ’we have [10]:

a quite strong condition imposed Dealing with
bricks and atoms we can get examples showing that the

different kinds of sumlnations do not coincide.

§ 3. - Measurable sets of traces and integration
of functions of a variable trace.

We shall need an auxiliary theory which aims at the

foundation of a general orthogonal system of co-

ordinates in Hilbert space, [§6], that system being
adapted to discontinuous spectrum of hermitian and normal
operators as well as to their continuous spectrum. The
auxiliary theory to be now developped deals with the no-

tion of trace (13) and constitutes a generalization of a

similar notion defined in our Comptes Rendus notes: (23),
(24), (25), and in (14). The notion of a trace we shall deal
with is just the notion spoken of in (11), (26) and used
in (22). Since in all these papers the theory has been sket-
ched only, and many theorems have not been accompanied
with proof, therefore it seems to be in order to supply
now the proof in the present paper.

1. - We admit the hypotheses [§1,1] and take over the topic
and notations of [§ 1; 1 - 4.4], but we do not admit neither
(Hyp dd) nor (Hyp At). Thus we shall consider the tribes

G and the base B of .~. To avoid non essential com-

plications, we shall admit that ~’ is a finitely genuine strict

(is) The french term is c lieu..
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subtribe of G, and that G admits an effective, denumerably
additive non negative measure It.

2. - We shall consider infinite descending sequences
a1 ~ a~ ~ ... ~ a" ~ a"+1 ~ ... of bricks. If lanf, Jbnt i are
two such sequences, we say that an j 1 is included in 
I an  ) if for every n there exists m such that am  b» .
We see that the sequence 10, 0, ... t is included in every
sequence, and every sequence is included in I I, I, . ... 1.
If then We have.

We say that I is equivalent to ; 

The notion of equivalence obeys the formal rules of iden-

tity, and the notion of « being included » is invariant with

respect to the equivalence.
If the sequences an t, dif f er only by a finite number

of elements, they are equivalent.

2.1. - Def. A descending sequence I of bricks is said
to be minimal if the following conditions are satisfied;

1) an I is not equivalent to 0, 0, ... 1,

2) if ) I btt f ~ then either bn I vo j 0, 0, ... I or else

bnf jay.

, 
2.2. - Remark. In the general case we cannot prove the

existence of minimal sequences without supplementary hypo.
theses concerning B. Thus, in what follows w e shall
admit the existence of at least one minimal

sequence.

2.3. - Def. A saturated class of mutually equivalent
minimal sequences of bricks will be termed trace (1~), and
each of those sequences representative of that trace. All
elements of a representative of a trace are 0.

(14) The notion of trace is related to nltrafilters (27), (28) and also
to maximal ideals in Stone’ s-rings (Boolean rings), (18), (29). However,
the notion of trace seems to be more adapted to application to Quantum
Physics than altrafilters.
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2.3.1. - Remark. Notice that there does not exist any-
thing like a « null-tracer. 

’

2.4. - Def. Two traces y are said to be equal x = y,
if their representatives are equivalent.

2.4.1. - This notion of equality obeys the formal laws
of identity. It coincides with the identity of classes of

sequences, suitably restricted.

2.5. - Def. We say that the brick a covers the trace x,
whenever there exists a representative ; I of x such that

al ~I a. (Of course it follows that all an S a).

3. - In [§ 1; 4] We have defined a coveriitg as an at most
denumerable sum of bricks. In this chapter W e t a k e o v e r

that definition.

3.1. - " If L1, I Lz, ... , Ln , ... are coverings, finite or infinite
denumerable in number, then ~ Ln is also covering.

n

3.2. - If Li, L2 are coverings, so is Ll Indeed, if

is a brick.

4. - Def. Let X be a set of traces (it may be even empty),
and L a covering. We say that X is covered by L if the

following implication is true: « if then there exists

a brick a such that 1) a ~ L, and 2) x is covered by a,
[Def. 2.51 ».

. 

4.1. - The empty set of traces is covered by any covering.
Every set X posseses a covering, namely the soma 1.

4~. ~. - The following are equivalent:
I. The trace x is covered by the brick a,

II. The set (x), composed of the single trace x, is

covered by the covering a.

5. - The following lemmas hold true: Let X, Y be sets
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of traces and L a covering. If X C- Y, and L is a covering
of Y, then L is also a covering of X.

5.1. - Let L, M be coverings and X a set of traces. If

L ~ M, and L is a covering of X, then M is also a cove-

ring of X.

~.2. - be a collection of indices. Suppose that
for every i E ~S the set X~ of traces is covered by the cove-
ring L, then U,Xi, (i E S) is also covered by L.

~.3. - If Xi, XZ, ..., at most denumerable in number,
are covered by L2’ ... respectively, then is

covered by 

5.4. - Theor. If L, M are coverings of the sets of traces
X, Y respectively, then L" M is a covering of X ~ Y.

Proof. Let x E X n Y. There exist bricks a, b, both cove-
ring x, and such that a  L, b ~ M. Since x is covered by
a, there exists a representative I of x such that an ~~ a,
(n = 1, 2, ...). Since x is covered by b, there exists a repre-
sentative I of x with bn ~ b, (r~ = 1, 2, ...). The sequen-
ces ; an t, I are equivalent, [2]. Hence there exists p
with bp ~ al . a b  N · M. Since bp, ... ~ is
equivalent to bl, b2, ... f, it is equivalent to a. 1. Since
a . b is a brick, it follows that x is covered by L M. The
lemma is proved.

6. - Denote by W the set of all traces. Il X is a set of
traces, denote by co X the complement of X with

respect to W, i. e. W-X.
We admit foil owi ng two hypotheses:

Hyp. I. - If X is a set of traces, L, M, are coverings
and co X respectively, then L -~- M =1.

Hyp. II. - If a is a brick and X the set of all traces
covered by a, then co a is the covering of co X.
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6.1. - Suppose that 11 has at least one element b diffe-

ring from 0 and I. From (Hyp. 1) it follows that there

exists at least one trace. Indeed, by [4.1] the empty set of

traces is covered by any covering. If W=O, we would
have W = co W. The brick b would cover both T~’ nod

co W, but b + b 4= I.
From the hypotheses (Hyp. it follows

that, if is a brick, but not an atom, there exists a

trace covered by a. Indeed, suppose that there does not

exist any trace covered by cx. Then, by (Hyp. is

covered by co a. There exists a brick with 0  b  a. Now

co W is covered by b. Hence, by (Hyp. 1), b + co a =.:: I,
which is not trne.

If a is an atom, then a, a, ...! I is a minimal sequence,
hence representing a trace covered by a.

If Ii’,-tnd 1~ are composed of 0 and unit only, I is an atom.
Thus we have proved, that if f E lf7 is any figure # 0,

then there exists a trace covered by f.

7. - The above hypotheses (Hyp. I) und (Hyp. II) and
the existence of an effective measure on G will make

possible to develop a theory of measurability of

s e t s o f t r a c e s. The theoreins which will not involve

the measure [t explicitely, will be indipendent of

the choice of the effective measure.
We emphasize that, given the tribe F, the notion of

traces depends on the choice of the base R of

F, so we may call them i~z F.

7.1. - We shall rely on the following theorems by Wecken
(12): If G is a denumerably additive tribe admitting a denu-
merably additive, non negative and effective measure, then
G is completely a.dditive.

7.2. - Def. If X is a set of traces, then by its outer
coat we shall understand the soma of G: where
the product is extended over all coverings L of X.

7.~i. - Def. If X is a set of traces, then by its inner
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coat we shall understand the soma of G:

where Y = co ~.

’~.4. - Theorem. For every set X of traces We have

Proof. Put W X. If L is a covering of

~, and M a covering of Y, we have, by (Hypothesis I) :

Multiplyng both sides by co M, We get L co M = co M;
hence co h~ ~ L. This being true for a given L and any
M, we get

where the summation is extended over all coverings of Y.

The inclusion (1) being valid for any covering L of X, we
get E co M ~ llL i. e. co IIL, hence co [Y]* s [X]*,
and then [X]* ~ [X]*.

7.4-1. - Theorem. If X ~ Y are sets of traces, we have
for their outer and inner coats the inclusions:

7.5. - Theorem. If X is a set of traces, then there exists
a denumerable sequence of coverings of X:

such that [X]* = nuL,..

For such a sequence we have 11([X]*) = lim 
In addition to that we have p([XJ*) = inf p.(M) where

the infimum is taken for all coverings M of X.

7.5a. - Proof. First suppose that X = 0. Then all cove-

rings L will be coverings of X, (see [4.1]). Hence the soma
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O is also a covering of X, (see [§ 1, 4] and [§ 1, 1]). Hence
inf ji(M) = = 0, where the infimun is taken over all

coverings M of X. Put L,, = U, ~ . -1, 2y .... We have 
~ ... and lim p(Ln) = inf Now 0, hence [X]* = 0,
and then = 0.

Thus in the case where X = 0 the theorem is proved.

7.5a’. - Let X ~ 0, so if L is a covering of X, we have
Denote by ILI I the class of all coverings of X.

We have [g]* = IIL where (LE ILI). We o r d e r W e 11 the

different elements of i L ; :

where the indices are consecutive ordinals. Denote the

ordering of these indices by 8.

’~.~b. - Suppose S i s f i n i t e :

Then L df L1 . · L2 ... L", is a covering of X, (see [3.2] and [5.4]).
We have = IIL = Ll ... Ln = L. This soma is one of

the somata (1). If we put

we get lim = KX]* = inf p(M) where the infimum is

taken for all coverings M of X. The theorem is established
in the case considered.

7.5b’.. Let us suppose that 6 i s i n f i n i t e. Put, for

every 8, where 6 E 8,

This product is meaningful because G is completely ad-

ditive : ps E G.
If 8~8~ we have ps. and then 

We say that the following are equivalent:
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Indeed, the implication II --r I is evident. Suppose I, and
x ~ ~ It follows px ~ pp, and then p(p3 - P7.) = ~(px) =
= 0, which gives, on account of the effectiveness of the

measure 11, po - px = 0. Hence pp  p~. It follows px = pp,
i. e. II.

7.5c. - Denote by p r the class of all somata P8 for 8 E
For each q E ; p ; « consider the smallest ordinal X(q) such
that = q.

If q, and q  q’, we have &#x3E; À(q’), and con-

versely, if &#x3E; A(q’), we have q  q’.

7.5d. - The ordering 8 of indices, if restricted to the

set of all X(q), is a partial well ordering, say S’ :

where the variable P varies over a range of consecutive

ordinals. Denote the ordering of these indices by 6)-C. Put

rp = for all 0 E 6lt.
There is one to - one correspondence between the

somata q E p I and the indices P E 61l, where

and where the following are equivalent:

Thus we have

7.~e. - We notice at once that the well ordering is

at most denumerable. Indeed, we have &#x3E; ... &#x3E;

&#x3E; &#x3E; ... and ri &#x3E; rZ &#x3E; ... &#x3E; rp &#x3E; ... , so all r, - are

disjoint and have positive measures, for p is effective.
If their number were non denumerable, we would have a

contradiction, for I.L is denumerably additive.
Let us emphasize the following remark: If qE {p!, 

the unique index q, for which q = r.., has the property
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7.,5f. - Now we shall prove that every re is a denumerable

product of coverings of X. Suppose that the statement is

not true. Clearly r1 is a denumerable product of coverings
of X, hence the smallest ordinal q, for which this does not
take place, is &#x3E; 1.

Suppose that TJ -1 exists. We have TJ -1 ¿ 1
and is a denumerable product of coverings of X. We

have, by (4),

We say that if

we must have py == 

To prove this, notice that ¿ r7). By (6) we get
 ’YJ’ ~ 7}. Hence which gives p~ = rr, = r7) = pT~~,~

where ~  by [7.5c] and (7). Now this is impossible,
because is the smallest index v for which pp == p~. Thus

we have proved that (7) implies pE = r,-1.
7.5g. - Take ~’ such that

We have, by [7.5f.],

Consequently, by varging ~’ in (7.1), and by taking the

product of all equalities (7.2)~ We get

which gives

a nd hence, by (8) and (4),

Since is a covering, and has been supposed to be
a denumerable product of coverings, it follows that also r,
is a denumerable product of coverings. The contradiction
thus obtained shows that 71 must b e a 1 i m i t ordinal.
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7.5h.. Since 61C is a denumerable well ordering [7.5e],
it follows that there exists an infinite sequence  ~2 
 ...  1J n  ...  ~ such that

For every n the soma r,,, is a denumerable product of

coverings of X. We have, by (3), 1:(111)  ~(~Z)  ...  

 ...  1:(1]). Let T’ be the smallest ordinal ~ than all 
We have

for all n. We shall prove that T’= ~c(~). To do this,
notice that

Determine the unique B for which p.,, = rF3 . We have r1) " &#x3E;

~ rp ~ "1)’ which gives, by (6), 
"

for n = 1, 2..... Suppose that &#x3E; pT~~,~ . We get, by (6),
~  ~, and then, by (9), there exists m with fi  TJm. Thus

we obtain, from (9.2), ~", s~ B  YJm which is impossible. It

follows that pr, = Since ’t(11) has the minimum pro-

perty, it follows, from (9.0), that c’ _ ~(~).

7.5i. - The equality t’ _ ’t(11) being established, we get
1:(’1¡) = It follows that if 1 ~ 8  ’t(1J), there exists
m with

Having this, we can write

Since is a covering, and each of the remaining factors
in the above product is a denumerable product of coverings
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of X, it follows that rr, is so too. The contradiction thus
obtained proves that every q E p I is a denumerable product
of coverings.

7.5j. - Now we have the index a ranging
over S, hence [X]* = the index B ranging over 6lt.
Since the number of factors in this product is denumerable,
it follows that [X]* is a denumerable product of coverings
of X. Let us write

where M~ are coverings of X. If we put Mn = n?=lMi, we ob-
tain

and M. is a covering of g. (by virtue of Lemma 5.4). Thus
the first part of the thesis is proved.

7.5k. - If where Mri are coverings of X with
it follows, on account of the denumerable

additivity of the measure 11, that

’~.51. - To prove the last statement of the thesis, put

where the infimum is taken for all coverings L of X. Take
the sequence f rom (10.t). We have, [ ~ .~kJ, ~ ~ lim ~,(M,~) _
= 

Suppose that A  03BC([X]*). There exists E &#x3E; 0 such that

X~([~F]~)2013e. By (11) there exists a covering L’ such that
a ~’ wCL~~  ~.(CgJ#)

Since M. ~ L’ is also a covering of X, we have

In addition to that we have ~ ... , and these
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somata are coverings of X. It follows, on account of [7.5k],
that ~([XJ.) = lim On the other hand we get from (12),

which is false. Thus we have proved that ). _ (1([X]*I’ and
this completes the proof of the whole theorem [7.5].

8. - Measurable sets of traces. Define. A set X of traces
is said to be measurable whenever its inner coat and its

outer coat coincide: [X]* _ [X]*. In this case we speak of
the coat of X and denote it 1~~ [gJ. have [X] = [X]* = [X]*.

8.1. - Theorem. If X is a sets of traces, ~’ = co X, then
the following are equivalent: I. X is measurable., II. [gJ* ·
. [Y]* = 0, III. Y is measurable.

In this case we have [X] = co [Y].

8.2. - Theorem. The empty set 8 of traces is measurable.
The total set W of traces is measurable. They are different.

Proof. By [3.3] we have for X = 0:

We have [X]* = 0 (compare part [7.5a] of the proof of the
theor. [7.5]). Hence [X]* _ [X]*, so X is measurable. By [8.1],
since W = co V, and since (9 is measurable, so is yV. We
have [Q]==0 and and 0=~=2.
Since [O] # [W], the sets O and W are different.

Remark. Soon we shall prove that if a is a brick, then
the set of all traces covered by a is measurable.

8.3. - Defin. If X is a measurable set of traces, then

the number

is called measure of X and denoted by 
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8.~. - Theorem. If X is a measurable set of traces,
[X] = L2 ~ ... , are coverings of X, then

= lim 

8.~. - Theorem. Let X be a set of traces, Y = co X, and
let Ln , Mn be coverings of X, Y respectively with

where [XJ* . = IInLn , [YJ~’ = · If X is measurable, then
l i m · Mn) _ 0.

Proof. By theorem [8.1], [X]’~‘ · [Y]* = 0, hence 0 = ·

. = IIn(Ln ~ M,:). We. have Ln+i . L,.. Mn which

completes the proof.

8.6. - Theorem. Let X be a set of traces, Y = co X. Let
Ln , Mn , (n = 1, 2, ...) be coverings of X, Y respectively.
If lim · Mn) = 0, then X is measurable, and we have
[X] = lltaLn.

Now [Xj* ~ L~, [Y]* ~ Mn ; hence

Since we get, by (1),

and hence, by the effectiveness of tt, H,.(L’ . - M’ ) = 0, which
gives, by (2), - 0, and then, by virtue of theor.

t8.1], the measurability of g, and of Y.
To prove the second part of the thesis, notice that

co [X] _ [Y] ~ M* ; hence Ln Mn , 
~ M~). Since lim Mn) = 0 it follows
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Put

We have [X]  p  Ln; hence - [X~  - [XI). This
gives, on account of (3), ~ [X] = 0, i. e. p ~ [X], and then
p = [~YJ. Consequently, by (4), [X] = which is the

second thesis. The theorem is established.

8.6.1. - The measure of the empty set O of traces is 0,
the measure of the total set W of traces is 

8.7. - Theorem. If a is a brick and X the set of all

traces covered by a, then X is measurable. We have [X] = a,
w([gJ) = (1(a).

Proof. By (Hypothesis II), co X is covered by co a. Put
L. = a, M. = co a, (~a = 1, 2, ...). We get, by theor. [8.6],
that g is measurable, [X] = a, and p(a).

8.8. - Theorem. For every brick a ~ 0 there exists a

trace covered by a.

Proof. Denoting by X the set of all traces covered by
a, suppose that X = The complement co X, is covered,
by (Hypothesis II), by co a. Now 0 is a covering for 0.

It follows, by (Hypothesis I), that co a -~- 0 = 1, which

gives a = 0, thus a contradiction. The theorem is proved;
(see [6.1]).

8.9. - Remark. The theory of measure of sets of traces
is similar to the Lebesgue’s classical theory of measure of
point-sets, and it can be developped similarly. We shall
apply the original Lebesgue’s device (13) in proving that

the denumerable union of measurable sets is also measu-
rable. This device can be, however, greatly simplified owing
to the fact that 11. is a denumerably additive measure on
t~. The same device is used in the authors paper (14).

8.10. - Theorem. If X, Y are measurable sets of traces,
then X U Y is measurable and
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Proof. Put X’ = co X, Y’ = co Y. Let L~., L~, Mn , M2 be
coverings of X, X’, Y. Y’ respectively with  Ln,

, and

By Lemma [5.3] and [5.4] Lri -~- M,~ , y L;~ · :~~;~ are coverings of

respectively.
We have

and

(4) .

In addition to that,

Since X, Y are measurable, we have, by (1) and theor. [8.5],

hence, by (5):

If we take account of (2), (3), and apply theor. [8.6], we
obtain the measurablity of X d Y, and in addition to that,

To prove the second part of the tbesis, notice that (1) gives

which implies

On the other hand the relations L,~.1  L,~ , M,~ yield
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Hence, by (5.1 ),

It follows

which together with (6), completes the proof.

8.10.1 - Theorem. If X is measurable, then co X = 
is also measurable, and [co X] = co [gJ = X) =
= 11(1) - 

Proof. By [8.1] and [8.3].

8.11. - Theorem. If ~, Y are measurable sets of traces,
then Z~Y~ ~ 2013 Y, X’ ~-- Y are also measurable, and their
coats are [X] . [Y], [X] [Y], [X] -E- [YJ respectively.

Proof. We use de Morgan laws and theorems [8.1], [8.10].

8.12. - Theorem. If ~, Y are measurable sets of traces,

Proof. X c Y is equivalent to X = X ~ Y. We use

theor. [8.11].

8.13. - Theorem. If X, Y are measurable sets of traces,
and X + Y -.. 8, we have Y) = + p(Y).

Proof. This follows from theor. [8.11], [8.10].

8.14. - Theorem. If

1 ) X,, X2, ... , ~,~ , ... are measurable sets of traces,

then

1) X is also measurable
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8.14&#x26;. - Proof. Let 6 &#x3E; 0. Choose positive numbers 81 &#x3E;

b., &#x3E; ... such that ~ 6. Fix p and consider gp and
= B~ theor. [7.5] and [8.5], there exist coverings

Ln, L3 of Xp and X~ respectively, such that

and

Hence there exists n = N(p) such that

8.14b. - On the other hand we have for

then, by (a

Hence there exists n = M(p) such that

8.14e. - Combining (4) and (5) we can say, that for every
p there exist coverings M~ of [X,,], [~~p] respectively,
such that

Let us fix these coverings.

m = 1, 2, .... As M~ is a covering of co it is also

(by Lemma [5]), a covering of co X. Hence M’ - .... · Mm
is, by Lemma [5.4], a covering of co X for any m. On the
other hand M1 -+- M2 -~- ... is (by Lemma [5.3]) a covering of
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X. We have el) for a fixed m:

Since [L is denumerably additive and non negative it follows

this inequality holding even if, by chance, the right hand
series were divergent. Now, by (6), we have ~ I

Consequently (7) gives:

8.14e. - We shall get help from the denumerable additi-
vity of ~,. We have supposed that Xj - 0 j.
Hence, by theorem [8.11J and [8.2], we also have [Xi~ · [~,~] = 0.
It follows that and hence, there
exists m such that

For such an m we get, from (S),

Thus for every 5&#x3E;0 there exists m with (8.1). Applying
Theor. [8.6], and what has been said at the beginning of

[8.14d], we deduce the measurability of X.

(i5) This is the Lebesgue’s device (13).
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hence It follows

Since is a covering of X, (by Lemma [5.3]), we have

This being true for any 6 &#x3E; 0, we obtain

8.14g. - On the other ha.nd we have [X], since

(theor. [8.12]); hence

Now, by hypothesis, all [XnJ are disjoint; hence

From (10) and (12) we obtain

This combined with (11) gives [X] = [XnJ, so all items

of the thesis are proved. ,

8.15. - Theorem. If Xl , I X2, ... , X- ... are measurable

sets of traces, then ’ is also measurable, and
we have

Hence



104

The set X,~ being measurable, so are Yn , (Theor. [8.10)’;
hence Yn+1 Yri are so, (Theor. [8.111). Since all terms in

(2) are disjoint, we can apply Theor. [8.14], which gives
the measurability of X.

In addition to that we have I
(by Theor. [8.11]), and
follows

so the theorem is proved.

8.16. - Theorem. If gl, y ~2 , 2 ... , ... are measurable

sets of traces, then

is also measurable, and we have

Proof. By de Morgan laws.

9. - Defin. A set X of traces is called -null-set of traces
if its outer coat is 0.

A null set is measurable, since 0~[2~~[~]*=0;
its measure is 0; (s) is a null set, IV is not a null set. We
shall state some theorems whose proofs we omit.

’ 

9.1. - If X is a null set, Y C X, then Y is also a null

set.

9.2. - If Xi, X2, ... , .Yn, ... are null sets of traces, so is
U 00 

Xn.

9.3. - For a set X of traces the following are equivalent:
I. X is a null set. II. = 0.

9.4. - Theor. If _Y is measurable and N a null set, then
X - N is measurable, and [X - N] = [X], and p(X - N) = 

Proof. X - N is measurable on account of [9] and [8.11].
We have and the sets X - N, N ~ X
are disjoint.



105

Hence by [8.13]

9.5. - Theorem. If X is measurable and N is a null-set,
then X v N is measurable, [X _j -.V] = [T] and ~ V) = 

is measurable because of [9] and [8.11].
We have X v N = X v (N _Y), where X and V’ - ~Y are

disjoint sets. Hence, by [8.13], i1(X v N) = -~- ~(N -- X).
Since N - X C N, we have X) = 0. It follows:

9.6. - Consider the class T of all measurable sets of

traces. We have T and W E T. We have 0 =F TV.
If then coX= 1’.

If Xi, Xz, ... , 2 ... E T, then E 1’.

It follows that T is organized into a Boolean tribe with
identity of sets as governing equality and inclusion c of

sets as ordering correspondence. The tribe is denumerably
additive. The class J of all null-sets is a denumerably
additive ideal in ’1~. Hence 1’ can be reorganized into ano-
ther denumerably additive tribe Tl with J= as governing

J J

equality and C, defined by X C Y . =df . X - Y E J as the

governing lattis ordering.

9.7. - The correspondence c8 which attaches to a variable
measurable set X of traces the coat [~~’] is pluri-one; be-

cause if then [X] = [Y), (this f oll ows f rom [9.4] and
[9.5]; see also Preliminaries). The correspondence B is

invariant with respect to the identity of sets in the domain
and equality of soma.ta in the range. It preserves finite

and denumerable operations, carries the null set into 0

and the set into I. It also preserves the measure. B is a

homomorphism from T into G. The tribe l8T is a denu-

merably genuine, denumerably additive strict subtribe of G.

9.8. - The correspondence k is also invariant with re-

spect to ~ in the domain, and as such one constitutes an

isomorphism into G, with preservation of measure.
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9.9. - The tribe contains all bricks, hence it con-

tains the tribe h’, and then the borelian extension of .If’
within G. (Remember that we have supposed that 1~’ is a

strict subtribe of G).

Theor. If we suppose that G coincides with the Lebe.

sgne’s covering extension IpL of h’ within G, then 18(T)
coincides with G.

Proof. This follows from [§ 1; 12.1].

9.10. - Theorem. If then there exists a measurable
set X of traces such that A = [X]. All sets ~, for which

[X] = A, can be obtained from one of one of then, say ~1.
by taking where ~2 are null sets. If

A ~ 0, then X is not empty.

Proof. The existence follows from [9.9]. If then

because the measure tt is effective on G. We can-

not have g = tii because VX = =t= 0. The remaining
thesis follows from that e% is 1 - 1 from TJ into G.

10. - Admit Hyp. [12, 14] of [§ 1]. We shall have some
theorems on single traces.

Def. By neighborhood of the trace t We shall understand

any brick which covers t. (see [Def. 4]). Denote by v(t) the
set of all neighborhoods of t.

10.1. - If a E and b E v(t), then a · b ~ 0.

Proof. Suppose that a · b = 0. Since a covers t, there
exists a representative

Since b covers ~. there exists a representative

As a b ~ 0, we have a. - am = 3 for all n, m. Now the
sequences ; t b,~ a, are equivalent, so we have ¡ a.I~1 b,~’.
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Hence, [2], there exists m with am ~ b1. Since am . hI = 0,
it follows that am = 0 and then am ._-_ am+1 = ... -_-_ 0, so

1 an ~ is equivalent to (0, 0, ...), which is impossible.

10.2. - If a sequence { an } co j 0, 0, 0, ... }, [2], then
there exists m such that am = _ ... = 0.

Indeed for (J there exists n with an  0 henee ayz = 0
and then an = = ... = 0.

10.9. - If 01~02~... is a representative of t’, 
~ ... is a representative of t", bn = anan =1= 0 for all n, then
t, = t".

Proof. We get b1 &#x3E; b2 &#x3E; .... Since for every n we have
1."  an, there exists m with bm  an; hence 

~ an t. Similarly we L Since { is a

minimal sequence [2.1], we have either 3 _ ’10, 0, ... «
or 3 1 b" I. The first alternative is impossible, hence
}~{cBD{~:. Similarly we get ; hence 

so t’ = t". 

10.4. - If t’ ~ t", then there exist neighborhoods a’ of t’,
and a" of t", such that a’ · a" = 0.

Proof. Let ai ~ a2 ~ ... , b1 ~ ba ~ ... be representatives
of t’, 1" respectively. There exists, [t0.3], at least one n with
an . b" = 0; a,~ is a neighborhood of t’; bn is a neighborhood
of t". The theorem is proved.

10.&#x26;. - If v(t’) = = t’’.

Proof. Suppose I’ # t". By [10.4] there exist neighborho-
. 

ods a’, a" of t’, t’’ respectively, such that a’ · a" = O.

Hence, by [10.1], a’ . a" ~ 0 which is a contradiction. The
theorem is proved.

10.6. - From [10.5] it follows - since t’ = t" implies
= 1J(t’") - that the set of all neighborhoods v(t) comple-

tely characterizes the trace t. D i f f e r e n t t r a c e s h a v e
different total sets of neighborhoods.
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11. - Def. We say that t is an elusive trace whenever

pan - 0, where { an I is a representative of t. We say that
t is a heavy trace whenever t1a" --+ a &#x3E; 0.

11.1. - Theor. If 1) a1 ~ a2 ~ ... ~ ~ ~ ... is a minimal

sequence of bricks, [.‘~~.1],
2) À &#x3E; 0, 3) t"Calt) &#x3E; X,
then is an atom in G.

Proof. Suppose b ix not an atom, we have Jib &#x3E; 7~.

Hence there exists a decomposition b = b’ -E- b" where

b’ b" = 0, &#x3E; 0, &#x3E; 0. Applying an argument similar

to that applied in [§ 1; 16.d, 16.e, 16.f], we obtain a brick
c, such that c  b, ~te &#x3E; 0. Putting for n = 1, 2, ... ,

we get a sequence

with ; c". ; ~ ~ « an t, where ! { is not equivalent to ! J 0, O, ...1.
Since I is a minimal sequetice, it follows that

: cn : an f. Hence there exists n with a,~  c. This is, howe-
ver impossible, because pc  Thus we have proved
that b is an atom in G. In the above proof we have taken
into account the circumstance that 11 is effective on G.

11.2. - Theor. If b is an atom in h’L then there exists a
minimal sequence ’a.. I such that

Proof. Let A be an atom. By [§ 2, 17.1] there exists an
infinite sequence of bricks ai &#x3E; a2 ~ ... &#x3E; an &#x3E; ... &#x3E; A, such
that 11(a..) - KA) &#x3E; 0. We have A  Since the mea-
sure is effective, we cannot have A  Thus we have

Consider the set U of all traces each of which being
covered by all bricks aM. We shall prove that t h e s e t U
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i s n o t e m p t y. Denote by Utt the set of all traces which
are covered by an . We have 03BCUn = pan &#x3E; 0; hence Uft =t= 0,
[8.7]. Since and U,,+l C we have 

= lim = lim pan = [tA &#x3E; 0. Hence U =1= O.
The traces belonging to U~ may be elusive or not. Denote

by U, the subset of U composed of all elusive traces.
We shall prove that Ue is null-set.
Let t E Let cl ? c2 &#x3E; ... &#x3E; cm ~ ... be a representa-

tive of t.

Since t in elusive, we have lim I1cfI = 0. Hence there
exists mo such that for mo we have

We have Since A is an atom, we have either
cm A = 0 or cm A = A.. In the second case we get A ~ cm,
and hence ~,(A;  which contradicts (1). Hence

c.A = 0, i.e.

Since t is covered by cm and by aft, and c. - an is a brick, it
follows that there exists a brick c,,(t) which covers t and
is contained in co A and Hence

Such a brick can be found for every t and for every n.

By the axiom of choice we can find for a given n such
set of bricks, c.(t). We have

Let Ln be a covering of an 2013 A with f1(L.. - (an 2013 A))  -
n

Such a covering exists, [7.5]. L. is also a covering of

U,. Indeed, if t E cn(t) is its covering and cn(t)  an 2013
- A::g- L-.. Hence  L.. Now, since lim - A) = 0,
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and I we get hence

which proves that Ue is a null-set.
Denote by Ilh the subset of all heavy traces contained

in U. Since U = tlk u and ~t~==0, it

f ollows that W e shall prove that Un contains
only one trace. Suppose that t’, t" E t’ =t= t". Let bi ~
&#x3E; b2 &#x3E; ... ; b~ &#x3E; b2 &#x3E; ... be representatives of t’, t" respecti.
vely. Since the trace t’ is covered by there exists n with

b;~  am. Thus we can find a subsequence t of : b;, f such

t hat f or n = 1, 2, ... , and wi th k( 1 ) &#x3E; Ic(2) ~ ....
Putting We have c2 &#x3E; ... , 

! I is a representative of t’. In a similar way we shall

f ind a subsequence I of I b;: « such that c;’ &#x3E; c2 &#x3E; ... ,
and where c;~ : i s a representative of t". Since

t’ =}= t", there exists, by [10.3], an index no such that c;,,~·c;b=
= O. The sequences c~ &#x3E; c;b+.l &#x3E; ... , &#x3E; c;;~+1 &#x3E; ... are also
representatives of t’, t" respectively. The bricks of the first
sequence are disj oint with the bricks of the second one.

Since t’, t" are heavy traces, we have

hence, by [11.1], the somata

are atoms in G.

They are disj oint. Since c’n  an, cri :!5; a,,, it follows that

Thus we have A’ + A" = A, 0, pA" &#x3E; 0, which contra-
dicts the hypothesis that A is an atom. Thus we have pro-
ved that lTa has the measure 0 and UI&#x26; is composed of a

single heavy trace; denote it by to . be a

representative of to . We can, as before, derive from it
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another sequence

representative of to , with d", ~~ acn , because to is covered

by the bricks an . We get

hence B  A.

Since to is heavy, we have lim &#x3E; 0; hence 0.
n - oo

Now A is an atom; consequently B = A. Thus we have
proved that if to the unique heavy trace covered by bricks
an, then f or every its representative an We have = ~.

The theorem is proved.

11.3. - Coroll. - If b is an atom in and a2 ~ ... is

a sequence of bricks with = b, then the set !7~ of

all elusive traces which are covered by all an is a null-set,
and the set Un composed of all heavy traces which are

covered by all an, is confined to a single trace.

11.4. - Remark. The theorems [11.1], [11.2], and [11.3],
yield information concerning the relation between atoms
and heavy traces. They are not the same, of course, -

but there is a 1 1 correspondence between them. Concer-
ning the proof of [11.2], we notice that J, may be empty.

11.5. - Remark. Aplying a theorem by Stone concerning
ultrafilters, (rather on maximal ideals), we can prove the
following:

Every infinite decreasing sequence a2 &#x3E; ... of bricks
with ari =)= 0, lim = 0, contains a minimal sequence bn ,
[2.1], through 1, may not be minimal.

11.6. - Theor. The set (t) composed of a single elusive
trace t is measurable. Its measure is 0.

Proof. Let a. be a representative of t. We have 0
oo. Let XII be the set of all traces covered by a".
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By [8.7], Xn is measurable, and we have (La... We
have

Now

Hence is a null set of traces. Consequently (t)
is a null set of traces; hence (t) is measurable.

11.7. - Theor. The set (t) composed of a single heavy
trace t is measurable. Its measure is positive.

Proof. Let a1 &#x3E; a2 &#x3E; ... be a representative of (t). We
have

Let X,, be the set of all traces which are covered by aft.

We have == IL(aft). We have

The set is measurable. By [11.1] the soma a,.

is an atom. Hence, by [11.3 Coroll.], the set U~ of all elu-

sive traces covered by the bricks a. is a null set, and the

set Uh of all heavy traces covered by all a,~ is confined to
a single trace. We have Uev Uh = hence Uh =
- Hence Uh is measurable. From (1) it

follows that (t) = Uh . Hence (t) is measurable. We have

(t) = ~n - U,, and then

The theorem is proved.

11.8. - (Hyp. I) and (Hyp. II) are necessary conditions
for having a measure theory of sets of traces.

12. - Measurable functions of traces and integration.
The class 7’ of all measurable sets t9.6] possesses the pro-
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perties : 1~. if X E T, then co X E T, 20. if Xl, X2, ... , Xn,
... E T, then and there is available a denu-

merably additive non negative measure defined for all
X E T.

These properties enable us to apply Fr6chet’s theory
of measurable functions f(x) of all traces, and, in addition
to that consider Fr,6chot’s (15), (7). (6)
This theory follows the known features, of the Lebesgue’s
integration theory. In our case of number valued trace-fun-
ctions we shall confine ourselves to a sketch only, referring
for detailed proofs to (7), (16), (17).

12.1. - Let f(x) be a real valued f unction defined almo8t
tl-everywhere (a. e.) in W. (This means that p(co C! f) = 0).
We say that ’~’ or that f(x) is measurable, if wha-

tever the real number X may be, the set

belongs to T (i. e. is measurable).

12.2. - This condition is equivalent to each of the fol-

lowing ones:
1°. for every 7~ the set I x ~  ). ~ I is measurable,
2°. for every 7l the set ; t z &#x3E; ~ ~ I is measurable,
30. for every 7~ the set J z &#x3E; ~ ~ I is measurable.

l~1.3. - Def. A measurable function is called simple,
if it is defined almost 03BC-everywhere and admits an at most
denumerable number of values. The following properties
hold true:

12.4. - If f(x) is measurable, then there exists an infi-

(J6) Integrals of functions defined on abstract sets are currently
called Lebesgue’s integrals, but Frdchot (15) was the first who has

liberated the integration theory from topological and metrical notions,
and this step in that time was a tremendous progress, and the corres-

ponding idea far from the intuition of contemporaneous mathematicians.
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nite sequence

of simple functions converging on T~ a. e. uniformly to 
and conversely, a uniform a. e. limit of a sequence qJ1(X) ¿
~ ~2(x) ~ ... of simple function is measurable.

12.~. - If f(x) is measurable, so is ) J I(x) I.

12.6. If f(x), g(x) are measurable, so are are also f (x) +
-~- g(x), f(x) - g(x), f(x) v g(x), f(x) n g(x). The last two f unctions
are defined as max [f(x), g(x)], min [ f (x~, g(x)] for a. e. point
x separately.

12.7. - If : I is an infinite sequence of measurable

functions, and if lim [lim is defined a. e., then

it is a measurable function. 
-

13. - Let cp(x) be a simple function, admitting the values
Tr 1 ~Z, ... , I qa, ... on the measurable and disjoint sets 

... , X" , ... , respectively with p(co Uti X,,) = 0.

Def. We say that is if the series

cp. converges absolutely.

13.1. - Def. The following definition is a generalization
of the above one. A measurable function f (x) is said to be

if there exists two simple p-summable fun-

ctions ~(x) such that a. e.

If f(x) is summable

is a sequence of 03BC-summable function tending a. e. unifor-
mly to f (x), and if ym(z) admits the values -. on

the measurable sets ~~~ ... respectively, then
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exists and does not depend on the choice of ; f. This
limit is denoted by and termed integral
o f on 

’

t3.S. - For a simple function 1’(x), admitting the values
in the sets X Ie we have

13.3. - Remark. The integral can also be defined

similarly as did Lebesgue in his « Lemons sur 1’ integration »,
(13), and thus can be given an equivalent definition.

13.~. - Theorem. (Lebesgue). If
1. are ~.-summable.

then the following are equi-
valent : 

~’

I. f(x) is 03BC-summable;

14. - The notion of measurability of functions and of

their integrals can be extended to complex valued functions.
A complex valued function h’(x) defined a. e. on ~Y is said

to be measurable (or else, fitting T), if, in the representation

the real valued functions f(x), g(x) are both measurable.

14.1. - Every measurable complex-valued function can
be uniformly approximated a. e. by complex-valued simple
functions.

15. - Def. If f(z), g(x) are both 03BC-summable, the function
I’(x), in [14], is also termed and We define

The corresponding notions for real valued functions are but
a particular case of the above more general notions.
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16. - The notion of integral can be further generalized
by introducing integrals over measurable subsets
of ~Y. If X is a measurable set of traces, is a measu-

rable complex valued function defined a. e. on then

the function Fl(x) defined by setting h’1(x) = whenever

x E X, and = 0 whenever x E co X, is also measurable.

16.1. - Def. We def ine, in the case of summability of

[16]:

and we say that is p-8ummable on X.

~g.2. - The following theorems are true:
If is li-summable and X is meas urable, then 

is 03BC-summable on X.

16.3. - If G(x) are 03BC-summable on a measurable
set X of traces, and a, B are complex numbers, then aF(x) +
+ BG(x) is also 03BC-summable on X, a nd We have

16.4. - If F(z) is 03BC-summable on W, Xl, X2,... XtI, ... are
mutually disjoint measurable sets, then if we put ~.’ = 
we have

This theorem says that the complex-valued set-function
defined for all is denumerably addi-

x

tive on T. -

16.5. - If X is measurable and is summable on X,
so and we have
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16.6. - (Lebesgue), If
1) h’rilx) are 03BC-summable functions on a measurable

set X,
2) g;x) is a real valued ~-summable function on X,

16.7. - If Fn(x) are 03BC-summable functions on X, and if

I’n(x) tends a. e. on X, uniformly to F(x), we have

17. - Def. We direct our attention to 03BC-square sum-

mable complex valued functions F(x). We shall state defi-
nitions and theorems for functions defined a. e. on W, but
the analogous statements will be valid and useful also in

the case where F(x) are defined a. e. on a measurable set

X of traces.
A function is said to be it-square summable if

1) ~ F(x) (2 is ii-summable on W,
2) h’(x) is measurable on W.

17.1. - If F(x), are ii-sq uare-summable on so

is with aF(x) + where are complex constants.

17.2. - If G(x) are 03BC-square summable on V, then

.F(x) is (1-summable on V, and ’We have the Cauchy-
Schwartz inequality

and the Minkowski-inequality

17.3. - If F(x) is IL-square sammable, then there ezists
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a sequence ~n(x) t, (n = 1, 2, ...) of complex simple p-square
snmmable functions such that lim .a.e. uniformly.

n - oo

18. - Def . Let I be an infinite sequence of p-square
summable functions. We say that it converges in p-square
mean, if for every e &#x3E; 0 there exists N such that if n h N,
m ~ N, we have

18.1. - If converges in p-square mean, then there
exists a square (1-summable function y(a?) determined uni-

quely up to a null-set of traces, such that lim f 
n - oo

- F(x) = 0. We say that I converges i~2 (1-squa1.e
mean toward F(x).

18.2. - If I converges in (1-square mean, then there
exists M &#x3E; 0 such that

18.3. - If ; I tends to i n 03BC-square mean, then

every subsequence 1~’,~tri, ; I contains another subsequence
I F"’(tl) I converging toward almost ti-everywhere.

18.4. - If I. I Q~n~x) ; t tend in p.-square mean res-

pectively to F(x), G(x), then + tends in 03BC-square
mean toward 01531’.z) + and

18.5. - If ; I converges on V in 03BC-square mean

toward F(x), if X is a measurable set of traces, then P,,(x).
if restricted to X, converges in p-square mean toward 
restricted to X.

I8.6. - Def. If G(x) are 03BC-square snmmable functions
defined a. e., we say that F(x) is equivalent to G(X), P(x) =
a. e. G(x), if the set

is a null set.
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18.7. - The equivalence possesses the formal properties
of the identity. The addition of two functions, the multipli-
cation of a function by a complex number, the integral and
the l.1-sqnare mean convergence, are invariant with respect
to equivalence.

18.8. - The square summable functions with this equi-
valence considered as a kind of equality, make up a sepa-
rable and complete Hilbert-Hermite-space (16), with the

equality-invariant scalar product (F, G) = where

F(x) denotes the conj ugate imaginary. Indeed all axioms
for H.H.-space (16) are satisfied.

1~.9. - If X is a measurable set of traces, then the

collection of all square summable functions h’(x) such that

F(x) = 0 a. e. in co X constitutes a (closed) subspace of

this H.H.-space. If we vary X these spaces make up a

Boole’an denumerably additive saturated tribe of spaces.

§ 4. - Quasi-vectors and their summation.

l. - We take the hypothesis (FBG) and terminology of
[~ 1; 1] concerning the finitely additive tribe JF, its basis

B, and the denumerably additive extension G of .F. The

hypothesis (Hyp. Ad), [§ 1; 3], will be admitted. To avoid

non-essential complications we shall admit, as in [§ 3; 1],
that P is a finitely genuine strict subtribe of G, and
that the denumerably additive, non negative measure 11 on

G is e f f e c t i v e. In addition to that we shall admit that

G is the Lebesguean-covering-extension of .F within G. It
follows that the borelia n extension Fb of if"’ wi thin G. coin-

cides with G, (see [§ 1; 1 ~.1]). We shall take over the theory
of in F and admit (Hyp. I) and (Hyp. II) [§ 3; 6],
to have the whole measure theory of sets of traces at our

disposal.

2. - Let 17 be a F. Riesz-Banacb normed and

complete linear space. Its elements x, ~, ... will be

termed v e c t o r s, as in [§ 2].
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Def. Denote, as in [§ 3; 10], by the set of all

neighborhoods of the trace x. By a quasi-vector
’T.(p), (or 7:) with support x, we shall understand any
vector-valued function defined for all bricks p belonging
to 

If V is the space of real or complex numbers, we shall
use also the term quasi-number with support x. We know

[§ 3; 10.61 that v(x) determines uniquely the trace, hence the
support is well determined by a quasi-vector.

3.1. - Various operations can be performed on qua-
si-vectors with the same s 11 P P 0 r t:

gx be two quasi-vectors. By their 

rence) Ïz + gx , f1: - gx)_we shall understand the function
defined by hx(p) af fx(p) --- gx(p) for all neighborhoods

p of x.

By À7: we shall understand the f unction h~(p) defined
by hx(p) for all p E The number 7l is real or

complex according to the character of the space ~.

If is a number-valued functional or a vector-va-

lued operator, defined for all V, we define 
as the number-valued function h(p) defined by

lf’ ( f(p), [vector-valued function h(p) defined by h(p) =. li
F (f(p))], f or all p E v(x). As a particular case we have the

norm of the quasi-vector, defined as for all

p E v(x).

4. - Let E * 0 be a set of traces. If we have defined,
for every x E E, a quasi-vector f x with support x, we shall
say that we have a set of quasi-vectors with support E,

The construction can also be considered as a

quasi-vector-valued function defined on E.

4.1. - We shall be mainly interested in sets of quasi-vec-
tors with support ~, i.e. with the set of all traces
as support. Such a set of quasi-vectors will be termed total.

4.2. - A set of quasi-vectors with support E can be con-
ceived as a f u n c t i o n p) of two variables : x varying
in E, and p varying over the whole set v(x). It is not true
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that if p is the common neighborhood of two different

traces x’, x", we must have F(x’, p) = p). Thus to every
neighborhood p, which is taken into account there corresponds
a set T(p) of traces x E E, such that p E v(x). Hence to every
p there corresponds a set of vectors f,(p) where x va-
ries in T(p).

4.3. - Thus we have a function p) which attaches

to every p considered whole set of vectors

Def. If this set is composed of single vector for every
x E E, we shall call the set of quasi-vectors, on E.

4.4. - Especially, if the set of quasi-vectors is total and

regular on W, the set of quasi-vectors yields a vector-field
cp(p) defined for all bricks p, [§ 2, def. 2]. If is it not regu-
lar on E, we can select in many ways, for each brick p, a
trace x = a(p) and consider the vector fa(p)(P) which is well
determined by the quasi-vector If we do that for a

total set of quasi-vectors for every brick p, we shall have
defined a vector-valued function thus constituting a
vector-field defined for all bricks. If, in the case of a total
quasi-vectors set, we consider all possible selection of a(p),
we shall get various vector-fields ifl(p). We shall call them
selected vector-fields or generated by the given total set of
quasi-vectors.

~. - Def. We shall go over to the summation of a given
set of quasi-vectors with support E, where E is a measu-

rable set of traces [§ 3; 8]. We refer to [§ 2]. Let f x be a
total set of quasi-vectors. Consider one of the vector-fields
4),,(p), defined for all bricks p, and generated by the given
total quasi-vectors-set Suppose that is summable

on [E] (17) in the sense of [§ 2] with respect to a kind (D’)

(ii) [E] means the coat of E, [§ 3: 8].
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of summation. Now, if whatever the choice of ~a(p) may
be, the vector-field 4~(p) is (D’)-summable on E, and the
sum has for all choices of 4)a the same value, we
say that the total set of quasi-vectors is 
on E, (over E), we denote the sum by

and call 1 o f f x on E, or (over E) z.

5.1. - We shall be only interested in sums [~ 2 ;
2.1 2.2] and admit the [§ 1; 21.1]. We leave the
discussion of other ki nds of sums to the reader.

5.2. - For (DARS)-summation we shall prove the theorem:
If for all choices of the sum exists, then all
these sums must be equal.

Proof. ë6ï’(p) be different vector-fields genera-
ted by the given total set fx of quasi-vectors [4.4], and
suppose that A’ ~ d", where

Let i Pn l’ be a completely distinguished sequence of com-

plexes for E, [§ 1; 21.3]. Put

Consider the set of all (~ =1, 2; ...), (k = 1, 2,...).
For such a brick p,,,% there is possibly, a double choice of
the vector attached to it:

If 1’,," is an atom, there exists one and only one trace .

covered by pnk, hence in this case ’ëi’(p"’k) = so the
choice is well determined.

We call single choice-brick or double choice-brick

according to the case, whether ~’(pnk), are equal
or different.
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Bricks which are atoms are always of single choice;
other bricks may be single choice bricks or not.

We shall find a partial sequence l(n) of indices, as fol-

lows. We put l(l) = 1. We take the ëï)"’(PI2), ....

The bricks pit, ... are finite in number.
I say that if n is sufficiently great, then not a single

brick among pll , ... will occnr in the complex Pn , excep-
ting, perhaps, when the brick is an atom. Suppose this be
not true. Then there exists an infinite sequence t(n) of in-

dices, such that in every there is available at least

one of the non atomic bricks pit. The number of those

bricks plk is finite. Hence there exists a non atomic brick,
say pim, and a subsequence i of such that 

is a mesh in every complex P.(,,), (n = 1, 2, ...) : E y

for n=1 2, ....

Since is not an atom, and since p is effective, there
exist somata A, B such that 0, 0, A B = 0, A +

Now I is completely distinguished for E

[§ 1; 2l.fi]. We have ; E, --- 0 for n - oo. Hence
som ( --~ 0 f or n --~ 00, i. e. 2013 0.

It follows, as this is a constant sequence, Ep1M, 
and hence Ep1tK = P1M, which gives E.

Il follows that A ~ E. Hence there exists a partial com-
plex Qn of p.c") with Qn, A I - 0, for n - oo. Hence

because A.  

Since Qn is a partial complex of to which pim be-

longs as a mesh, we have either or 

° PlX@ pim.
The first alternative cannot occur for an infinite num-

ber of indices n, because from (1) we would get ’ 0, A ; --~ 0
i. e. A - _0 which is not true. Hence the relation spoken
of can occur only for an at most finite number of indices
n. Hence, for sufficiently great M we have surely
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and hence (1) fields 0, hence ! y 
= 0

and then plm = d which is not true. The obtained contra-
diction proves that the supposition, stating that Pun E f or
n - 1, 2, ... , is not true.

Hence, our statement that if n is sufficiently great, then
not a single brick among

will occur in pnl, PM2, ... excepting, perhaps, when a brick
(2) is an atom, is proved. Thus we can find an index 1(2) &#x3E; Z(1)
such that not a single non-atomic brick of PZ(l) will occur
in any P. when 11 ¿ l(2).

Considering Pl(2) we shall repeat our argument, finding
an index 1(3), such that if n ~ 43) non a single non atomic
brick of P~,) will occur in Pn . By induction we shall

find an infinite sequence of indices l(l)  1(2)  ...   ...

such that if k  n, not a single non-atomic brick occu-

ring in:

will occur in Thus if we consider any brick which

occurs in all (3), we see that either this is an atom. and
can occur in many complexes, or alse it occurs only once
in (3). The sequence ... is completely distinguished
for E. Consider the vectors

which are defined for bricks x, I (n =1, 2, ... and k = 1,
2, ...). We denote these vectors by

They are defined only for bricks There may be some
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remaining bricks in R, b1, b~ , .... We put

Thus 0"’(p) is defined for all bricks E B and they constitute
a selection of a vector-field generated by the total set I of
quasi-vectors. Now has a limit, say A, by hypo-
thesis. because ! « is completely distinguished f or E. We
have:

Hence .d’ _ 1; :4:’ = .A., and then d’ = d", which contradicts
the hypothesis that d’ ~ d". The theorem is established.

5.3 - Remark. The theorem [5.2] is true for (DS), 
and (DN8)-summation, but it is not true for other kind of

summation.

6. - The fundamental theorems [6.1 - 6.10] on sums of

quasi-vectors will be given for (DARS)-summations only,
hence we admit (Hyp [§ 1; 21.1].

These theorems are direct consequence of the correspon-
ding theorems in [§ 2].

6.1. - Considering (DARS)-summations, suppose that

1) fT is a total set of quasi-vectors,
2) E, P are measurable sets of traces,

3) ~’ 4) 7~ is summable on E,
then f ^ is summable on F.

Proof. Let be a selected vector-field, generated by
fT - By hype 4 and [Def. 5], the sum exists.

Since [h’~ ~~ [El, (1’] E G, it follow, by [~ 2; 4], that 

also exists. Applying [Theor. 5.2J, we get the thesis.

6.~. - If 1. H1, B, are measurable sets of traces, 2. 
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exists then

Proof. We apply [Def. 5], [§ 2; 7], and the fact that

6.3. - If 1. El, E2 are measurable sets of traces 2. 
= 8, 3. and both exists, then SEIUE! 4 exists
too, and

(For 

Proof. We rely on [§ 2; 8].
6.4. - If 1. E, En are measurable sets of traces, (n = 1,

2, ...), 2. J.LE" - 0, 3. En C E, 4. exists, then

in the V-topology.

Proof. We rely on [§ ’; 5.1] and on equality tL[E.] = 
[§ 3j.

6.5. - If 1. E is a measurable set of traces 2. SE fi exists.
3. a &#x3E; 0, then there exists B &#x3E; 0, such that if  x, where

F is a measurable set of traces, then

Proof. We rely on [§ 2; 9.2].
6.6. - If 1. En, F are measurable sets of traces, (n = 1,

2, ...), 2. Eft are disjoint with one another, 3. E,~ C F,
exists,

then, if we put E iif we get

so the vector-valued function fT of the variable measu-
rable set G of traces, with G C F, is denumerably additive.

Proof. We rely on [§ 2; 10, 10.1], and on the equality

6.7. - If 1. are measurable sets of traces 2. 1~’,
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Proof. We rely on [§ 2; 12].

6.8. - If SE f ~ exists for a measurable set E of traces,
then if J.1F = 0, we have

6.8.1. - If exists, and F, theii

6.9. - - 1. exists, (1V is the set of all traces), 2. we

put for every brick p: where [P] a p,df f
then for every measurable set E of traces we have

Proof. We rely on [§ 2; 131.

6.9.1. - Remark. In relation to [6.9], if we define the

quasi-vector k,. by putting k,(v) dj K(v) for every neighborhood
of T, we get fr ~ for every measurable set E of
traces. Hence the (DARS)-sums of quasi-vectors can be
transformed into sums of regular quasi-vector-sets, [4.3].

6.10. - If f.~ is summable on a measurable set E of traces
and X is a number (reni or complex depending on the cha-
racter of 11), then

Proof. [§ 2; 4.1].

6.11. - If f’r’ gT are both summable on a measurable se
E of traces, then

Proof. We shall represent the set of quasi-vectors ft as
a p) of two variables: T and p, where p is a
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neighborhood of T. Similarly for g:. By definition of the
sum of two quasi-vectors t3.1], for the quasi-vector h-=df ft +
+ fi:r we have

whenever p is a neighborhood of ~. Take a choice of a

vector field h (p) generated by h- . It is determined by the
choice of the function = a(p) where p is a neighborhood
of T. Then the vector fields f or g ~ will be h (m(p), p),

and, by (1) we have

for all bricks p. We have

Hence by (2) and [§ 2; 15]

Thus the sum on the right in (3) exists and has the same

value for any choice of the vector-field generated b3~ h-.
Hence [Def. 5]

7. - We shall deal with only. Let 7:, h
be two total sets of quasi-vectors, which are summable on 

Def. We say equivalent to g.:

whenever for every measurable set E of traces we have

SE fx = SE gx.

7.1. - We have for total, summable sets of quasi-vectors
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is a number, then

Proof. We reply on [6.11].

7.~. - From [6.9.1] it follows. that total summable
set of quasi-vectors is equivalent to a regular total sum-

mable set of quasi-vectors. 
’

8. - important case of the vector-space J7" is the

space of real number and the space of complex numbers.
The vector-fields, in these particular cases, will be termed
scalar fields and quasi-vectors will be termed quasi-numbers.

The function p(I) of the variable brick a is a scalar

field. and if for all neighburhoods p of x we define 
we get a real quasi-number. We shall call it measure-qua-

The total set ti, is regular.

8.1. - Quasi numbers can be multiplied. getting
a new quasi-number fx - defined as the function ·

· gx(p) for every neighborhood p of x. Given a quasi vector
fx taken from a general Banach space T’. and given a

quasi-number ax , we can multiply them, getting a qua.
si-vector in 1’ : defined in a similar way, as above.

9. - If Mx is a total set of quasi numbers. summable
on 1fT, then there exists a complex-valued function of

the trace x variable in such that. for every measurable
set A of traces, we have

The function F is The integral is Fréchetian.

is 3: 10].

Proof. Put df SA Mr for all measurable A. By theor.
[6.6] the set-function K(A is denumerably additive. If

9
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= 0, we have [A] = 0, since the measure 03BC is effective
on G. Hence K(G) = 0. Consequently, (7), K(A) is (i-conti-
nuous. Hence, by a known theorem, C’l), there exists a

(i-unique function F;x), defined p-a. e. on W, such that

so the theorem is proved.

10. - Def. Let f(xJ be a complex-number-valued function
of the trace x variable in W. Suppose this function is

ji-Fr6chet-summable on GV. Hence the integral

exists for every measurable subset of traces. Considering
a brick p, and a measurable set P of traces, with [P] = p,
the integral

does not depend on P but on p only. Having fixed x for a
moment, and considering all neighborhoods p of x, we put

We may call it: The mean-value quasi-vector of f at x.

This is a quasi-number with support x. We also define:

11. - We shall prove the theorem: Under circumstances

[1], if f(x) is Fréchet-summable on W,
then the total set of quasi-numbers I-L- . is summ le
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on ~. and we have

for every measurable set A.

Proof. Put k, af 1-1-$ . f. This quasi-number is defined
as the function

defined for all neighborhoods p of x where [P] = p. Hence

Now, let P = pl , p2 , ... I be a complex. Since the somata

pi are disjoint, we get

where [P’] = som P. Now let A be any measurable set of

traces, and let I be any sequence of complexes with
I PM, - 0. If we denote by P3 the set of traces with

[P2] = som P 91, we get

Hence, by (1), the sequence I converges to

On the other hand this sequence converges to SEkx, [6.7].

Consequently



132

11.1. - Remark. Notice that the quasi-number-set gx df
2013 valz f is regular, but it may be not summable. 

Ex. Let f = const = 1, we = 1 for all p.
Hence if a complex P has n bricks. the number g(P) = n.
so it does not tend to any limit.

l,‘~~. - We shall be in circumstances [1] till the end of

the r~ 41 and shall consider only (DARS)-summation. We
admit (Hyp. S).

13. - If are Frechet-summable on then

[Def. 7].

Proof. Since f and g are Fréchet-summable on III so

is f + g. By [11], we have for every measurable set A of traces

and

Since the sum of the right-hand integrals in (1) and (2)
equals that of (3), it follows that the same is for the
left-hand sums, so the theorem is proved.

14. - Suppose [1]. If is Frechet-summable on W,
and A is a number, then

Proof. Similar to the forgoing one. based on [11].
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15. - Theorem. If f(x) is Fréchet-square-summable on
Sq then

The proof of this theorem will require few auxiliary theo-

rems and steps. In what follows, till the end of this § 4. ,
we shall agree to denote by the same letter a measurable
set of traces and its coat: this for simplifying the exposi-
tion. There will be an ambiguity up to null-sets of traces.
These null-sets, however, do not matter: see [6.8.1.].

Notice that I1x valx f 12 is summable, [11], because ( f 12
is Fréchet-summable. The summability of the right-hand
side expression in the thesis shall be proved.

15-a. - First of all we shall prove the theorem [15] for

the functions f (x) defined as follows: there is a brick c =t= 0
such that f(x)= 1 for x E c . and f(x) = 0 f or x E co c.

Let A be a measurable set of traces. Consider a completely
distinguished sequence P~I of complexes for A, and select

any subsequence I of it. By [§ 1; 21.6] this is also

a completely distinguished sequence for A. Applying [§ 1;
21.13] find a subsequence I of it and a sequence
I Qn I of complexes for co A such that som Qn · som = 0

and were is a completely distinguished sequence
for I. Put

The complex is a partial complex of R" .
Denote by the quasi-numbers f 12 and

11a: | valx f |2 respectively. For any brick p we have

Hence

Consider the bricks of Denote by anl , 0~2 ~ ...; 
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... ; 8ft2, ... those of them for which a,~k ~ c ; 
. c = 0 ; enkc ~ 0, 8ftk co c ~ 0 respectively.
We have

and

because g(b,~k) = 0.
Now

It follows that

We recall that e»x are all those bricks in for which

Since I is a completely distinguished sequence for I,
there exists a partial complex Sn of Rra, such that IS. i, is

completely distinguished for soln c.
We have
We have

By [§ 1; 21.9], Tn is a completely distinguished sequence
for co c.

Consider all bricks à,,2". of B. for which dns c =1= 0,
dni . co c # 0.
They make up two classes: one composed of those bricks

which are in 8n ; denote then by

and the second composed of those bricks, which are in T,~ :
denote them by
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The classes (2), (3) are disjoint and make up the set dft1,
à,,2, ... of bricks. By [~ 1; 21.14], co c) - 0 and

c) - 0. Now a brick either belongs to (2) or to

(3). Hence all can be devided into two disjoint classes

, where we have

Having this, resume the formula (0):

Since, as we know, [11], the quasi vector set is

summable, it follows that tends to f 12.
Thus from every partial sequence ) another one can be
extracted {Plk(n) I such that lim = SA 03BCx valx f :2.
Consequently

Hence

for every measurable set A of traces. Thus we get

15.b. - If is the function as in [15a] and we put
g(x) = where h is a number, then the thesis holds

for 

15.c. - Lemma. If 1. [c] ~ 0 is a figure, 2. g(x) are

03BC-square summable on W, 3. f(x) = 0 for x E c, g(x) = 0
for x E co c = W c, 4. A is a measurable set of traces,
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5. Pts - I PK1, I pn, ... ;, (r = 1, 2, ...), is a completely distin-

guished sequence for [A], then

for n - 00, are considered as sets of traces).

Proof. We take over the notations from the preceding
proof. I is subsequence of 1 P tI i. We build .Rn U

We find I and I Tn I with
We get the bricks bnx where p, bnx · p - 0, and

which all belong to We have

Now

Denote the first term by B’, the second by B". We have

Applying once more the Cauchy-Schwarz-inequality, we set

Since f(x) = 0 for x E c and g(x) = 0 for x E co c, We get
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Since we get

In a similar way we get

15-d. - Lemma. If 1. f (x), g(x) are 03BC-square summable

because f g = gf = 0.

The quasi-number valx (x -f- g) is the f unction

+ g)dl1, hence | valx ( f + g) ;2 is the function

Hence

From (1) and (2) we get

If we apply the [Lemma 15c.], we get
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15.e.. If f(x) is a step-function, then

Proof. [15.a], [15.b] and [15.d].

15.f. - Lemma. If f(x) is sqnare-summable, then there
exists an infinite sequence of step-functions flex), ...

which tends in f1-square-mean to f (:x). This is known from
the general theory of Frdchet’s integrals.

15. g. If
1. f 1(x), ... , f,,(x), ... are all f1-square snmmable on W,
2. f(x) is the square-mean-limit of ~ fn(x) I in W,
3. for every n we have

the I

Proof. Suppose that for all functions fi(x), f2(X), ... , ...

which we suppose 03BC-square-summable in W, we have

Suppose that lim f~,(x) = f(x). We shall prove that

Put

where p ~ 0 is a brick. We have
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Hence

We have

Hence

We have the same estimate in (1) and (2). Take any mea-
surable set E of traces.

Now let P a. = ~ I px~ ~ ··· ~~ (0153 = 1, 2, ...) by a distingui-
shed sequence for [E]. The relation (0) says that

The lef t sum is the limit of the sequence

for n - oo, while the right one is the limit of the sequence
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for n -- oo. Consider the sums

Taking (1) and (2) into account, we have

Applying once more the Cauchy-Schwarz lemma, we get

Now since in general, for non negative numbers, x, y, we
we have

Since the seqnence ’i is bounded, because t is
rr

convergent, there exists K &#x3E; 0, such that

We see that this estimate does not depend on a.
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Having that. we shall prove that

The sums in (4, exists 1y virtue of [11]. We have

and

(4.1)

Hence

By ~3) We get. when 7. - ~,

Hence, for n - oc we get

which gives

so (4) is proved.
Now we shall prove that lim _1 x exists. Suppose it does

n - oo

not. Ve can find 8 &#x3E; 0 and an infinite sequence of indices

al  a§’  i[  2~  ... such that _1 ~’"a _1 x,~,,, i &#x3E; E for all 111 =
1, 2,... Now We have in general

Hence by (3),
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If we choose no so as to have

we shall get

for all m. Consequently the sequence

does not converge. Hence does not exists, which

contradicts the fact that

Thus we have proved that the sum f I’ exists,
and we have

we also have, by (4.1),

Having that, consider the following circumstances:

It follows that

Consequently y for n - o~ we get
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On the other hand we have, by (4),

If we take account of (2.1), i. e.

we get when n - 00 :

15.h - The items [15 a -- g) imply the theorem [15], so

it is proved.

16. - Theorem. If f (x), g(x) are 03BC-square-summable
complex-number-valued functions on W, then

Proof. We have the formula for numbers:

Hence we have

Hence

(1)
j

Putting
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we also have

From (1) it follows

and from (2) we (ret

By theor. [15.5] we hare

Hence, by ’3 and (4 we get

lince f. g are arbitrary square-summable functions. the

theorem i s proved.
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§ 5. - Summation of quasi-vectors in the

separable and complete Hilbert-Hermite-space.

1. - In this § 5 we shall apply the theories, developped
in preceding sections, to tribes of subspaces in the separa-
ble and complete Hilbert-Hermite space We refer to

Preliminaries concerning terminology and notions to be

now used. Let G be a denumerably additive tribe of (closed)
subspaces E, F, ... of H, with .H as unit 1 and the space
composed of the single vector 0, as zero, 0. The ordering
of the tribe is the inclusion of spaces, and co E denotes

the ortho-complement of E in The relation E F = 0

implies « E orthogonal to 1~’ ». All spaces of G are compa-
tible with one another. Let F be a finitely additive tribe

of spaces which is a finitely genuine strict subtribe of G.

Let B be a base of F, satisfying the conditions (Hyp. Ad),
[§ 1; 3] and the hypotheses (Hyp. I) and (Hyp. 11) of [§ 3].
We suppose that G is the smallest denumerably additive

extension of 1/. There always exists en effective, denume-
rably additive measure It on G, (~ &#x3E; 0). G is not only the

Lebesgue’s-covering extension of ~, but also it coincides

with the borelian extension of ~. Thus we are in the

conditions [§ 1; 12, Hyp. and [§ 1; 14]. In our paper
(14), p. 21-22, we have proved that the It-topology on the
tribe G is separable. Consequently, in our case, (Hyp. S),
[§ 1; 21.1] is satisfied. Having this, we can apply the theory
of measurability of sets of traces [§ 3], and use all kinds

of summations of quasi-vectors [§ 4].

2. - We like to make remarks concerning (Hyp. Ad),
(Hyp. I) and (Hyp. II). There are important cases where
these hypotheses are satisfied. We are going to define them.

2.1. - First, let us define some auxiliary tribes whose

somata are Lebesgue-measurable sets of ordinary complex
numbers. We consider the plane p’ of complex numbers,
provided with a cartesian system of coordinates x, y. By the
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rectangle

where

we shall understand the set points (x, y), (complex numbers),

The rectangles will be termed bricks.

We define F’ as the collection of all f inite unions of

bricks. If we consider the relation of inclusion C of sets

as the ordering relation, 1~’’ will be organized into a finitely
additive Boolean tribe with unit P’ and with the empty set
o as 0. The collection j8’ of all rectangles is a base of P’.
The condition (Hyp. Ad) is satisfied. Even more, (Hyp. Af),
[§ 1; 3] holds true.

2.2. - Concerning B’-traces in F’, (see [§3 ]), we have the
following situation. If (x, y) is a point on the plane, then
there are four different traces attached to it with represen-
tatives

respectively. The point (x, y) will be termed vertex of these
traces. In addition to that there are e i g h t t side-traces v

at infinity, with representatives, e. g.

and f o u r « corner-traces » at infinity, with representatives,
e. g. R(- oo, - n; n, -f- oo). These a r e all existing traces.

. This can be proved by considering ultrafilters and two-va-
lued measures on (29); (see also [§ 3; 2.31 footnote).
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;~.~. - If we consider p’ modulo an ideal, the traces

will be essentially the same, though some ones may not
exists, because some rectangles seemingly eligible for

yielding them, may belong to the ideal.

~.~. - The following theorem is important:
If 1. p(f) is a finitely additive (and finite), non negative

measure on F’, 2. G’ is the collection of all borelian sub-

sets of the plane P’, then the following are equivalent:
I. the measnre (.L can be extended over G’ so as to

obtain a denumerably additive measure on G’,
II. 1~. If

then

then

The proof relies essentially on the fact that the plane 11,
is locally compact. 

11

~.5. - Put, in general,

We call these rectangles: plane-quarters. Let S be a cor-

respondence which attaches to every plane-quarter Q a
closed subspace of 1~ with the conditions:

. I~. If Ql , Q2 are two plane-quarters, then S(Ql), 6(Q2)
are compatible,
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III’D. if Qt C then S(Q2)·

This correspondence can be extended in a unique way
to another one, also denoted by S, which attaches to every
figure f E F’ a space S( f ), the resulting correspondence
having the properties: S( f = S( f ) - 6(g), S(f U g) = §(f)
+ ~(g). S is a homomorphism from h" onto a tribe of

spaces. The set of all figures f for is an

ideal in h’’.

2.6. - Now, in order that § can be extended to all

borelian sets of the the following condition
is necessary and sufficient:

1) If then

2) If then

Let us remark that this situation is present if we consider
a normal maximal operator in H, (16), and consider its

spectral scale. Usually in the spectral theory projectors are
used. We prefer to consider the spaces themselves rather
than the corresponding projectors, (22), (26), (11).

2.’~. - The extended correspondence § yields a denume-
rably additive tribe G = of spaces. The tribe .F = 
is its finitely genuine strict subtribe, and the S-correspon-
dents of rectangles of 1’’ constitute a base B for F’, so Sl~
may be called bricks of 1~, ( ~ space-rectangle-bricks v). We
define space-traces, as in the general theory of traces by
means of these bricks. Let us remark that it is not true

that to every in F there corresponds through S
a space-trace; indeed, if ai ~ a,. &#x3E; ... is a representative of
a trace x on the plane, the spaces S(a;,) may be all = 0, so
they do not yield any space trace.
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Now, in the above construction one can prove, (conside-
ring circumstances on the plane), that for the space-traces
the hypotheses I and II hold true, so we can apply the

theory of measurability of sets of space-traces.

2.8. - Remark. A similar construction of tribes of spaces
with a base can be obtained, if we consider the straight
line instead of a plane, and instead of rectangles we con-
sider half open-intervals. This construction would
be related to the spectral scale of a selfadjoint operator.
The construction by means of h a I f o p e n a r c s o n the

u n i t circle will correspond to the spectral theory of

unitary operators. 
’

2.9. - The tribe 6G’ may be saturated or not. Whatever
will be the case it admits an effective denumerably additive
measure. Any tribe of spaces can be saturated by a suitable
adjunction of spaces, (see Prelimin.).

3. - In the sequel we shall pay special attention to tri-

bes of spaces obtained trough the above rectangle or half-open
segment-construction, but in the general discussion which
we shall soon start in [5], we shall consider the general
situation as specified in [1]. We shall consider any kind (D’)
of summation, [§ 4].

~. - Let us admit that the tribe G of spaces is saturated,
(see Prelim.). Then there exists an isomorphic mapping of

the space H onto the space of some measurable, complex-
valued fonctions of the variable trace, (14). This mapping
~-1 is obtained as follows:

Since G is saturated, there exists a generating vector
i of 2T with respect to G. Choose w and define, on G, the
measure p :

This measure is denumerably additive, non negative and
effective. It indaces a denumerably additive measure for all
measurable sets of traces, also denoted by 11. We shall
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consider 03BC-square-summable f unction s, [§ 3], of the variable
trace t, defined almost 03BC-everywhere on the set W of all

traces. These functions will be considered modulo 
sets. They are a kind of «functionoids &#x3E;, (30), (31), (32).

To define the said isomorphic mapping first consider

step-functions. Given a step-function ~(~c), there exists a

finite number of mutually disjoint, measurable sets E1, ...,

with W, and there exist complex numbers
À2, ..., 7~" such that

where is the characteristic function of the set, Ex i. e.,
8=0 for t E Ek and Q = 1 for T E EIc. Denote by § the

correspondence which attaches to (1) the « step » - vector

where ek = [Ek]. This correspondence does not depend on
the way of representing ~(i) by the formula (1). it preserves
operations of addition, multiplication by a number and the
scalar product

Since a) is a generating vector, every vector Y E H can be
approximated in the H-topolog by step-vectors (2). Hence
the correspondence G can be extended to all 03BC-square-sum-
mable functions. The extended correspondence, also denoted
by 9; is an isometric, and homeomorphic isomorphism from
the set of 03BC-square-summable functions taken modulo null-
set onto the space H.

5. - Def. Under circumstances specified in [1], a quasi-
vector q(p) with support z will be termed normal whenever
cp ( p)  p for all (See [§ 4; Def. 3]).

5.1. - Theor. Under circumstances [1] if

1. A is a measurable set of traces,
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2. 7z’ , is a set of quasi-vectors (D’)-summable on A,
(see [§ 4], and [1]),

3. The set is normal [Def. 5],
then the set of quasi-numbers ll fx 112 is also summable on A
and

Proof. Take any choice of a vector-field, (see [§ 4; 4.4]),
say generated by Let

be any seqnence of complexes distinguished for [A]. We
have

in the H-topology. NoW, since the spaces Pt11, PI.2l.... are

mutually orthogonal and since we have

From (1) it follows that

Hence, from (2) it follows that the sequence

possesses a limit, viz (3). Hence, the limit does not depend on
the choice of the selected field f (p). Hence this limit is

112. Consequently

6. - Theorem. Under circumstances [1] if

1. fx is a total set of quasi-vectors, (D’)-summable
on ~Y’,

2. the set is normal [Def. 5],
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then there exists h~ &#x3E; 0, such that

for all measurable sets A of traces.

Proof. By theor. [5.1] the sums (1) exist and we have

Naw, by theor. [§ 4; 6.6], the function of the variable
measurable set A is denumerably additive. Since ~(A) ~ 0,
it follows, by the known theorem, (e. g. (7)), on denumerably
additive non negative measures on a denumerably additive
tribe, that K(A) is bounded, so the theorem is proved.

7. - Theorem. Under circumstances [1] if

1. f~ and gx are sets of quasi-vectors (D’)-summable
on A,

2. A is a measurable set of traces,

3. The sets and g. are normal [Def. 5],
then the set of quasi-numbers (scalar product) f.f., I gx), (see
[§ 4; 3.1]) is also summable on ~, and we have

Proof. Let us choose a selection of vector-fields, one for
fx another for Denote them by f (p), respectively.
They belong both to the same choice x = a(p) of traces

covered by p. (Indeed, we can operate only on quasi-vectors.
having the same support).

Let pn2 , ... I be a distinguished sequence of

complexes for [A]. Since pn2 , ... are mutually orthogonal
spaces, and since

it follows that
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We shall prove the existence of the sum

We have

By [§ 4; 6.10] and [§ 4; 6.9] the sums of the quasi-vectors
are (D’)-summable. Hence by [5.1], the

(D’)-siims

also exists, and hence, by [§ 4; 6.10] the (D’)-sum

exists. We have

Since

and

it follows from (1) that

8. - Under circumstances [1] if fx , 9 gx are quasi-vectors
sets, both (D’)-summable on a measurable set A, and they
are normal, then
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Proof. This follows from [7]. Indeed we have

and the Cauchy-Schwarz inequality completes the proof.

9. Under circumstances [1] if

1. 7.’, §§ are quasi-vector sets, both on

a measurable set A of traces,
2. fx, g, are normal,

Proof. We have, [§ 4; 6.10],

Hence

Hence

Taking [8] into account, we get

which completes the proof.

10. - Lemma. If

1. the sequence al , a2 , ..., ... E G of spaces p-tends
to , ,

then

10a. - Proof. Since lim:’ all = a, we can extract, by [§ 1,
12.2], from i a partial aequence ¡ aj(fI) 1 such that
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, where We have

sider the sequence

Since

we have

Since projecting is a continuous operation, we have

hence

From (2) we get hv the passage to limit:

Hence

(3.1)

If we put

w’e have c, &#x3E; and

To prove the Lemma it is sufficient to prove that

(This because of (3)).

10.b - Supposing that this be not true, we have by (3.1),
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To disprove that supposition we shall apply the representa-
tion in [4], which is valid for saturated tribes. Now, our
tribe G may be not saturated, but it can always be extended
(by adjunction of an at most denumerable number of spaces),
so as to get a saturated tribe Gi . Take an effective mea.
sure 111 on Gi. The topology on G generated by will

coincide with that one generated by 11. This follows from

[§ 1; 1 21].
Having this, we can operate i n G1 instead of G.
Let us consider the 03BC1-suare summable functions of the

variable trace x :

which are images of 1j and ~~ respectively. Let E1, E2, ... ,

E, , ... be 03BC1-measurable sets of traces with supports c2 ,

... , c,, ... respectively. We can admit that

(because if not, we can replace E, by Ea df E1 . E2 ... E.,
whose support is 01 . c2 ... cs = c~). We have

The functions can be chosen so as to have

Indeed, 1i: E c, ; hence Projco cn n = 0. 0, there

exists a set E of poeitive measure such that H(x) ~ 0. Hence,
there exists a meaaurable set 1~’ and a &#x3E; 0 such that 

and ~ x for all x E I’. We have

Since Hstx) tends in 03BC-square means to H(x), there exists

a partial sequence H’(6)(Z) which tends almost 03BC-everywhere
to H(x). By the theorem of Jegoroff, given 8 &#x3E; 0, there exists
a set C~ such that &#x3E; and where H~«, converges
uniformly to 
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Hence, if E &#x3E; 0 is sufficiently small, we can find a sab-
set F’ of F’ with &#x3E; 0 where Hz(,lx) converges uniformly
to H(x). Hence for n sufficiently great

But, by (4), H,(x) = 0 for x E co hence

by (3.2). Since

we have

But by (6) (.LIP’ = 0, which is a contradiction. The lemma
is established.

11. - Theorem. Under circumstances [1] if 1. fx is a sets

of quasi-vectors in H With support A, 2. is normal, 3.
A is a measurable set of traces, 4. fx is (D’)-summable on A,
then, SA fx E [A] where [A] is the coat of A.

Proof. Let ~ be a distinguished sequence of complexes
for [A]. Let

We have

and ~ I - 0; hence

Now hence By [Lemma 10], we
get lim f (P") E [A]. Hence
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12. - Theor. Under circumstances [1] if

1. fx is a total set of quasi-vectors in H,
2. 7: is normal,
3. 7: is (D’)-summable on W,
4. A is a summable set of traces,

Proof. Putting co A - A, we have

co A is a measurable set of traces. By [§ 4; 6.2]

Now, by [11] we have

Hence SA fx is orthogonal to Taking in (1) the

projection on the space [A], we get

The second term is the zero-vector. Since SA we get

§ 6. - General orthogonal system
of coordonates In the separable

and complete Hilbert-Hermite-space.

1. - We admit the hypotheses of [§ 5; 1]. Thus ~, G,
are tribes of subspaces of H, and B is a base of ~’,
satisfying all conditions required for the theory of measura-
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bility of sets of B-traces and for applying the 
summations of sets of quasi-vectors.

1.1. - We suppose that the tribe G is s a t u r a t e d and
we select a generating vector a) of H with respect
to G, (see Preliminaries). The effective measure on G will
be defined by

1.2. - Def. The set 13 (yields by extension through F)
a saturated tribe G and a) will determine a system of refe-
rence) [ B, m] for vectors in AT. We shall call it frame (or

of orthogonal coordinate8, in IT, (14), (23), (24), (25),
(26), (11), (22).

2. - Def. We introduce the following important notions, rela-
ted to the given frame of coordinates. H, and let

B be a B-trace in F. By the 0-component of X we shall
understand the quasi-vector xg, with support 0, defined by

Projp X for all neighborhoods p of B. By the f 15

ponent-density of X we shall understand the quasi-vector
x~ with support 0, defined by

for all neighborhoods p of ~.
By the B-coordinate of X, we shall understand the

quasi-number xB with support B, defined by x(p) a f (Projp W,
g) for all neighborhoods p of B. By the 

we shall understand the quasi-number x*B with

support 0 defined by

ru’,

for all neighborhoods p of ~.

3. - We have - hence [§ 4; 8.1],
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We have (.L(p;; hence

5. - Theor. The total set of quasi-vectors xa is regular,
and normal, [§ 5; 5]. The same is for 

which proves the normality. Since Projp X does not depend
on the choice of the trace P where B E p, the set of all

fi-components and also the set of 0-componenti densities is
regular, [§ 4; 4.3J.

5.1. - Theor. The total sets of quasi-numbers xB and
are also regular. We shall consider (DARS)-summations
only, though some theorems are also true for any kind (D’)
of summation.

6. - Theor. The total set of P-components is (D’)-sum-
mable on W.

Proof. It suffice to prove that the vector-field Projp X
defined for all bricks p is (D’)-summable on I. Let Pta = j 
Ptl2, ... ~ I be a distinguished sequence of complexes for I.

We hav e Ek Projpnk X = ProjsomPn X, because all space 
are mutually orthogonal, and since Projpnk X E pnk. Now,
since I Pun , I II.,. - 0 i. e. P n) -+ 11 (I); we get
lim Proj.omp. X = X, [§ 5; 10. This proves the summability
of xp on TV.

6.1. - If E is a m easurable set of traces, then conside-

ring (DARS)-summation, we have
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Proof. From [6], and by virtue of [§ 4; 6.1] it follows

that xB is (DARS)-summable on E. By theor. [§ 5; 12] we have

7. - The total set of Xa is (DARS)-summable on JV.

Proof. It suffices to prove that the vector-field is

summable on I. Let :.. ~ i be a completely
distinguished sequence for I. Ve have

The summability follows.

7.1. - We have for every measurable set E of traces:

if X E IT, then

Proof. The set z¡3 is summable on E, (by [7]). Taking a
completely distinguished sequence P" ~ I for E, we obtain,
as in the proof of [7],

for every measurable set E and every X E jBT. (The quasi-num-
ber pg is defined = 1 for all neighborhoods p of ~).

9. - If ~ E 1£, X is a complex number, then

10. - Y E H; then
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Putting we have

11. - If Y, Y E H, then

Proof. We have

13. - Our next purpose will be a proof of the formula

x~ ~~ wa ~, [§ 4; 7]. It will be proved by steps expressed
in few lemmas.

13.1. - Lemma. If and a is a brick, then

:r;.

l3.la. - Proof. To simplify formulas, denote by wE the
vector PrOjE (00) for any E E ~. use the same letter for a

measurable set of traces and its coat, and write | E I instead
of I1E. We have

hence

where p varies over all neighborhoods of ~. Hence
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13.lb - Take any brick q =)= 0. We have

Hence

Since the spaces q co a, qa are orthogonal we get

valid for any brick q ~ 0.

13.1c. - Now let E be a measurable set of traces and

I a completely distinguished sequence for E. We shall
use arguments similar to those in the proof of [§ 4,15] ; they
rely on [§ 1; 21.6, 21.13, 21.9, 21.14]. Take a subsequence
i I of ~ and get a completely distinguished se-

quence Pkrcn, U Q,, of I. Considering a partial complex
I Rn I of U Qn such that { Rn I is a completely distin-

guished sequence for q, take the bricks e31, en2 , ... with

erik coa) - 0 and also the bricks eri1, e::2,... with

erix a) --- 0. The bricks belong to We have, putting

Hence, by (2),
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Thus from every partial sequence ’I of ) Pn 1, another
partial sequence I can be extracted with [3].

Hence which gives A(P n) --- 0 i. e. the
quasi-vector B - wB z§ is summable over any measurable
set E of traces, and we have

Since xo is summable on E, [6], it follows, by [§4; 6-4], that

is also summable on E, and we have

far all summable E. Hence, by [§ 4; Def. 7}

13.2. - Lemma. If X is a complex number,
where a is a brick, we x~ .

Proof. We have for a measurable set E:

hence

which completes the proof.

13.4. It follows that the theorem is true for any ~~step’’
1), where a2 , ... aft are disjoint

bricks with S, ai = I and Xi complex numbers.

13.5. Now we shall prove that if II Xa II, (k = 1, 2, ... ) are
step functions as above, and if Xx --- ~, then the theorem
[13] holds true for Y. It will follow that the theorem [13] is
true in general.
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Indeed, since is a generating vector and G is the Lebe-
sgae’s covering extension of 11, therefore for every X there
exists it sequence of step-vectors Xi, -,Y2, ... which tend in

the 1I-topology to x: Take e &#x3E; 0. Find k 

Put for any brick p

First we shall prove some inequalities. Let

be a completely distinguished sequence for a given measu-
rable set E of traces. We have

since the spaces are disjoint the expression

Hence

Hence

On the other hand we have
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by CAUCHY-SCHWARZ inequality :

Hence we have proved that

Hence, by (1) and (2)

for all n = 1, 2,... Now we know, [13.4~, that

for sufficiently great n.
Consequently for every e &#x3E; 0 there exists no such that

for no we have

for k - 1, 2,... It follows that, given E &#x3E; 0, we have
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It follows that

Now, lim exists and equals

exists too. Hence ~~ exists and

equals ~E xp. Thus we have proved the theorem.

l3.ti. - Theorem. If X is any vector in H, then

§ 7. - Dirac’ s Delta-Function.

This § 7 is devoted to a mathematically precise theory
of the 8-function, (see Preliminaries). We shall introduce
even more general notions having some properties of the
6-function. Our theory is based on the general topics which
were developped in the preceding sections.

1. - Def. We admit the hypotheses stated in [§ 4; 1 and 2],
concerning the tribes G, .~, the basis 13 and the linear vector
space V.

Let xo , 2/o be two traces; then by a quasi-vector 
support (xo, yo) we shall understand any function q)
with values taken from I’ and defined for all neighborhoods
p of the trace xo , [§ 3; Def. 10], and for all neighborhoods
q of yo . We shall write or f (xo, yo) .

1.1. - Def. We shall consider sets of quasi-vectors fx, v,
where x varies in a measurable set E of traces, and y varies
in a measurable set 1~’ of traces. We shall call the couple
(E, F) the support of the set of quasi-vectors.

1.2 We have some modifications of these notion:
If xo is a trace and q a brick. we can consider the vector

valued q) which attaches to every neighborhood
p of xo a vector of V. We can vary xo over a set of traces
and q over a set of bricks, getting a kind of sets of quasi-
vectors.
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1.3. - Given a quasi-vector Jol, we shall write

q) according to whether we like tu em-
phasize the variable neighborhood q of y, the variable neigh-
borhood p of xo, or both variable neighborhoods respectively.

2. - Def. The following notion of summation will be

important : We say that the set of quasi-vectors ivith
support (zo, E) , (where xo , y are traces, and y varies in E)
is summable on Eivitlt respect to y whenever for every neigh-
borhood p of xo, the set of quasi-vectors /~(p) is summable
on E with respect to y, i. e. , when S /~(p) exists for every

Y2, E
neighborhood p of xo .

In the case of summability, w~ get a quasi-vector

with support 

3. - Def. We are introducing tile number-valued function
A (p, q) of variable non null bricks p, q, defining it by:

This function generates the following ones:
If r is a trace, q) is the quasi number 4(p, q)

whit support i, defined for all neighborhoods p of x, by (1).
It depends on the parameter q. Similarly A(p, q) will be
denoted by A (p, ~) whenever q varies over all neighborhoods
of t. By A (-c, Q, where T, ~ are two traces, we shall understand
the function 4 (p, q) defined for all neighborhoods p 
and for all neighborhoods q of ~.

4. - We shall take over the topic of [§ 6J to have a

system of coordinates in the H.H. space B. Thus G is
supposed to be a saturated tribe of spaces.

4.1. - Lemma. For any vector -M and any spaces
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we have

then in the H - topology.

Proof. The number valued function ] ProjaX ll2 of the
variable a E (;. is denumerably additive and continuous in

the tt-topologJ in ~. Hence 2 ---- 0 which gives
in the H-topology.

4.3. - Lemma. If an, a E G, X E a" in the J.1-to-
pology in G, then ProjaX in the H-topology.

Proof. Since an -I- a, we - a) + - o.

Hence, by
Hence, by

which gives the thesis.

5. - Def. Let (In = ~ qn2,... f, ~ (~i = 1, 2, ...), be a

completely distinguished sequence of complexes for I. Given
a brick p ~ 0, let Pn1, p,:2.... be all those bricks qnx for

which qnk  p. We get a complex { pn1, Pn2, .... }, which
may be empty or not. Now, if for every p # 0 we

have lim = p(p), we shall call { Qn } a special sequence
n-x i

for I.

5.I.. Remark. We do not know whether from all admit-
ted hypotheses it follows that there exists at least one

completely distinguished and special sequence Q,i ; 1 for I.

3.2. - Hyp. We shall admit the following hypothesis:
There exists at least one completely distinguished special
sequence of complexes for I.

a.3. - In the case where the base B is composed of

spaces which correspond to half - open rectangles or
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half - open segments, (see { ~ 5; 2.1-2.9]). the hypothesis
[5.2] is satisfied.

5.4. - We shall consider summations of total quasi-vector-
set defined by means of special sequences. This means that,
given a total set of quasi-vectors 7~, we say that °7’i is

it specially,. summable over Hr whenever for every completely
distinguished and special sequence i ... I,
the limit lim exists and has the same value. The

n - oo

limit will be denoted by and called 
ur

5.5. - If Hyp. 5.2 holds true and ft is (DRAS)-summable,
then exists too. The converse does not seem to be true.

w 
"

5.6. - Lemma. If 1. ~ 1 Q,,,; i is a completely distinguished
and special sequence of complexes for I,

3. f,,i, f n2 , ... are all bricks of Qn with f ,; k ~ f ,
then we have

n

Proof. First we shall prove the lemma under hypothesis
that f is a finite sum of disjoint bricks. Let

Denote by qni (k) qn2~, ... all different bricks of Qn, which are
contained in all’ (k =1, ... , s). We have lim qn&#x3E;&#x3E;) = 

n-oo

Since a1,..., a. are disjoint, and consequently also the
bricks of Qn which are inside of them, we get

The bricks q~ ~~ for fixed n are certainly bricks which
are inside of f. If there are some other supplementary bricks
of Qn which are inside f, we have ~k f,
where Ink are all bricks of which are inside f ; hence
lim 
n-oo
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Having that, let us go over to the general f igure f . By
[§ 1; 3.G] we hay f = a1 + a2+ ... where aj are disjoint
bricks.

Take E &#x3E; 0, and find s such that
Put + ... + as. For such a figure the theorem has

been proved. Let _ ~ 1 qUI, ~~s~... ~ i be a special sequence
for 1. Denote by q;,~ , ... all those bricks of Qn which
are inside Ve have lim Ei 03BC(q’ni) _ p 

n-oo

There exists M such that for all n ¿ M we have

Now, if there are bricks in Qn differing from qni which
are inside f, their addition will not spoil the inequality (1;,
so we get

where f nx are all bricks of Qn which are inside f. The

inequality (3; is valid for all n&#x3E;M. This completes the
proof of the lemma.

5.7. - Lemma. If 1. ~ (~,~ ~ t, is a completely distinguished
and special sequence of complexes for 1, 2. f is a figure.
3. ~2,... a re all bricks of Q,, for which

then we have

Proof. Let ani, a,,2, ... be all bricks of for which
and let bn1, ~~2?... be all bricks of (!n for which

bnx  co p. ~3~ [Lemma 5.6] we have

th,t p) + lim = which completes
the proof.

6. - Theor. If 1. Hypothesis [5.2] is admited, 2. p # 0 is
a brick-space, 3. X E H,
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then considering special summations, [5.4j, we have

(where TV is the set of all traces and -;:; is the ,3-component
of~[§U;2]).

6a. - Proof. ~~’e shall schedule our argument so as to
put in evidence the reason of admitting [Hyp. 5.2].

To simplify print, we shall use the alternative symbol
Proj(p) ~T f’ o r ProjpX . Let (III, = ~ I qnl) Q1l2, ... ; 1, be a conlple-
tely distinguished and special sequence of complexes for 1.
Take the partial complex R,1 of (In With j i R,t, I --. 0. By
[§ 1; 21.9] R,i is a completely distinguished sequence for p.

Consider the c~ R,, i. e. the complex
complementary to Rn in Qn . We have I som Q,, - som Rn ,
72013p!.20130, [ ~ 1 ; 5.14], i. e. ~ 18’1’ co p - 0. Hence, by
[§ 1: ~1.9]. Sn is a completely distinguished sequence for co p.

Denote by a;’, b~ , ei those bricks of for which 7/p;
b;’ . p = 0; 6/ - p # 0, 6/ - co p =1= 0 respectively, and denote
by a;", b¡,", e~" those bricks of S,, for which 

b=’ - p = 0 ; e/’. · p ~ 0, 6/’ - co p # 0 respectively. ..
We have, by [~ 1; 21.14],

for n - oo.

6b. - We also have

Indeed, from (2) we get, by the help of

Since, on the other hand we have
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we get, by subtraction, relying on [§ 1; 5.14],

Similarly we prove the second relation in (4).

6c. - We shall build sums which approximate the expres-
sion (1) in [6]. Put

The bricks ’ ’ ‘ ’’ b" e"i constituite the wholeThe bricks ai, e’i, ai’, e"i constituite the whole

complex Qn , and they are disjoint. In (5) all terms, where

qnx · p = 0 , disappear, and for the other we have d = 1.
Thus

Since the brick-spaces are orthogonal to one another,
we get

In (6) the first term tends to Projj because of (2) and
by virtue of [Lemma 4.3], the second therm tends to _0 ,
because of (4) and [Lemma 4.2]; the third term tends to 0
because of (2). Concerning the last three terms in (6) their
sum can be written as

Here the first term tends to Proj (cop) , by (3) and
[Lemme 4.3]. Hence a necessary and sufficient condition
that An tends to a limit is that Proj(2; bi’) 3i tends to a limit.

6d. - Till now we did not use at all the condition that
the sequence I Qra I is special. We used only the fact that
it is completely distinguished. From [6c] we get

whenever at least one of these limits exists.
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This shows the role of [Hyp. 5.2] which we have
admitted in the wording of our theorem. Since, by [Lem. 5.61

for n - oc , it follows, by [Lemma 4.3]:

Hence we get

6.I. - Theor. If 1. Hypothesis [5.2] is admitted, 2. 
then considering special summations, [5.4], we have

where xa is the a-component of 3fi [9 6; 2].

Proof. Follows from [6].

6.2.. - Remark. We do not know whether the formula of

[Theor. 6.1] is true if we do not use special summations,
(see [Rem. 5.1]).

7. - Theor. If 1. Hypothesis [5.2] is admitted, 2. p =1= 0
is a brick-space, 3. ro is a generating vector of the space H
with respect to the saturated tribe (x, [§ 5], [§ 6], 4. g E H,
then, considering special sums we have

where xp is the ~-coordinate of X, [§ 6; 2].

Proof. The theorem can be proved just by the method
ase4 ia the proof of [Theor. 6]. We shall give a simpler proof.

Let y q,~2, ... ~ I be a special completely distin-
guished sequence of complexes for 1. Let ai, b~, ei be those
bricks of f~n for which 

respectively. Put

We have
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Since the bricks are orthogonal spaces and since pro-

jections are hermitian operators, we get

Now, since by [Lemma 5.7],
get by Lemma 4.2],

Consequently

because I which gives

The theorem is established.

7.1.. Theor. If 1. Hypothesis [5.2] is admitted, 2. 3i E H,
then, for special sum we get

where xa is the a-coordinate of T.

Proof. This follows from [7].
8. - Def. We define the number-valued function J’ (p, q)

of the variable bricks p, q, both ~ 0, as follows:

~ 0 whenever p q = 0,

whenever r p · q ~ 0 .

8.1.. Theorem. If

1. Hypothesis [5.2] is admitted,
2. p =1= 0 is a brick space,
3. X E H,

then, using special summation, we have

where xB is the B-component of X.
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Proof. Consider a completely distinguished, special
sequence q,~2 , ... ~ I for 1. Denote by a~ , b~ , ei the
bricks of Q,, f or which we have ai  p ; b~ · p = 0 ; ei p ~_0,

respectively. For the sum qnk)Proj 
which approximates (1), we have:

Since we have

(by [Lemma 5.7j) we have for sufficiently great n:
i

for hence , . Thus we get

Now Ei p I - 0 and ei) - 0. Hence
so the theorem is proved.

8.2. - Theorem. If

1. Hypothesis [5.2] is admitted, 2. X E H, then for

special summation we have

where xa is the a-component-density of X, and zo the
a -+

0-component of X, [§ 6;2].

Proof. Relying on [R.l].

9. - Theor. If

1. Hypothesis [5.2) is admitted,
2. p +- 0 is a space brick,
3. X E H,

then for special summation we have

Proof. Similar to that of [Theor. 8.1].
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9.1. - Theor. If

1. Hypothesis [5.2] is admitted,
2. X E H.

then for special summation we have

where x*a is the a-coordinate-density of x:- [§ 6 ; 2].

Proof. Follows from [9].
9.2. - The formulas in [8.2] and [9.1] can be written

which have the same shape as Dirac’s formula.

Proof. This follows from the equalities;

10. - Lemma. If E E C, E does not contain any atom,
Pn is a (DR)-distingui shed sequence for E, then 

Proof. Suppose that the thesis is not true. Then there
exists a partial sequence Ps(n) and q&#x3E;0 such that 

» is also a (DR)-distinguished se-

quence for E.

there exists with Now, since I is a

(DR)-distinguished sequence for E, it follows that

where 0 = A2 -~- ..., the sum of all atoms of G. Hence

k(n) 
~--- ~) --- 0. Since qn, k~~.~ = (qn, - ~) -f - qn, there

exists no such that for all 
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Let ma be such that

We have from (1) :

Since the two terms are disjoint, we have

Here the second term is  71. Hence we have
4

for all 

Hence at least one atom among A1 ... Am,, must be con-
tained in for all 11 ~ no .

Consequently there exists a partial sequence and an
atom ~. (i - ~ C m) such that A ~ ~ C for n = 1, &#x3E; 2, ....

Since --- 0, we have --‘ U,
Ai --- 0, i.e. ~ 0, ---.- 0 which is impossible.

11. - Def. We define the function

0 whenever p · q - 0,

whenever 
’

This function generates the functions 0" (x, q), 4" (p, ~),
4" (0153, ~) where 0153, ~ are traces, (see [3]). ~e shall see that

~"( 0153, ~) also has some properties of the S-f unction.

12. - Theorem. If

1. Hypothesis [5.2] is admitted,
2. G does not contain any atom,
3. p ~ 0 is a brick-space,
4. ~ E H,
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then, using special summations, we have

Proof. Let qn~, ... ~ be a completely distin-

guished and special sequence of complexes for I. Denote

by the bricks of Qn with 

respectively. Consider the sum yielding (1) :

We have

and tends to . This follows from that

Concerning the two

last terms in (2), they are composed of expressions having
the f orm : 

I

where c is a brick. We have

Hence the square of the norm of the sum of the last

terms in (2) does not exceed the number
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Take e &#x3E; 0. By Lemma [10], we have for sufficiently
great n the inequality  £; hence  a, ~,(es) C ~ .

Thus the expression (4) does not exceed, (for those n,,
the number

Consequently the sum of two last terms in (2) tends to 0, so

what completes the proof. 

12.1. - If

1. Hypothesis [5.2] is admitted,
2. G does not contain atoms,

3. -1 E B-,
then for special summation we have:

Proof. The theorem follows from [12].

13. - Theorem. If

1. Hypothesis [5.2] is admitted,
2. (~ does not contain atoms,
3. p +- 0 is a brick,

4. ~E.~,
then, using special summation, we have, [§ 6],

Proof. Similar to that of [Theor. 12].
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1:3.1. - Theor. If

1. Hypothesis [5.2] is admitted,
2. G does not contain atoms,

3. 

then, using special summation, we have

(Which resembles the known Dirac’s formula).

Proof. This follows from [131.

13.~. Remark. The formula (1) in [Theor. 13.1] may be
not true if G has an atom. E.g. Take the one-dimensional

H.H.-space. The corresponding G is composed of two somata
only, viz. 0 and 1. There exists only one trace which is

heavy. In the right hand side expression in (1), we get

so the formula (1) is not true.

14. - Consider the mapping ~-1 of the H.H.-space H
onto the space H’ of p.square summable functions of the

variable trace, as explained in [§ 5;4] and (14).
Let the §- -image of the vector X be the function

The system of coordinates in H goes over to an
analogous system of coordinates in the space The ge -
nerating vector w goes over into the characteristic function

of IV i. e. Q(a) = I for all a. Then

where P is such a set of traces, that the set of l1-sqnare
summable functions vanishing outside P is just the 
image of the space-brick p. It follows that, for the 
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corresponding system of coordinates in ~’ we have:

Thus the formula (1) in [13.1] will become

and a similar formula will be obtained from L9’~L by using
the A’-function.

15. - Lemma. Under circumstances of [§ 3;1] we have the
following: If

1. ( pn ) I is a representative of the trace T,

2. q is a. brick,
3. for n= 1. 2,..., ,

then q is a neighborhood of ~. [§ 3; Def 10].

Proof. Suppose that the thesis is not true; hence q does
not cover the trace r. Hence, whatever the representative
a~ &#x3E; a2 &#x3E; ... of T may be, we always have Since

Pk &#x3E; l~x~-~ &#x3E; ... is a representative of T, (k = 1, 2 ...), it follows:

We have

Since ~l &#x3E; p2 ~ ... is a minimal sequence and 
’

it follows that either

The first alternative is impossible, because it would

imply p,,q = 0 for sufficiently great 11, [§ 3; 10.2], so it
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would lead to contradiction with (2). Hence }.
Consequently, for every n we can find m such that Pttl  pnq;
hence pm C q which contradicts (1). The contradiction thus
obtained proves that q is a neighborhood of ~.

15.1. - Lemma. Under circumstances of [~ 3; 1] if q is not
a neighborhood of the trace ~, then there exists a neigh-
borhood p of -, with p · q = 0.

Proof. Suppose the thesis is not true. Then for every
neighborhood p of T we have p · q ~ 0. Hence, if we take a

representative pl &#x3E; p2 &#x3E; ... ~ of T, we get 0, (k = 1. 2, ...).
Hence, by the forgoing lemma [15], we see that q is a

neighborhood of T, which is a contradiction.

16. - In this §, number [5], we have defined 11 special
completely distinguished sequences of complexes for 1 ",
and have used them in some theorems. To have useful

consequences of them in the form of their modifications, We
admit the following general definition, which however, will
be later used only in the case where G is a tribe of spaces
in H.H.

Def. Let 1 Q. be a completely distinguished and special se-
quence for I and s a figure ~ 0. Consider all bricks a~k,

enk of Qn such that ank · s ~ 0, enk - co s ~ 0. We
shall consider the two partial complexes i a..1, an?, ... ~ i and

an2,..., en1, ~2?...t i of Qn . The firstt will be termed

inner Qn-coat of s and denoted by int the second will

be termed outer Qn-coat of s, and denoted by ext (Qn)s. Now
take any partial complex T,, of Qn, such that int (Q,,)s c
C Tn C ext (Qn) s. If we do that for all n, we get a sequence
i I of complexes. Any sequence 1 Tn! obtained in the above
way will be termed «special sequence for s, induced by Qn } »,
Of course we have som int som ext (Q,,)s, and

Hence we get s, - 0 for n - 00, so I is a com-

pletely distinguished sequence for s, [§ 1 ; 21.14].
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16.1. - Def. Continuing the topic [16], let us consider a

regular and total set of quasi-vectors fx in the vector-

space V. If the sum

is a special sequence for s induced by t, tends to a

limit which does not depend neither on the choice of 
for a given i Q.!, nor on the choice of [ Qn ) , we shall say
that 1: is summable on the fignre s&#x3E;&#x3E;, and the limit
mentioned above will be termed « special sunt of f7 o~a tlte

and denoted by

t6.3. - The following theorem is valid. Consider circum-

stances of [§ 4; 1, 21 and admit [Hyp. 5.2].

Theorem. If the special sum Sifi exists, and s is a

figure, then

also exists.

Proof. Suppose that (1) does not exist. This means that
there exists a. completely distinguished and special sequence
of complexes ~,~ ~ for I, such that if we consider

we can find ~’,~, as in [161 such that

and where 7c1"’u) does not tend to any limit. Having that,
We can find indices   nZ’  "2"  ... sllch that

and for some positive number a.
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We shall see that the complexes

make up a completely distinguished and special sequence
for 1. To that notice that, since Qn is completely
distinguished and special for 1. we have

Snice

it follows that the sum of ail bricks of which neither

belong to P," nor to P,;’. has the ineasare tending to 0 for

be a We need to prove that

and

Since

it follows that

Now the bricks of which do not belong to

are not contained in because 

hence, by 5), the measure of the sum of bricks which do not
belong to Pj:~’ U P~B lias the measure tending to O. Conse- -

quently

Similarly we have

This proves that (4) iS a completely distinguished and spe-
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cial sequence for 1. By hypothesis both sequences

tend to the same limit. Hence

which contradicts (3). The theorem is pro;ed.

16.3. - Theorem. We admit the [Hyp. 5.2] and circum-
stances [§ 4; 1, 2]. Then if

1) ~^ is a regular total set of V-quasi-vectors,

2) a, b, c are bricks, c = a + b, a · b = 0,

3) the special sum exists,

then for special sums we have

Proof. By [16.2] all these sums exists. Let on ) I be a

completely distinguished and special sequence of complexes
for 1. Consider the complexes int (Qn) a, int (Qn) b and int (Q*) c.
We have int (Qn) a U int(Qn)b C int(Q,,)c. ~re have

Hence if we put

we get

Consider the sequence

This is a sequence induced for c by the sequence Qn Pn,
which is a completely distinguished and special sequence
for 1. The last can be proved by using a method given in
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the forgoing proof. have

and

Thus, by (1)~ we oet the thesis.

16.4. - Remark. We do not know whether the special
sum exist without existence of the sum ·

Our conjecture is "Yes ".

16.~. - If

1. ~ Qn j 1 is a completelj- distinguished and special se-
quence for 1.

2. s is a brick # 0 ,

then I is a completely distinguished and special sequence
for the tribe s 1 G, (restriction to s) in the sense of [Def. 5].

17. - Having that, we are going to get some useful

modifications of various forgoing theorems which involve
A-functions. To simplify wording we shall use the same

letter for a measurable set of traces and for its coat.

17.1. - Theorem. If

1. [Hyp. o.2j J is admitted.

2. p is a brick,
3. s is a figure whith p  s .

4. then

Proof. Since
I

exists, [6]. theref ore, by [16.3],.

To evaluate take a completely distinguished and
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special sequence i f or 1 and consider int co s. We

have for its bricks bn~;

Since iut (Qn) co s is a special sequence, induced by 1 Qu ~ ,
[Def. 16] , the sum (2) tends to S°. xow. ~3) x~ = 0 ,

BEcos BEcos
because A(p, bnk) = 0 for all 1~. Consequently, by [6] and (I):

so the theorem is proved.~ 
3£s

1 i.~. - In a similar wp- considering int «),,) co s, We can

prove similar variants of the theorems [7], [7.1].
)8.1], [8.2], [9], [9.11. [9.2]~ [12], [12.1], l131, l13:11, l141. In

the changed theorems we have the additional hypothesis
where s is a figure, or in theorems involving the trace

x we have the hypothesis aEs, and take account of [Lemma
[15] and [15.1J]. S is replaced by S*.

P~
Ve shall refer to these theorems by- giving the number

e.g. [7.1] ] and adding 

18. - Te following remark considers the influence exerci-
sed on various summation formulas, by the change of measure.
If S°°°j’$°°= set; where s is a figures we see that the

’";:-8

change of the measure p, outside s will not influence the

summation-formula.

19. - A similar remark can be 111adp on functions which
vanish outside a given brick : this in relation to topics
j§ 4 ; 15 etc.].

20. - Theorem. If

1. G has no atoms,
2. Hyp. L 5.2] is admitted.

3. -¡:., g= are total sets of regular and normal quasi-
vectors,

4. ¡; ==°’j’$°° in the sense of ’§ 4:7],
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then exists too and equals (6;.

Proof. Hypothesis 3 means that f or every measurable set

E of traces we have in the (DARS)-summation [Def. § 4; 3],

Consider a completely distinguished and special sequence
Qn = ~ Qfl2, ... I of complexes f or 1. Put h’r = f7 - g-, - Con-
sider the sum 

df

Denoting by ck the bricks of int (Qn) p. [16], we get

We have

Since G has no atoms’ we have --- 0 . Hence for

sufficiently great index n we get  ~, where e is any
positive number given in advance. We get

As /~ and g ~ are summable, it follows that h.~ = f .~
is summable.

Hence, [~ 5; 5.1~, Ilk; 112 is summable. Since

it follows that ’~
M &#x3E; 0 such that

bounded. Thus there exists
I It follows that the expres-
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sion on the left in (2) does not exceed so it tends

to 0 for E - 0. The first term in (1) is 
B I

and tends to

Consequently °’i°i --- U , which proves the theorem.

21. - Def. Denote by ca the quasi-number defined by
/(p)"c== consta,nt for all neighborhoods can write

c, = c(p) where p is a neighborhood of x.

21.1. - Theorem. If G does not admit atoms, we have

Proof. We heave for every [13.1],

Applying this formula to the generating vector w, we get

Now

Since

we get the formula (1).

~’~. - We have defined three functions 4~ A’, A" which
have some properties of the Dirac’s-delta function under

very general conditions. We shall terminate this paper with
the of the genuine 8-function in relation
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to ordinary functions of a real variable and Lebesguean
measure.

?2.1. - To do this we shall consider the space .~ of all

complex-valued Lebesgue-square-summable functions f (x)
defined almost everywhere in the half open interval (~, B;
which, for simplicity we admit (0, 1). The governing equal-
lity, ., will be that which is induced by the ideal of sets
of measure 0. We shall have the alternative notation f for
f (x). The scalar product (I, g) is defined as

so H is a separable and complete, infinite dimensional

H.H.-space.
Consider the Lebesgue-measurable subsets of (0, 1~ con-

sidered modulo sets of measure 0, so ’We have E W’ when-
ever meas (E h’) + meas ~F - E) = 0. The collection of

these sets, with ordering defined by

is organized into a Boolean denumerably additive tribe (I
with effective measure. Consider the collection b of all

subsets

where 0~ P~, and denote by f the set of all finite unions
of sets of b. We see that f is a finitely additive tribe and b
its base [§ 1]. The tribe g is a finitely genuine extension
of f through the isomorphism from f into g, which attaches
to every set the sets (0153, ~) -E- E1 - E2 where

meas Ei = meas E2 = 0. The hypothesis (Hyp. A, f) is satisfied :
hence, a fortiori, (Hyp constitutes the borelian exten-

sion of f within g. The tribe g is also the Lebesgue-cove-
ring extension [§ 1; 9] of f within g, where the measure
on f is euclidian (hence J.Jebesguean). Thus [§ 1 ; Hyp. 12]
is satisfied. The hypothesis [§ 1; Hyp SJ of measure-sepa-
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rability of g [§ 1: 21.1] is satisfied. Consequently there
exists a completely distinguished sequence of complexes for
the soma 1), [§ 1 : 1 Def. 21.3].

If we consider the partitions of (0, 1) into n equal half-
open-segments. (7i = 1, 2, ...), we get a completely distin-

guished and special sequence f or 1, [Def. 5]; thus [Hyp. 5.2]
is satisfied. Since g has no atoms, the distinguished sequences
of type (D), (DA), (DR), (DAR) for a measurable set E coin-
cide, [§ 2].

The base b in f’ gives rise to traces. [§ 3], (see also
[§ 5; 2.8]). To every point x where 0  x  1 there correspond
two different traces, one x -~ with representative

and another one x- with representative (:c2013e, x;. At x = 0
we have only one trace 0+ and at only onetrace 1-.
The point x will be termed vertex of x+ and of x-. We
shall write x = vert x’’- = vert x-.

The hypotheses (Hyp. I) and (Hyp II), [§3; 6], are satis-
fied, so the whole theory of measurability of sets of traces,
[§3], is valid. One can prove that if a is a measurable
s e t. o f t r a c e s I n g, t h e n cc is measure-equivalent
to some set of traces which always contains with x-~- also

z-, and with x- also and whose measure equals the

measure of the set of all its vertices.

2~.2. - Let us define the correspondence 91c as follows.
If E is a measurable subset of (0,I), consider all square -
summable functions f(x) defined a.e. on (0,1) such that

f(x) -.. 0 on a set E’ where E’- co E. Denote by e the collec-
tion of all those functions. Now the correspondence 9tc is
defined as that which attaches e to E. The correspondence

is invariant in its domain with respect to the equality
- of sets. The set e is a closed subspace of the Hilbert-

Hermite space H. The correspondence is an ordering-
and operation-isomorphism f rom g into a denumerably addi-
tive tribe G of subspaces. 9H transforms sets into spaces.
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Put B df Ð1L b, and define on G the measure by
lie - meas L~. Thus we see that all circumstances in g
have their image in G. The brick-spaces are the M-images
of half-open intervals (a, ~).

22.3. - The tribe ~G is saturated. The function

is a generating vector of H with respect to G, so we can
use the whole theory of quasi-vectors as developped in

[ ~ 5] ] and the system of coordinates, as defined in [§6].
The generating vector w and the saturated tribe generate
an isomorphic correspondence ~-i [§5; 4 ] which transforms
the vectors of the space of H into square-summable
functions F(i) of the variable trace. Now, we can prove that
F(xl) = I’(x -) = f (x) for almost all x, so we may for func-

tions use the symbol f instead of F. We can also always
suppose that f(x) = f(x+) = f(x-) for every x, since null sets
will not matter

~3. - The set l~ of bricks, the saturated tribe G of spaces
and the generating vector a) constitute a system of coordi-

nates in H, [§ 6 ]. Let F dt. f(x) be a a space-trace,
P its variable neighborhood. Put cp and p = 
The represeiitatives of 4Y are descending sequences of

spaces P and the representatives of T a descending
sequences of half-open segments p, [§ 3]. Instead of dealing
with spaces we prefer to describe space circumstances by
the m-1 - corresponding items in relation to the real axis.
Indeed, the space II and its ~-1 image [§ 5, 4] are isomor-
phic and isometric, so we may «identify» - the corresponding
items - just for the sake of simplicity.

~3.1. - The q) - component of F is, [§6; Def. 2], the

quasi-vector

We may represent it as the function fp~x) depending on p
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and defined by

It can be denoted by£$, and it looks like an infinitesimal
piece of the function taken on p at the trace q, and com
pleted a.e. oustide of p by the values 0. The (D - component
density of F is, [§ 6, Def. 2], the quasi-vector

where = meas p.

It may be represented by ~ infinitesimal ~ function-pieces:

It can be denoted by f * ,

The 4) - component of F is, [§ 6; Def. 2], the quasi-number

Since to the vector w there corresponds the a.e. constant
function Q(z) = 1, and since to the vector wP there corre.

ponds the characteristic function 9,(x) of the interval p, we
have

so Fo can be represented by the qaasi-number

defined for all half-open segments p, which cover the trace ~p.
The 4Y - component-density of 1 is, [§ 6 ; Def. 2], the

quasi-number
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Hence it can be represented by the quasi-number

by the locally taken mean-value of f(x).

23.3. - If f(x) is continuous at the point x, and we consider
the two traces (with vertex [22.1], and if (a, b) is
a variable segment which covers one, or another of this

traces, with lim (b - a) = 0, we get lim f*(( a, b)) = f(xo).

23.3. - The theorem [6; 13.b] gives

which can be written as

The quasi-vector 80 may be called 
of the trace T. If the function f(x) is continuous at x,, (com-
pare [23.2]), f ~ can be intuitively conceived as f(x,) Q (p).

a4. - We shall need operations on sets. In general, if

E, 1~’ are segments, and I’(x, y) is a real-valued function of

the real variables x, y, we define

r (E, 1~’) as the set

Thus e.g. we have

We define:

Similarly we define
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24.1. - Concerning the «difference  E F of two sets
E, F, the following are equivalent:

Indeed, let I. There exist x E E, y E F with 0 = x - y.
Taking such x and ~, we get hence 

Let II. There exists Since x x = 0, we get
GE E - P.

24.2. - The « difference ~ (a, b) - (c, d) is always an open
segment. The difference of any two intervals is an interval.

24.3. - We have for the Lebesgue’s measure
meas E = meas [E + a] for any number a.

24.4 - For intervals E, F of any kind we have meas
F.

Proof. Let us close the intervals. This will not affect
the measure. Let a  b, c  d be the extremities of E and
h’ respectively.

Hence meas (E - F) = (b c) (a - (l) = (b - a) + (d - c) =
= meas E --~- meas F.

24:.ó. - If k &#x3E; 0, then (a, b;k = (ka, kb) and (a, b; (- k) _
= (2013 kb, ka).

If a  0  b, then (a, bl’ is an interval with left

extremity 0, its length is max (a’, h2).

24.7. - The notion of the number-valued function f (E),
or g(E, E), are intervals half closed to the right
induces the notion of symbols f(a), g(a, F)~ g(E, g(a, ~),
where are traces. Thus f(a) means the quasi-number f(p)
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where p varies over all neighborhoods of a. Similarly g(a, ~)
is the f unction g(p, q) where p varies over all neighborhoods
of a and q over all neighborhoods of ~.

25. - Def. We define the f unction F) for any
intervals E, F as follows
8’E, whenever = 0 ,

~whenever 

This function will be proved to be a good
version of Dirac’s 82013function. Notice that we

consider our 8 - function as a function of two variables.

The function generates the functions 6(a, Fk 6(E, ~), 6(a, [3)
where a, § are traces. (see [1.2]).

E. g. 8 ( q, p) will mean, by definition, the quasi-
number 8( - q, p) where q varies over all neighborhoods of
the trace q. Thus if q = (a, b) then we take 8 (~ b, a), p)
where (a, b~ is the variable neighborhood of q.

2õ.0. - Remark. Concerning - *, We do not need to

define it. I t s u s e, as given above, will be meaningful only.

25.1. - We have ô(E, ~’) = 5(F, E), hence 5(x, ~) = 8(~ a).

25.1.1. 5 (E, F) = 5 ( E, - F).

25.2. - Remark. The f unction 6 (E. F) of variable inter-

vals can be considered as depending only on E 1~’. Indeed,
let E-F==E1-F1. If then, [24.11, 0 E E - I’ ;
hence and then, [24.1J, Conversely, if

then Consequently 5(E, F) ==õ(E1, I’1).

25.3. - 8 (E, .F) has the translation property, i. e. if a is

a number, then 6 (E -~- a, F + a) === 6 (E, F).

Proof. If fli, then 0 E E - F, [24.1J, hence there
exists x with x E F. Hence x -~- a E E -~- a, 
Consequently x + a E (E + + a), which gives (E+a) n
(F + a) +- 0 . Similarly we prove that if (E + a) n (F + a) + 0 ,
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we get Thus B(E, F) = 0 is equivalent to 
~’ -~- a) = 0. On the other hand we have, the measure being
Lebesguean, measE ._-_ meas (d -E- E), meas lf’ = meas (a -f- l~.

25.4. - We have I

25.ó. We have f or any two traces ad::, b:!=

26. - Theor. If f (x) is a square-su mmable function on
(0, 1), then

where |B| denotes the quasi-number of the measure (denoted
in [§ 4; 8] as ~~) .

The theorem follows from [ 14 J. Indeed 0" (a, fi) - 8 (a, p)
and we can take [24.4] into account.

26.0. - Remark. The theorem [26] can be considered as
a corrolary of the proof of [Theor. 12], which is more

general. Now if we consider the proof, we can notice that,
in our case with the function 8, in the expressions B(qik, p)
the interval p can be replaced by the interval with the
same extremities, but closed on the left. There will be only
at most two intervals qik which have a single point in
common with the changed p, and their presence or absence
will not influence the limit.

Another remark is that considering the above sums, we
can drop those q;k which have no common point with p, so
the summation may be carried out even even on suitable
subsets of W instead on W itself. Later we shall apply
this remark in proofs. We shall consider functions defined
in a sufficiently great interval (- a., + X).
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26.1. - Remark. The theor. [26] constitutes the main

theorem on the Dirac’s 8-f unction. It is the main source of
other ones. The theorem can be put into another form:

26.2. - Remark. We have many theorems having the

shape of [26.1], e.g. From [12.1] we get by [23.3] and [20]:

27. - To give precise statement of some theorem on

8-f unction we need the following notion, (see [27.1] Def.),
of llirac-equivalence for quasi-number8. First we define:

Def. Let be two quasi-vectors (quasi-numbers)
with support a.

We say that (they are equal in ‘‘ timit ") whenever
lim f(p) ~ lim g(p) for, meas p - 0 and p covering the

trace a.

2’~.1. - Def. be two functions where

q is a variable trace and ao a constant trace. We say that
- D -

ao), «Å is Dirac-equal to B&#x3E;&#x3E; whenever for every
continuous function in (- 7~ + X) we have

Both sides are quasi-vectors with support ao.
Having these notions we are going to prove some Dirac’s

formulas on 8 - function.

28. - Theor. For traces q We have
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Proof. The sum

is understood as quasi-number with support 0+ :

A(p)df 80 8( cp, p) val. h which in turn, for a given
p, is the limit of, [28.1.1],

where 1 is a completely distinguished and

special sequence for 1. It equals, [25.1.1],

there exists one and at most only one. say (a’ule, I such
that == 2013~ and at most one only such that a’"x = - a.

If we drop these two intervals from every complex Q",
we get another sequence I Q’t1 I which is also completely
distinguished and special for 1. The dropped terms yield
a contribution tending to 0. By remark [26.0] if we replace
in (1) ~ by (- ~, and drop the interval mentioned, we
get a sum which tends to

On the other hand

Since h is continuos, we have, [23.2],
Thus we have proved that
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Similarly we can prove the second thesis.

Proof. Let h(x) be a continuous function in
Consider

Since by [§ 4; 16]

we get, by [20],

Hence, by [26],

On the other hand S0z Yal~ 1~~) I x ~ = O~. By continuity
of we get 

~ ’

and lim 0’p) =0. -’see [21]). Hence the

theorem is proved.

30. - Theorem. If ~; &#x3E; 0, then

Proof. Let p be a neighborhood of ~± The sum
Srt 1V p) I is the limit of the expression

where Q" - ~ I qnli q,,2, -.-I is a completely distingnished and
special sequence for 1.
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Put kx = y: we have

where

Hence , which tends to

(2) is the quasi-number:

For continnous functions f we have

Hence we can write

32. - Theorem. If a is a trace, a, b numbers, then

Proof. We have by [25.5] and [25.4] :
S(0153 - a, bt) = bt + a) = (b -~- a)-~-). Hence our theo-
rem is equivalent to

(b + a)::t:) vale. a) ._-_ This however

follows from [26]. Let (b’, b") be the variable neighborhood
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of h=; then (a -E- b’, a + b") is the variable neighborhood of
(a -~- b)t. The quasi-number f is defined by

Put z = y + a. Then (1) equals dy which defines

38. - Theorem. If a &#x3E; 0 and T is a variable trace, then

Proof. The expression 8(~ 2013 at, 0=*=) is defined, [24 and
1.2], as a number-valued function of two intervals p and q
where p is a variable neighborhood of 0=~ and q a variable
neighborhood of ~. Consider the sum

where f(x) is a continuous function. (1) is defined as the

quasi-number A(p) with support 0~- :

Now is the limit of the following sum

where Q. = q~ 1, q.2,... I is a completely distinguished and
special sequence of complexes for 1.

The intervals qk are disjoint, so there exists at most

one interval, - denote it by (Z’z"’11, - such  0  ,wl.
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All other intervals qt1k can be devided into two classes ;
the first will contain all those (x’k, f or which

to the second all those (y’k, f or which y’k  Y"k  0.

The sum (2) can be written as

Hence, by [24.6], the expression equals

We shall transform the first term of (3) by changing the
variable x as follows.

- at. We have z’ + 11 and = du. Put

u’k =df x’2k - a2, u" k =df x"2k - a2. We have, since all x’k, x"k are

non positive,
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Hence

The formula (4) holds true, even if uk = 0. Consequently
the first term in (3) can be written :

where

Concerning (5) let us remark that the transformation

is one to one and monotonic non increasing, transforming
the interval

If we take a, the interval p will belong to4 °

the set (7).
In the sum (5) only those terms may not disappear for

which ~uk 
Hence we can confine the sum (5) only to terms for which
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In the interval

the f anction g-(u) is continuous.
If we take account of remark [26.0], we can change in (5)

Hence, by [26], the limit of the sum ~~) is the quasi-
-number 

Thus we have proved, that the first term in (2.1) tends to

where g_ (2~) is def ined in (6).
consider the third term in (~.1), hence in (3). We

shall use the transformation 1) = x~ = ýv + aI, ... (9)
since all are non negative. The transformation (9)
is 1-.1 and monotone non decreasing. It transforms the

interval ° * 2~  oo into - fl~  v ~ °°. We put V’1e 
and we have

Hence

Hence the third term in (3) equals
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we get, by argument similar to the above ones, that (10)
tende to

Since the functions g+ and g- are both continuous at 0,
the limit value of valo- g-4- equal to 0 = f(a), because a&#x3E;O.r- 9’+ q g+ ( ) 2a &#x3E; &#x3E;

Similarly we have the limit value of equal to

There remains the second term in (3) and (2.1) to be
considered:

For p chosen in and sufficiently small intervals

qnx, the intervals p and 10, max (z’z")) do not overlap, so the
term considered vanishes. Thus this term does not contri.

bute anything to the limit. We have proved that

has the limit value

Now we have from [32] that

Consequently

which completes the proof.
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3~. Theor. If 9 is a variable trace and ao a fixed trace
then for everjT continuous function f(x) we have

Proof. Take a continuous function h(x). We have

by

Since f, h are continuous, we have for a variable neigh-
borhood p of ao with meas p - 0: the limit value of valp f
is f(vert a), that of val, h is h(vert ao) and that of valp(fh) is
f (vert ao) · h(vertao), so the theorem is proved.

34.1 - Remark. We can state the theorem as follows:

which looks like the Dirac’s formula:

3~. - Theorem. If yo is a fixed trace and a a variable

trace, then

Proof. We shall confine ourselves to a sketch of the

proof. Let be a continuos function. We shall compare
the expression
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where p is a neighborhood of Yo , is a function F(a; the

expression (1) has the foim :

Hence, by [§ 4] , it is a quasi-number with support yo, so
we evaluate the sum by taking a neighborhood F of yo and
consider the sum

which in turn is the limit of

where A,, d f I ani, I is a completely distinguished and
special sequence of complexes for 1. (4) is a function of r.

hence (4) can be written:

is just the sum of a total set of quasi-numbers, so it is a

limit of the sum :

where Bm af i ~m2 , ... ~ } is a completely distinguished and
special sequence of complexes for 1. We recall that G has
no atoms, hence for any special sequence of complexes,
the net number tends to 0. It follows that if the intervals

F and ank after closure are disjoint, then for sufficiently
great m, all terms in (8) will vanish and hence the sum (7)
will be equal 0.

Hence the sum (6) can be restricted to only those nk
for which p rl ank =t= 0 . Hence it can be restricted to ext
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(d") r. (see [Def. , the corresponding
term in (8) will be

and the summation in (8) can be taken over all where

~~~ fl r ~ 0 and at the same time ~-1 Fl axk 
The sum of these terms in (9) can be written:

To the given n the factor in braces is small for suffi-

ciently great m, and I will exceed meas by a
small quantity for sufficiently great m, so the last term
will be small.

Hence (7), i.e. the limit of the expression (8) will be

It follow that the expression (6), i.e.

where the summation is extended over all a*k with

It differs but a little from

Concerning (8, Yo) we have
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From (10) and (11) the theorem follows.

3~. - Remark. We have proved several theorems concerning
the f unction 8(a, ~), where a, § are traces. We believe that
the Dirac’s delta function should be defined as a function
of t w o v a r i a b l e s, since it is like an integral-equation-
kernel. We believe that our 8 - function should replace the
genuine 6 - function introduced by Dirac, (33), p. 58 and 60:

In addition to that, 8(a, P) behaves like a function of the
difference of variables, since 8(a, P) has the translation pro-
perty [25.3].

Concerning the equality - , it seems to be in agreement
with Dirac’s remark (33) p. 60: r The meaning of any of
these equation is that its two sides give equivalent results
as factors of an integrals .
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Concerning valzf(I) - this is an - ideal &#x3E;&#x3E; average value

which physicist approach by taking the average values

from measurment made with more and more precise
istruments.

37. - We like to remark that various statements on the

modified, genuine function 8(a, P) can be generalized to the
case where bricks are half open rectangles-or even half

open hypercubes in n-dimensional space with Lebesgue’an
measure admitted.
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