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SUMMATION OF QUASI - VECTORS ON BO-
OLEAN TRIBES AND ITS APPLICATION
TO QUANTUM THEORIES. I. MATHEMATI-
CALLY PRECISE THEORY OF P. A. M.
DIRAC’S DELTA FUNCTION

Memoria (*) di OTTON MARTIN N IKODYM (a Gambier, Ohio) *)

This paper may be considered as generalization and, at
the same time, as simplification of the paper (14) by the
author in Wwhich a mathematical apparatus for Quantum
Mechanics is exhibited. Its background are Boolean lattices
whose elements are closed subspaces in the separable and
complete Hilbert-Hermite space. It yields a kind of gene-
ralized orthogonal system of coordinates (in this space)
which is so well adapted to the continuous spectrum of
selfadjoint operators, as the ordinary saturated orthogonal
system of vectors is to the discontinuous spectrum. The
theory deals with the notion of «trace» (french «liem») and
of « quasi - vectors », and uses a special kind of integrals
which resemble the Burkill - integral. The theory, in the
general setting, has given a simple canonical representation
of maximal normal operators, (22), (11), (26) which has
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make possible to visualize the notion of multiplicity of the
continuous spectrum.

The latter was till then wrapped in complicated formulas
and thus wWas not transparent at all. The canonical repre-
senfation of normal operators has supplied a very natural
and simple theory (22) of Stone’s « operational calculus »
(16) for normal operators, and also a simple theory of per-
mutable normal operators, (22).

The present paper develops several variants of the inte-
gration mentioned above wWhich correspond to various kinds
of approximations, [§ 1], and also yields a precise set-
ting of the genuine Dirac’s Delta Fuanction (33), giving not
only, [§ 7], a correct detfinition but also proofs of its
basic properties. At the end of this paper the reader can
find a list which compares the theorems as stated by Dirac
with those which are proved in our paper.

The Dirac’s Delta Function was always a very fascina-
ting problem for mathematicians, because it seemed to
escape every precise approach, (the L. Schwartz « Dirac’s
3-measure » is far from being a suitable equivalent (34)),
though it yielded, as if by a mysterious witchcraft, in the
hands of physicists, many correct and important results.

To have our apparatus more useful, we have admitted
a very general approach to it, by taking as substratum
general Boolean lattices, and developping several kinds of
"approximations of elements of that lattice by special ele-
ments called «complexes» [§ 1]. These approximations
yield, in turn, various sorts of integration. The theory of
traces, Which is only sketched in (11), (and in rather special
setting in (14)), is now exhibited with detailed proofs [§ 3],
and the same can be said of the general system of coordi-
nates (sketched in (14)), which is now exhibited with details
in [§ 5. The same is with various kinds of integration,
mentioned above, [§ 2] and [§ 4].

The analysis of the properties of the 3-function led to
our opinion that it should be considered not as a function
of a single variable but as the function 3z, y) of two
variables, which is however, translation-invariant. Indeed
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the function is a kind of a kernel of integral-equation.
Another modification was needed: the variables z, y counld
not be numbers. In our setting they are « traces ».

The paper contains more than needed for the delta
function, because the author intends to have some other
application of this apparatus to Quantum Theories.

Numbers in fat parentheses refer to the list at the end
of this paper.

1. - Preliminaries. We like to use the term tribe, (35),
(Boolean tribe) to denote the complementary and distri-
butive lattice (4). Thus the tribe will be conceived as an
ordering (commonly called « partial ordering », « partially
ordered set », (37)). The element of a tribe will be termed
soma, (36). The tribe Will be termed finitely, denumerably,
completely additive whenever all finite, denumerable, all lat-
tice joins are meaningful. Of course, finite joins always exist.
The ordering will be denoted by « << » and lattice operations
(somatic operations) by -+, ., —, co (complement), 3, IL
If the somata of the tribe are sets, we shall use Bourbaki
symbols (38), Y, M, oo, U, N. If we iuntroduce the
« algebraic addition > + (symmetric difference) defined by
a4 b5 (@@—b)+ (b—a), (18), the tribe will be organized
into a commutative ring With unit, (Stone’s ring). The
zero-soma and the unit-soma will be denoted O, I respecti-
vely. If the somata are sets, and the ordering relation the
inclusion of sets &, the zero will be the empty set and
denoted by ®. Since the tribe can be conceived as a ring,
the notion of édeal can be applied, (5). The somata a, b
are said to be disjoint whenever a-b = 0.

2. - Remark. Notice that somatic operations depend not
only on somata operated but on the totality of the tribe.

3. - Every theory, axiomatised or constructed, has a
gpecific notion of equality, with respect to which the genuine
operations and relations should be invariant.

E. g. for additions of somata we have: «if a=4d',
b="b,c=c,a+b=c then o + b =c'». According to
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the situation, that notion of equality may be axiomatised,
constructed or taken over from another theory.
We shall call it « governing equality ». (3), (2), (10).

4. - Let F', F" be two tribes. We shall denote with
prime, (double prime), the notions in F”, (F”). We say that F’
is a finilely genuine sublribe of F’ whenever the following
takes place (5): 1) The elements of F' are also elements
of F”, 2) the following are equivalent for somata a, b, ¢ of ¥':

a) a4+'b="¢ and a+"0="c¢
b) as’b=c¢c and a."db="c¢c

¢y 0O ="0"

d I'="1".

These four conditions are independent from one another.
(If similar equivalences also hold true for denumerable
(all) operations, we say that F' is denumerably (completely)
genuine subtribe of F”. The isomorphism & which attaches
to a and its =’-equals in F” the element ¢ and its ="-equals
in F”, plunges in some way F’ into F". If the elements of
F' do not belong to F”, but there is a correspondence &
preserving operations such that $ F’ is a finitely genuine
subtribe of F”, we say that F' is a finitely genuine subiribe
of F”’ through isomorphism &B. If the equality =’ is just
the equality =" restricted to F' we say that F' is a finilely
genuine sirict subtribe of F”.

5. - E. g. Let F' be the tribe whose somata are finite
unions of half-open «intervals» (a, §) where 0 < 2, f <1,
with ordering relation <’ defined as inclusion & of sets.
Let F” be the tribe of all Lebesgue-measurable subsets of
(0, 1) with ordering relation <<” defined by :

E<"F.G - meas(E—F)=0.

The governing equality =’ on F’ is the identity of sets,
that =" on F” is equality modulo the ideal of nullsets in
(0, 1). Here F’ is a finitely genuine subtribe of F”. The
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correspondence & attaches to every set a of F' the sets
a +M — N where meas M — meas N = 0.

If we take the tribe F,” whose ordering relation is <"
and somata are ¢ + M — N, with ¢ € ¥/, then F, will be a
finitely genuine strict sabtribe of F”.

Notice that F' is not a denumerably genuine subtribe
of F”.

6. - Concerning the notion of homomorphism and iso-
morphism we refer to our paper (3), Where some subtle
possible confusions are clarified.

7. - Let F be a tribe. Let us attach to every soma a € F

a non negative number ?) p(a) with the conditions: if a - b= 0,

then pla 4 b) = (@) + pd), ¢ =1> implies p@) = pd). We

shall call the function p(a) finitely additive measure on F.

If a,, a., ..., a.,, ... denumerable in number are disjoint, and

§ a, has a meaning and i‘? a,,) = f 1(a,), then we say that
”n=1

n—1 n—1
p is a denumerably additive measure on F. Usually we
consider denumerably additive measures on tribes, Which are
themselves denumerably additive, (see (5)). The measure
on Boolean tribes was introduced independently in (36)
and (6).

The measure is said to be effective whenever p(a) =0
implies a = 0. The usual term « measure algebra » will be
not applied.

8. - In this paper we shall pay special attention to
tribes whose somata are closed subspaces of a Hilbert-
Hermite space, (1), (14).

9. - Russell-Whitehead <«relations» (40) will be termed
correspondences. Functions will be considered as correspon-

?) a € F means that a is an element of the domain of the iribe.
Though an ordering and its domain are logically different notions, we
shall be allowed to use the same letter F for the tribe and for its
Jlomain.
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dences. If we like to emphasize that a letter denotes a
variable we provide it with do?, ex. f). If R is a corre-
spondence, its domain will be denoted by ( R and its range
by DR. The correspondence R, restricled in the domain to
the set E, will be denoted (40) by E1R. The symbol
{9(z)|w(-z-)| Wwill denote the set of all ¢(z) such that =
satisfies the condition w(.-z.). The sign 3 means «equal
by definition ».

10. - We shall consider Hilbert- Hermite spaces (16),
(41), which may be of finite or denumerably infinite
dimensions. We shall consider only the case where the
space ii is separable and complete. The norm
of the vector X will be denoted by || X ||, the (Hermitean)
scalar product will be written (X, 7).

11. - By linear variely in H We shall understand a non
empty set E of vectors such that if z, y€E, then az 4 By€E
whatever the complex numbers «, § may be.

A closed linear variety will be termed subspace, or
simply, space. Thus (0) and H are subspaces. A vector z
is said to be orthogonal to the space a if z-| y for all y€aq;
we Write z | a, a | z. Two spaces a, b are said to be ortho-
gonal. a | b, if z | y for every z€a and every y €b.

If a is a space, then the set 0 of all vectors orthogonal
to a is also a space and is termed (orthogonal) complement
of a. We write b =coa.

12. - If z is a vector and a a space, there exists a unique
decomposition z =2z’ z"”, Where z'€a, z” € coa. The vector
z' is termed projection of = on a and denoted by Proj,z
or Proj(a)z. The operation of projection is a selfadjoint
hermitean operation which carries H onto a. The following
propetrties are known:

Pfoja (2x + By) = a Proj, z + B Proj,y : if =z, — z, then
Proj, z,, — Proj, z :

If aSb, then Proj,Proj,z = Proj,=z.
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13. - Stone (16) has studied the following operations
on spaces. If a,, a;, .. are spaces, then by fheir sum a, +
+ a, + ..., Z;a; we understand the smallest space containing
them all, and by their product a, - a,, ..., II;a; we understand
the greatest space inciuded in each of them, i. e. their
set-intersection. These operations are also considered for
any not empty class of spaces.

If we denote the whole space H by I, write O instead
of (0), and put a — b af a - co b, We have the following rules:

a+b=b+a , a+O0+e)=@+D+c , ata=a,
a-b=b.a , a(b-c)=(@+b)ec . a-a=a.
a-0=0 , a-I=a , a+0=a , a+4+1=1
De Morgan’s laws are valid:
co(@+d)=coa-codb , cofa+b)=-coa - cobd.

The distributive law (a4+b)ec=a-c+Db-c is
not in general true, neither ¢ —b=a —a+b.

14. - In (14) we have introduced the following notion :
two spaces a, b are said to be compatible (With one another)
if (a —ab) | (b — ab). The following properties are equivalent :
1) a, b are compatible; 2) Proj, & b; 3) Proj, 0 &S a-b;
4) Proj,b=a-b; 5) Proj,b="Proj,a; 6)a—b=a—abd;
Na—ab<a—b; 8 a=ab+a-cob; 9 Proj, Proj,z =
= Proj, Proj, z for every vector z, (42); 10) there exists
a space c¢ such that Proj, Proj, T = Proj, T for every
vector z.

15. - Concerning compatibility, the following theorems
hold true: If @, b are compatible with one another and
with ¢, then ¢ + b, a-b, coa, a—b, a 4 b are also compa-
tible with ¢. If all spaces of a non empty collection { N |
are compatible with one another and with ¢, then Xa,
(@a€{N}) and ITa, (€| N}) are also compatible with c.

16. - Let T be a non empty set of spaces such that
1)if a, DET. then ¢ +bET, 2) if a €T, then coa€T, 3) if
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a, b€T and a«b =0, then a | b. This set T if ordered by
the inclusion-relation & of sets, is organized into a Bo-
olean finitely additive tribe T, where the lattice opera-:
tion coincide with spacial operations introduced above (39).
The spaces of T are compatible with one another. The
distributive law holds true within 7.

If the condition 1) is replaced by the following one:

(o]
if a,, @z, ..., 6y,...€T, then X a,€7T, T will be denu-

n=1
merably additive. If any sum of spaces of T belongs to T,
the tribe will be completely additive.

If T is a non empty set of spaces such that 1) if a, DET,
then a 4-b€7T; 2) if a €T, then coa€T, then a necessary
and sufficient condition that T be a tribe set, is that all
spaces of T be compatible with one another.

17. - The following theorems are proved in (39):

If T is a tribe of spaces, then there exists a denume-
rably additive tribe T° of spaces, such that T is a subset
of 7' and is closed in 7 with respect to finite addition and
complementation :

If T is a denumerably additive tribe of spaces, then it
is also completely additive. (For a more general theorem
for abstract tribes, see (12)).

18. - If T is a tribe of spaces, p a space, then a neces-
sary and sufficient condition that there axist a tribe 7' of
spaces such that TC 7", p€ 7', is that p be compatible
with T (i. e. with all spaces € T), (14). The same condition
is required, if 7 is denumerably additive. The smallest T’
containing both 7 and p is the set of all spaces a+p+b-cop
theorems where a, b € T.

19. - A tribe T of spaces is said to be saturated if for
every tribe 7' with T € T' we have T — T'. The following
hold true:

For every T there exists a saturated 7' such that TC T".

Every saturated tribe is completely additive.
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20. - Let T be a tribe of spaces and E a not empty set
of vectors. By the radiation space of E with respect to T,
(champs de rayonnement (14)) We understand the set Mr(E)
of all vectors » such that for every e > 0 there exist com-
plex numbers 1;, vectors § € E and spaces ¢,€T, i =1, 2...., n),
(n=1. 2,..), where ||z — I; A; Proj, & || <«.

M7(E) is the smallest space containing all vectors

Proj, & where ¢ €T , E€E.

For sets E composed of a single vector see Stone's book
(16), the general case is mentioned in (43).

A necessary and sufficient condition that a space p be
compatible with a tribe 7 is that there exists a set E such
that p=MrE).

21. - A vector o is called generating vector of the space
H with respect to T, it Mp((w))=1= H. The following
two properties are equivalent: 1) there exists a generating
vector of I with respect to 7. 2) for every set E 3-8 of
vectors there exists a vector £ such that

Mp(E) = M1((E)).

If © is a generating vector, then for every a € T Wwe
have a = Mz ((Proj, w )).
A necessary and sufficient condition that there exists a

generating vector of I with respect to 7, is that T be satu-
rated, (16), (44).

22. - For every denumerably additive tribhe T of spaces
there exists an effective, non negative measure on it.

2. - If @ is a generating vector of the space with
respect to T, and if we put p(a) = || Proj,i’ for a€ T, we
obtain a denumerably additive, effective non negative,
(finite) measure on 7. (Every denumerably additive measure
can be given by an analogous formula).
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§ 1. - Approximation of somata by complexes.

This [§ 1] is of auxiliary capacity and contains defini-
tions of some notions and proofs of their properties which
are needed for foundation of a kind of integration in [§ 2].
First we introduce the notion of the base B of a finitely
additive tribe I and give some of its properties. The tribe
F will be extended to a denumerably additive tribe G which
admits a denumerably additive, non negative measure p. The
notion of p-distance between two somata of G will be
introduced [5] and studied. Later, ¢ will be admwitted to be
the Lebesguean extension of F. The nofion of a
complex will be introduced [9] and special approximations
of somata of G by complexes will be discussed. The reader
interested mainly in application of our theory, may omit
reading quite complicated proofs of theorems [18.1] and [19.1].

1. - In this [§ 1] we admit the following hypotheses refer-
red to as Hyp FBG, (compare (11)).

F is a non trivial, finitely additive tribe; its somata
I, 9, h,... will be termed figures.

B is a subset of F, satisfying the conditions :

1)0€EB, I€ B,
2)if a, b€ 3. then a -0 € B,

3) if f€ F, then there exists a finite number of somata
of B whose sum is f.

The somata a, b, c,..., p. q,... of I3 will be termed bricks.
The set B will be termed base of F 3).

G is a denumerably additive tribe. We suppose that ¥
is its finitely genuine subtribe and denote by & the corre-
sponding isomorphism from #’ into G.

3) Though the tribe is an ordering, and hence it differs logically
from the set of all its elements, nevertheless, to avoid complications
in notation, we shall use the same letter to denote the tribe and the
set of all its somata.
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2. - We shall need some lemmas valid for any tribe §.
The letters will denote its somata.

21 - Lemma. p+g=p+gcop.
2.2. - Lemma. Let p,,..., p,j. €8, (n>=1). Put

Qg Pr 5 Qegf P2— D1y ooy Gt gf Pnr — (D1t oo + Pa);

then p, + ... +Pusa=a + ... + w42 We prove this by
induction.

23. - Lemma. The somata gq,, ..., ¢q,;, in [2.2] are
disjoint.

Proof. Let 2 <'i < k. We have

G=pk— (D1 + . +0Px—1) , G=pi— @1+ ... + Di)

Hence ¢gx = pk co (py + ... + Pk—1) = Dk €O Py ... CO Px_; ,
which gives

M qx < cop;.
We have ¢; = p;. hence, by (1),
gk =picop; =0, 80 ¢, qx are disjoint.

Now let 1 =1. We have qx=pr — (p1 + --- + Px—.): hence
qx < cop,. Since ¢, =p,, il follows grg, < cop,-p, = 0.
The lemma is proved.

3. - We shall consider the following new hypotheses:

(Hyp. Ad.). If a € B, then coa can be represented as a
denumerable sum of mutually disjoint bricks, where the
infinite summation is taken over from G. This statement
shall be understood as follows: If a € B, then there exist
disjoint bricks a,, as,..., a,,.., denumerable in number,
such that co®(@ae) =68a, +¢Ta,+C¢..., where & is the
isomorphism mentioned in [1].

Another hypothesis is:

(Hyp. Af.). If a € B, then there exists a finite number
of disjoint bricks a,,..., g, sach that coa=a, 4 ... + a,.
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Of course (Hyp. Af.) implies (Hyp. Ad.). For our main
purpose (Hyp. Af) is sufficient.

However. since we have further generalizations in mind,
we prefer to work under the less restrictive hypothesis
(Hyp. Ad.). The complication which our approach will
imply, is not too great.

3.1. - Example. Let # be the tribe whose somata are
@ and finite unions of half-open segments (x, ) Where
0 =a<B<1. Bricks are just those segments. (Hyp. Af.)
is satisfied.

3.2. - Theor. If

1) F is a finitely additive tribe,

%) BCF,

3)0€RB , 1€R,

4)if ¢, bE B, then a-bE K.

d) if a € B', then co a is a finite sum of mutually
disjoint elements of B,

6) F is the smallest strict subtribe of #' containing B’,
then

1) every p€ F is a finite sum of mutually disjoint
elements of B,

2) every finite sum of mutnally disjoint elements of
B’ belongs to F,

3) B’ is a base of F.

Proof. Denote by F, the set of all somata of F which
are finite disjoint sums of elements of B. We shall first
prove that F, is a strict sabtribe of P

Let p€F,. We have p —=a, 4 ... +a, Where a;€ B',
n=1. Hence cop=co(a + ... }a,)=coa..coa,. By
hyp. 5 we have for i =1, 2, ..., coa; = as + ai, + ... Where
the sum is finite and the elements are disjoint. Hence

cop =23, .., 4, 0102, - Ong,, -

The terms of this sum are, by hyp. 4, elements of B’
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and they are disjoint. Indeed a,,, ... an,, * asg, ... anz, =0 all
the time when one of the inequalities =, =3, ..., a, 3 Ba
is true; hence different terms are disjoint.

Consequently cop € F;.

Thus We have proved that

() if p€EF,, then cop€F,.
Now let p, g€ F,. We have
p=c+c+.. , ¢g=d+d+..

where the terms of each sum are disjoint elements of B,
and the sums are finite.

We get p.q=23; cidj. The terms of this sum are
disjoint elements of B’.

Thus we have proved that if a, b€ F,, then a-b€ F,.
This result and (1) imply that F, is a tribe. Its unit is I
and its zero is 0. 1t is a strict subtribe of F' and contains
B'. Hence, by hyp. 6, F= 1. It follows that B’ is a
base of F.

3.3. - There exists a tribe F and a base B of F such
that (Hyp. Ad.) is not satisfied-hence (Hyp. Af.) neither.

Example. We shall consider various half open subinter-
vals &, B) of ‘O, 1). Denote by a(0), b, o(1) the intervals

S 1 2 2 . .
\O, 3-), 3’ 3), 3’ 1) respectiveiy. an put b ¢Fa.(O)Vb.

b”,—,beVa(l). We divide a(0) into three equal parts a(0, 0),
b(0), a0, 1), and we do the same with a(1), getting a(l, O).
b1), a(1, 1). We put

7'(0) 37 &0, 0)™~ b(0) , ?"(0), b0)“ a0, 1)

V) 7o, 0 (1) , (1) b(1)Y a(l, 1)

Suppose We have already defined all a(x,, as, .., «,)
Where «,, «,,..., a, are O or 1 and r is given. We divide
this interval into three equal parts :

(1) U(®s s eery Xy 0), B(@y, ey @p)y By, eeey By, 1),
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and define :

‘2) bl(aly ey ar),}”_fa(uh wey Gy, 0) g b(oyy weey &y),
b"(ayy vy %) 3F @y ey ) @@y, eee, ), 1).

Thus we have defined inductively all &(a,,..., «,) for
n=1, 2,.... Then (1) defines all b(«,, ..., «,) and (2) defines
all ¥(a,,..., «,) and b"(a,, ..., 2,).

Denote by B the class of sets composed of @, (0, 1),
b, v, ¥, and all bay,..., «,), b@,.., «,), b"(%,.., x,).
Denote by F' the smallest tribe of sets Which contains B.
Under the above circumstances B is a base of F, but
(Hyp. Ad.) is not satisfied.

3.4. - There exist ¥ and B where (Hyp. Ad.) is satisfied
but (Hyp. Af.) is not satisfied.

Example. We consider the segments denoted by b,
without or with primes and indices as before, but of all
kinds : open, closed, half open on the right and half open
on the left. They, and all their endpoints *) will constitute
the base.

If we consider the smallest tribe containing that base,
we have satisfied (Hyp. Ad.), but not (Hyp. Af.).

8.5. - After this preliminary discussion, we shall prove
some lemmas under (Hyp. Ad.) or (Hyp. Af.). To simplify
writing of formulas which involve infinite operations, we
shall make the following agreement. We shall write g‘.o fn

”n—=1

and flc f» instead of §'.°Ga f» and ﬁo‘*d fn respectively. If
”=—1 n=—1

n=1
special clarity is needed we shall say that the infinite
denumerable operations, performed on somata of F, < are

taken from G ».

3.5. - Lemma. Under (Hyp. Ad.) if a,,..., a, are bricks,
(n = 2), then co (e, + @, + ... 4+ a,) is the sum of a denume-

4) We mean single point-sets.
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rable number of mutually disjoint bricks (infinite summa-
tion are taken from @G).

Proof. We have co (¢, + ... + a,) =coa,...coa,, and by

o o}
(Hyp. Ad.) coa; = 2 a;,, (=1,..., n’, Where a;,, ai,.. are
8=1

disjoint bricks. Hence
20 oc oc 2

(1) C0dy..C0q, = 3B Qiiy e B Ank, = 3.3 ay,.. Onk,
k=1 k,=: k=1 k,=1

Now (asx, .- Guk,) * (@15, . @nj,) = 0 all the times When at
least one of the inequalities %, &= j,,..., kK, 3= j, holds true.
Hence all the termes in (1) are disjoint. They are bricks
on account of [1]. The lemma is proved.

3.5.1. - Lemma. Under (Hyp. Af) if a4, ..., a,, are bricks
(n > 2), then co (a, 4 ... + a,) is the sum of a finite number
of mutunally disjoint bricks.

Proof. Similar to that of [Lemma 3.5.].

8.6. - Theor. Under (Hyp. Ad.), if f€F, then f is the
sum of a denumerable number of mutually disjoint bricks.
(Infinite summation is taken from ).

Proof. By [1] we have f=a, + .. 4 a, Where ¢; are
bricks. We may suppose n =2, since we can add as many
zero somata as We like. Indeed, O is a brick.

Put g1ff:a1 ’ g,dzfa,—al,..., gn ﬁan — (@4 ... +a,_.). We
have by [2.2], and [2.3],

1) f=a.+..4+9n With g¢g,...., gn disjoint.

Since g¢g; = a; co (a, + ... + ai_,), We have, by [3.5],

gi=ai+ X a5, Where a;_, ,, @i, ,,.. are disjoint bricks.
8=1
We get gi= I (a;ai,,,), 80, by (1), the lemma is proved.
8—=—1
3.6.1. - Theor. Under (Hyp. Af), if f € F, then f is the
sum of a finite number of disjoint bricks.

Proof. Similar to that of [3.6. Lemmal.

4. - Def. By a covering (brick-covering) we shall understand
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an at most denumerable sum of bricks, [i.e. d-images of
bricks] °). Hence O is a covering.
‘We shall prove that, under (Hyp. Ad.), a covering can

always be considered as I a,, Where a, is an infinite

n=1
sequence of disjoint bricks. To do that we need some
lemmas.

4.1. - Lemma. If § is a denumerably additive tribe,
then for its somata E,. E,,..., E,,... Wwe have E, 4+ E, -
+ o EBnt .. =B+ (B 5 Eo) + (Ey + E: + Ey) +

Proof. Put A zE, + E:+... . BgFE,+ (E:+ E)+ ...

We have E, <B, E,<B...., hence, by definition of
the lattice sum, A < B. On the other hand we have E, < A.
E,+E, <A,.., hence B=< A, so the lemma is proved.

4.2. - Lemma. If S is a denumerably additive tribe, then
for an infinite sequence of its somata E,, E,..., E,,....
we have:

V€ F,+F+..+F,+..=E,+E,+..4+E,+ ...,
where F, i E, F, ar E,—E,,.... F,, i Epy—(E+ ...+ Ey).

2) The somata F,, F,,..., F,,.. are all disjoint.

Proof. The thesis 2) follows from [2.3]. We have, by [4.1],
E,+E,+ ... = E, + (E, + E») + (B, + E; + Ey) + ...; hence,
by [2.2]. Es - B+ ... = Fy + (Fy + Fa) + (Fy+ Fo+ F) + ...,
and then, by 41}, E,+E;+..=F, 4+ F.+ ....

421. - If LeG, L=4af, + af. + ... + df, + ... where
fn€F, thon L can be considered as the sum

L=+ g + ... + gn + ...

where g,, € F and all g,, are disjoint.

5) There must be at least one brick in the sum, since we do not
consider « empty » sums-for reasons given in (3). We can define a

oo

covering as = a, where }a, ! is an infinite sequence of bricks. Since
n=1

O is a brick. we always can replace finite sums by infinite ones.
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Proof. This follows from [4.2. Lemma).

4.3. - Theor. Under (Hyp. Ad), if L is a covering, then
it is a denumerable sum of mutually disjoint bricks.

Proof. We have, by [Def. 4], L=a, 4 a¢: + ... + ap + ...,
where a; are bricks.

Put fr7a,, f2370:— a1, fagr0s— (a1 + ay), ...

We have, by (42), L=f,+ f-+ .., Where all f; are
disjoint. On the other hand, since f;€ F, the figure f; is,
by [3.6], a sum of a denumerable number of disjoint bricks.
This completes the proof.

44. - Cor. Under (Hyp. Ad.), if L=f,+fa+fs + ... +
+ fu + ..., Where f, are figures, then there exists an infi-
nite sequence of mutually disjoint bricks a,, a,,..., a,, ..
such that 1) L=ga,+ a;+as+ ... 2) for every 4 there
exists j such that a; < fj.

Proof. We take over the proof of [Theor. 4.3], getting

L=g,+9.+..+9,+ ... where g,, g2,..., gu,... are figures
and where g, <<f,, . <[z, ... .

Now, by [3.6], we can decompose each g, into disjoint
bricks g, =@ + a2 + ... (n =1, 2, ..).

Since the set {aux !, 3, £k =1, 2, ... is denumerable it can
be represented by an infinite sequence. We have a,z<<g.<f.,
8o the theorem is proved.

5. - In this subsection till [12], but [12] excluded, we
shall consider a general denumerably additive, non trivial
tribe 4. We shall not admit neither (Hyp. FBG), nor (Hyp.
Ad.). The topic we shall deal with will be later applied to
the circumstances conditioned by (Hyp. FBG) and (Hyp. Ad.).

We admit the hypothesis (Hyp. Gp): G admits a non
negative meusure p Which is not trivial i.e. We have
() > 0. The measure should be S invariant, i.e. it EZF,
then WE) = p(F).

‘We take such a measure and will keep it fixed.

The measure may be effective on G or mot. It induces
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in a subtribe F of G a measure, also denoted by p, which
is finitely additive on F. It may be effective on £ without
being effective on G. We do not suppose anything about
the effectiveness of p.

5.1. - Def. Under (Hyp. @Gp) We define on G the notion
of p distance between two somata E, F of 8; (see (7)): We
define it by:

|E, F|,3; WE + F) = (E — F) + u(F — E),

where + denotes algebraic addition in the Stone’s
ring G (see Preliminaries).
The notion | E, F|, is G - equality - invariant, i.e., if
=E,, F=F,, then |E, F|,=|E,, F.|,.

5.2. - We shall have some theorems concerning that
notion of distance. They are based on some properties of
the algebraic addition.

‘We mention the following ones: E +F<E+F, E+E=
= O, the associative and commutative law for the algebraic
addition °),

We have W(E)=|0, E|,.

- |E, F|=|F, E

54. - |E, E|=0.

55.- |E, F|<|E, @|+ .G, F|.

5.6. - (E + F)< w(E) + W(F), | B, F| < WE) + wF).

- (B + F)) + (B, + Fi) < (B; + Eo)+ (F, + F), Which
gnves by induction:

5L - By + o + B+ (P + . + Fa) < (B2 + F)) +
+ B: 4 Fo) + .. + (Bu + Fa) for n=2.

5.8. - E,\F, + E.F, < (E, + E,) + (F, + F)).

%) We shall usuvally write | E, F'| instead of | E, F'|,, when no
ambiguity ean result.
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5-9- - CO E1+CO E'_: = E1 + Ez.

5.10. - (B, — F,) + (B, — F)) < (B, + E.) + (F, + F»).

5.10.L. - (E,. E:..E,) + (FiF,..Fs) < (B, + F)) + ... +
+ (Ey + Fy).

Proof. By [5.9], (E; ... E,) + (F,.. F,) =co (E, ... Es) + co
(F,...F,)=(coE,+ ..+ coE,)+ (coF, + ..+ coF,)

Applying [56.7.I] and afterwords [5.9], We prove the state-
ment.

The above lemmas yield proofs for the following proper-
ties of the distance of somata of G.

5.11. - |E. + F,, E.+ F.|<|E,. E;| + |F.,, F,|. Proof
by [5.7).

51L1. - E,+..4+E,, P, + ..+ F,|<|E,. F,|+ .. +
+ | En, F, . Proof by [5.7.1].

5-‘2- - EElFly Engingl, E2‘+:F1, Fg‘. Pl'OOf by [5.8]-

5121 - |E\E; ... BEn, FiFs... Fy| << |EFy 1 + ... + | EuFs |-
Proof by [5.10.1].

518. - | E, F| = | co E, co F|. Proof by [5.9].

5.14. - IEl—Fla Ez—F’!SlEl, Ez|+|F1, Fg‘- Proof
by [5.10).

5.16. - |EH, FH|<|E, F|.

Proof. By [5.12] we have |EH, FH| < |E, F|+ |H. H;,
from which, by [5.4], the statement follows.

516. - |E+F, H|<|E, H|+ |F, H|.
Proof. | E+ F, H/ =|E+ F, H+ H|<, by [6.II],
|E, H|+ |F, H|.
3.17. - If >0, |E, F| <7, then | pE — pF | < 2.
Proof. We have
W(E) = WE — F) + p(E. F)

|
@ W(F) = W(F — B) + WE. ).
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Since WE —F)+ (F —E)<7v, We have pE —F; <7y,
and p(F — E) < 7. Hence for some 8 with 6| <1 and some
# with |t <I We have WE — F)=f, w(F — E)=qt. It
follows WE) — w(F) = n(? — 0): hence  WE) — wF)| =
=1. ili——e’ <2Y].

8.18. - If |E, F! <, then pwE)— v < pE-.F) < wE),
pF) —n < ME - F) << W(F).

Proof. We have E = EF 4 (E — F), where both terms
on the right are disjoint somata. Hence EF = E — (E — F,,
which gives, as E —F < E, p(E. F) = W(E) — M{E — F).

From the hypothesis it follows that pw(E — F) <7, hence
we get WEF)= p(E)— 7. The proof of the second thesis is

similar.

519. - If 4> 0. |E,, F.|<v, 'E.,, F,|<v. E, - E,=0,
then p’(Fl' Fg)sgn.

Proof. By {5.12] we have E,. E,, F,-F.|<<|E,, F,|+
+ | E,, F.| < 2v. Hence |0, F,F,| < 2v. The thesis follows
by [5.2].

8520. - If E-F=0,7v>0, |E, E|<n,|F, F'i<nw, then
{E, ' F'i<3y |F, F—E|<3yn, and ' —F, FF —F
are disjoint.

Proof. We have |E, E' — F'|=E— O, EE — EF | <,
by [514]’ !E) Ell +|U7 E - F,i'

By hypothesis, [5.12] and [5.19] it follows that | E, E' —
— F'| < v+ 29 = 3v. Similarly we get the inequality :F,
F —F|<3y.

The second thesis follows from (E' — FYF' — E') =
=FE co FF- F co E=0.

6. Theor. For somata of @G the following are equivalent:
I. p is an effective measure on G.
IL |E, F|, =0 implies EEZ F.
Proof. Suppose II is not true. Then there exist E, F
such that
(1) |E, F|=0 and E +CF.
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Hence
) WE —F)=pF = E)=

I say that either E — F == 0 or F — E &= 0. Indeed, if not,
we would have E—F =0, F — E =0, and then E - co F=0.
F co E=0. Since E=EF+ Eco F, F=FE 4+ F co E,
we would have E = EF. F = FE, and then E = F, which
has been excluded in (1).

If E— F 40 we get, by (2), p(E — F) 0, and if F —
— E %0, we get, by (2), M(F — E) =0, so p is not effective.
The above arguments show that I implies 1I. To prove that
II implies I, suppose I is not true.

There exists E +4¢0 such that p(E) = 0. Hence, [5.2],
0, E|=0. Hence, by II, 0 £ E which is a contradiction.
The theorem is proved.

6.1. - Suppose that p is effective. We have the following:
IE, Flpz IF, E'p: IE’ FIPSIE’ G|p+,67 F{p)

and |E, F , =0 is equivalent to E = F.

This all by [5.3], [6.5], [6] and becaumse the notion of
distance is G-equality invariant.

Hence the notion of distance of somata organizes the
tribe & into a HAUSDORFF - metric space, hence into a topo-
logy (7).

6.2. Def. Now let us drop the hypothesis that p is an
effective measure on . Introduce for somata of G the
following new notion of equality E =" F, defined by

'E, F|,=0.

6.2.1. - This notion is invariant with respect to the G-equa-
lity. It satisfies the usunal axioms of identity.

Indeed, we have, by (6.4, E =+E. If E =+ F, then
F =rE, [5.3]

If E=*F and F =* @, then E =*G.

Proof. Suppose that E=tF and F=¢G. We have
WE 4 F)=0, M(F +6=0. Now E+G=E+F+F+G=
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=(E +F)+(F + 6) < (E+F)+(F + &. Hence w(E + &)<
<pWE+PF+pF+G =0, so E=ra@.

6.2.2. - The notion of distance | E, F|, is invariant with
respect to the p-equality. Indeed, suppose that E =¢E’,
F =¢F'. We have

WE +F)=pE4+EV+F+P)+E+P<
=WE + E)+ wF + F)+ WE + F);

hence WE' + F)< wE + F). _
Similarly we get wE + F) < WE’'+ F'), which completes
the proof.

6.2.3. - The above shows that the notion of distance
| E, F , organizes G into a HAUSDORFF metric topo-
logy, in which however not —=¢ is the governing equality,
but =,

Indeed the relation | E, F|, =0 is equivalent to E ="F.

6.2.4. - The notion of measure . is invariant with respect
to =», i.e. if E=¢F, then p(E) = p(F).

Indeed we have wE)=|E, O|,, M(F)=F, O|,. Since
the notion of distance is =¢-invariant, we have ! E, 0!, =|F,
O |,, hence p(E)= p(F).

6.3. - The set J of all somata E with p(E)=0 is a
denumerably additive ideal in the tribe G. -

Proof. If E,, E,, ..., E,,, ... €J, then p(E,+ E,+..)=0,
and then E, + E, 4 ... € J.

On the other hand we have: if E€J and E' S E, then
E'€.J. Indeed p(E)< p(E)=0.

6.3.1. - The equality E =¢F, defined as G in [6.2] coin-
cides with the equality modulo oJ in the tribe @, i.e. With
E =7F, (see Preliminaries).

Proof. We define £ ='F as E - F€.J, where - is the
algebraic subtraction in the Stone’s ring @G.
Since the subtraction coincides with the addition, E - F€.J,
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can be written as E + F€.J i.e. ((E + F)= 0.

6.3.2. - Def. If we introduce on ¢/ the p-inclusion defi-
ned: by « E C+F means wE —F)=0>», then E &S+ F will
be an ordering, and G will be organized into a BOOLEAN
lattice with governing equality —=¢. (See Preliminaries).

The operations E 4*F, E .+ F, co* F, E—¢ F, induced
by the ordering & have the properties: E-+4+F=¢tE 4 F,
E.+F=¢*E-.F, cotrF =tcoF, E—+*F =¢tE—F and we
also have It =¢1, Ov =+ 0.

In addition to that: E, +¢ E, 4. =vE, + E, + ..., and
similarly for infinite products.

The measure p is denumerably additive and effective
on the tribe Gy, i.e. on G taken module J, (see [6.3]).

The above auxiliaries and some remarks, given in Preli-
minaries yield the following:

6.3.3. - Theorem. The relation E C+F, defined by
wWE —F)=0, in an ordering on G. 1t organizes G into a
denumerably additive BOOLEAN lattice G, with E =¢F,
defined in [6.2], as the governing equality. The operations
in @, satisfy the conditions [6.3.2.. (7, is just the tribe
G, taken modulo the ideal J of all somata of ¢; Whose
p-measure equals 0. The measure p is =t-invariant, denu
merable additive and effective on G,;. The notion of
distance | E, F|, is —v¢—invariant. It organizes G, into a
HavuspDorFF-metric space. The author has proved in (7)
that this space is complete.

6.4. - Def. The notion of distance induces in G the
" notion of limit of an infinile sequence of somata of G.

IftE E,, E,,.., E,...€G, we say that the sequence
iE,} p-tends to E, whenever lim ,E,,, E|,=lim mE,+E)=0.
The limit. if it exists. is —*—unique. We Write

E, —-*E or imE, =+E.
p.

6.5. - The notion of limit is —=t-invariant.

6.6. - Using methods of the theory of metric-spaces and
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properties [5.11]-[5.14] we prove the following: If E, —*E,
F, —vF, thenco E,, —*coE, E,, + F, —*E + F, Ej,, B, —»
—~¢*E.F, E,—F, —*E — F and E, + F,—"E + F.

67 -1f E, —+E, F, —*F, then |E,, F,|, —E, F',.

Proof. By |6.5] we have 0<<|E,. F,i <!E.,, E +
+ |E, F|+ |F, F,|. Hence, since |E,,E' — 0, |F,,F| —
— 0, [Def. 6.4], we get lim: E,, F, <|E, F|. We also have
|E, F|<|E, En|+ |En, Fu|+ |F., Fi: hence |E, F'<
=<lim|E,, F,'

Consequently | E, F| <lim'E,, F, <lim E,, F,| <

< |E, F !, which completes the proof.
68. - If E, —* E, then pE,) — p(E).

Proof. - We have E, —*E, O —+O0, hence, by [6.7].
lim|E,, O|=|E, O] i.e. lim pE, = pE.

7. - This subsection and some following ones (7-11.2)
are devoted to various kinds of extension of BOOLEAN tribes.
The character of this discussion is general. We need it
because the topic which is rather subtle, will be applied
later in our main discussion. The hypotheses we admit are
the following: There are two tribes /' and (7, Where F is
finitely additive and a finitely genuine subtribe of G which
is supposed to be denumerably additive. Let & be the cor-
responding isomorphism from F into . We do not consider
any base B of F.

7.1. Def. - By the Borelian extension of F within G we
shall understand the smallest tribe #'° whose somata € G,
and such that:

1) if f€ F, then df€ G,

2) F*® is a denumerably genuine strict subtribe of @.
(See Preliminaries), so the notions of ordering, equality,
zero, unit and finite and denumerable operations in F'° are
taken from G,

3) if A€ F? then co A € F?,

4) if Ay, Ay, ., Au, ..€ F'> then S A4, € P>

”=—1
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7.1. - The existence of F'®° can be proved by taking tie
intersections of all strict subtribes ' of G having the
above properties. This can be done, hecause G satisfies
the above conditions.

7.2. - The tribe F° can he constructed by transfinite
recurrence, by defining the sets A4* B* of somata of G,
where 2 =1 are ordinals, 7) as follows: A‘;;T‘alf’, B Aar,
4% is defined as the set of all denumerable sums P, 4 P, +
+..+ Py,+ .. where P,€A'Y B', and B*® is defined as
the set of all co P, where P€ A*

In general, let =2 be an ordinal. We define A* as
the set of all sums P, 4+ P, + ... + P, 4+ ... where P, €
€ U [4F\Y BPF], and we define B* as the set of all somata

<2
co P, where P€ A>.
We have for a, < z,:

1) An C A% Bn C 4m
Now, we define:
'2) g U A

where the union is taken over denumerable ordinals.
7.3. - We shall prove that G = F®,

Proof. First we shall show that G is a denumerably addi-
tive tribe, and, at the same time organized into a denume-
rably genuine strict subtribe of . Indeed, let P,, P,, ...,
P,, ..€@Q. There exists, by (2), ordinals a(l), 2(2), ..., a(n),
... < Q such that P, € 4>, There exists a>a(n), (n=1, 2, ...),

ac

with a<Q. We have, by (1), A2"C A~ Hence I P,€A*HC

C @. Let P€G', we have for some a<Q,”P1€A“. Hence
coPEB*C A*1 C G.

Thus &’ is denumerably additive. If we take on &' the
ordering =6, restricted to G', we get the statement to be
proved, because dF C (.

(*) Concerning a precise setting of the theory of ordinals. see (8).
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Now F® S G, because F’ has the minimum-property
[7]. On the other hand Wwe can prove, by induction, that
G' © F*. Indeed, A* © F?, because A*=dF < F° [7.2].
Suppose that for all ordinals B < @, where « =2, we have
At C F?, It follows that B8 C I, and then AB\Y BB C r,

Take P€ A+, We have P =P, + P, + ...+ P, + ... Where
P, € Ax0)\Y B*(1), P,€ A*®\J B2, ..., where a(l), «(2), ... are
some ordinals <a. We get, by (1), P,, P, .. €F° and
then P€ F% Thus we get A*> & F°, and then, by induction,
we have proved that for « <Q we have 42 C F° Taking
account of (2), we obtain G'C F° Thus we have proved
that G'=F®.

7.4. - We can prove that the set F'° is the smallest class
G" of somata of ¢}, which satisfies the conditions 1), 2), 3)
of [7], but instead of 4), the following one:

4) if P,, P, .., P,...€G", and are all disjoint, then
fo o]
Y P.€G".

n=1
7.5. - We can get F° by inductive construction, fitting
[7.4]), as follows. We define C‘&—f&lf’, D‘a—TaF, and we define
C* as the collection of all somata of G, having the form
P, +P,+ ..+ P, + .. where P,€ ?U [CB“ DB] and where
<z

all P, are disjoint. We define D* as the collection of all
somata co P, where P€C*. We prove that
Fr= U [C*/D*]= U (=~
2<0 a<(

7.6. - Remark. The above is general and can be applied
whenever we have a finitely additive tribe which is a fini-
tely genunine subtribe of a denumerably additive tribe. If
we take for G a wider tribe, but with not changed notion
of equality, F'* will not change. We emphasize that in F°
the governing equality and operations are taken from G. The
tribe F'® is a denumerably genuine strict subtribe of G.

8. - The p-null-somata—extension of F° within G.
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Let us admit that G possesses a denumerably additive
measure p'E). The set J of all E, for which wE)=0, is a
denumerably additive ideal in @, (see (D), [6.3] and [6.3.3]).
Consider the set F* of all somata of (¢ having the form
P 4 P — P" where PEF® wP)=pnP")=0, and P, P'€G.
In other words Fv is the set of all somata of G which
are equivalent modulo J to somata of F°. The set F is,
within @, organized into a tribe with ordering, equality
and operations taken from G. It is a denumerably additive
tribe. The set Fv¢ is the set of all E€« such that there
exists PE€F? with | E. P|, == 0. The null-sets in F¢ are
the same as in G.

Remark - If we amplify & with preservation of measure.
but with not changed equality on , then F* may also be
amplified, since We may have more null-sets. Thus the
p-null-set-extension of F? within ' depends on G.

9. - The Lebesgue-covering p-extension of F within G.
In this subsection we shall refer to [1] but we shall not
admit any measure on the denumerably additive tribe G.
We shall suppose a finitely additive non negative measure
p on F, which is a finitely genuine subtribe of @ through
the isomorphism & which preserves the equality of somata
and finite operations. We shall imitate the LEBESGUE’S
extension-device from ¥ into G by means of some kind
of coverings. We refer to our paper (2). We define
wAf) 7 w(f) for all f€F. Let E€G. We define the «exterior»

measure of E by

0

0
melH) g inf S w(Efy) = inf = e

' where the infimum is taken over all sequences, f,, f,, ....
[ o}
In, € F with EC X af,.

”n=1

We define the «interior> measure of E by:

1{E) 37 D) — pE).
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If p(E)= p(E), the soma E will be termed p-Lebesgues—
coverings-measurable or L-measurable and we put

pYE) 37 1(E) = p(E).
It will be termed L-measure.

9.1. - Let E be measurable in the above sense. There
exists an infinite sequence of infinite sequences

fars fazs oy fan, . €F, k=1, 2,3, ..),
such that

E C Afm+ Afee + oo + Afrn + ..
for all %, and

Jim  (ulf) + pifae) + o+ ) + ) = BEE.
Put

!/nd—ffu, Iaz = faz— fary ey
Jkn = .fh” -_— (f‘l + sz + cen + fk, ”—1) fOl' n = 2, 3, een o

By [Lemma 4.2] we have
af.;l + asz + .o + af.” + e — agn + ag‘z + eee ag,.,. + ese o

Hence

E C Qgp 4+ Agpe + oo + Agan + ... -
The somata gpi, gass s Gan, .. are digjoint. We have:
pUE) < pgar + Bgxz + - + Ban + oo.
Since gxn © fan We have pgpe << pfin. It follows that
pHE) = lim [pga + pguz + o + toan + o)

We have g 4 € F.

Thus we have proved that if E is measurable in the
sense considered, then there exists an infinite sequence of
infinite sequences

(1) Ir1s Gazs o> Gy - (B=1, 2, ..)
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of somata of F such that g,,€ A4’ [7.2], the somata (1) are
disjoint. E & P, where

Py=gn~+ 9rz+ . + gan+...€4°

and where

pHYE) = ”limoo (Bga + Byaz + oo + Bgrn + o)

The sequence of sequences ig4,, (k =1, 2, ..) yields the
infimum spoken of in [9].

9.2. - In (2) we have proved that for every f€ F the
soma {f is L-measurable. We have also proved that the
set FL of all measurable somata of G constitutes a denu-
merably additive tribe. The equality governing on FZI, is
that of G, so is the zero, the unit of FZ, so is the ordering
on FL, and so are all finite and denumerably operations
in FT. The tribe F is a finitely genuine subtribe of FZ, and
FL is denumerably genuine strict subtribe of . The pZ-null
sets in FL are those sets E, that for every % > 0 there

QQ
exists an infinite sequence f;. fy, ..., fu, ... With EC X df,,.
n=

S 1(fw) < 7. Using the device, shown in [9.1], Wwe prove
n=1

that the above condition is equivalent to the following:
For every n > O there exists an infinite sequence f;, f,, ....
fu. ... of disjoint somata of F, such that

©
E C 2 Afa,

n=1 ”

The measure pl is denumerably additive on FL.

|| b48

. 1w < 7.

9.3. - Under the general circumstances considered it is
not true, that if f € F, then pL(Ef) = pf, (see (2)): We only
have pf) << pf.

Now, we have proved, in (2), that a necessary and suf-
ficient condition that pX(&f) = pf is the following Fréchet's
condition, stated in (9):

M fi=fi=.=fa=..€F With II (df.)=0, then pf, — 0,
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(of course if p(f) = pMayf), for fEF.

9.3.1. - Now let us go back to our main case, conditioned
by hypotheses in [1] and (Hyp. &,) in [6]. There a measure p
was given in &, and it induced the measure in F. Take that
measure on F and extend it, by special coverings as in
[9), in @. Since p is denumerably additive in @. u satisfies
FriicHET’S condition: if E, > E,>...=E, .. are somata

[o o]
of ¢ with II E, =0, then pE, — 0. Hence. a fortiori, this

n=1

condition is satisfied by fi=f,=..=fs = .. €F Wwith
i (8fw) =0. Consequently, by [9.3], pXEf) = i(f) for fEF.In
n=—1

the sequal we shall be interested only in that case, though it
does not mean that & coincides with the set of all ZL-mea-
surable somata.

9.4. - Concerning the collection of all pl-null sets and
that of all p-null sets, we must remark, that they may
differ: there may be more p-null sets, than pl-null sets.

9.5. - We shall prove, by induction, that the borelian
extension F? is a denumerably genuine strict subtribe of
FL, (see [7)).

Proof. From [9.2] we know that if f€ F, then &f€ FZL.
‘We take over the topic of [7.2]. Suppose that if P€ AP U BE
then P € L, this for all B less than a given ordinal « where
1 <a<® Let Q€ A>. There exists a sequence { @, } Where
Qn € AR\ BB for some f(n) < , and such that @ = @, 4
+ ... + Qu + .... By hypothesis @, € FL. Since FL is denau-
merably additive, [9.2], we get Q€ FL. Thus we have proved

that if P€ A\ B*, then P € FL. Since F*>= U [4=\Y B7],
<0

it follows that > € rFL. Q.E.D.

9.6. - Under (Hyp. Gp) we shall prove that if P € F°,
then pLP = pP, (see [9.3.1]).

Proof. By [9.3.1] we have: if f€F, then pXdf)=pf=
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= wdf). We take over the topic in [7.4] and [7.5]. Suppose
that 1 =< = < Q and that if PE€[C?\Y D¥] for 1 =B < a, then
pl(P) = n(P). We shall prove that if Q€[C*\Y D%, then
pHQ) = p(@). Lot Q€C=. We have @ =@+ Qo+ .. + Qut .-
with disjoint terms, where @, € C*™ Y D&» for some
ordinals B(n)< «. By hypothesis we have pX(Q,) = u(Qy). Since
both measures are denumerably additive [9.2], we have (@) =
= pH(Q)) + pX(Q2) + .. = Q) + (@) + ... = Q). Now let
Q€ED*. We have @ = co @', where @ €(C)>. Now, as Wwe
have proved, pL(@) = @), we get p(Q) = n(@). This com-
pletes the proof.

10. - If pE) =0, E € ¢, then W(E) =0.

Proof. Let 7 > 0. There exist f,, fs, ..., fu, ... € F such
o 0
that EC 3 df., 3 w{fs) <7. Hence
n=1 n=1

bE < u S S ara< S pasm=

-
n=-1

I| 48

P'(fn) <"
Since this happens for every n > 0. we get pnE = 0.
10.1. - If !E, Fl, =0, then ' E, F|, =0.

Proof. Let | E, FI L =0. Hence pXE + F)=0: hence
by [10], (E + F)=0, and then ' E, F|, =0.

11. - We shall prove that if E € FL, then pl‘E = nE.

Proof. Let E€ FL. By [9.1] there exists an infinite
sequence of infinite sequences of somata of F:

(l) Or1s Gazs ooy Ghny oo (k= 17 27 "-)
such that for a fixed %, they are disjoint, E < P,, Where

Py f;?agu + Agas + -,

Where plE = lim (pgr: + pgaz + - pgan + ...), and Where the
% —QC
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sequence ; P, yields the infimum, spoken of in [9.1]. We have
pl = lim [w(@gn) + W(Agi2) + .- + WAGan) + -]
”n—C

Since p is denumerably additive on @ and g, gas... disjoint,

we have
tH{E)= lim wP,), E < P,.

n—+C

Put
Ql‘;_fply deFPIPZ, eeey Qnaf_.'Ple...Pn.

‘We have u(Q,) < W(Qu-.) and E < ﬁ Q.. We have

n=1
pHE)S lim p@s) = lim p(P,).
” — 20 n —» Q0
Hence
R fo )
pE) = ”llmao WQn) = p.(“lgl Q,,).

On account of [9.6] we have pQ,, = pX(@,,), hence

0
@) wiE) = po T Q..)-
Consequently
= QQ
I E, I On 'P-L= P'L( I Q,;—"‘E)’
n=1 n=1
because
0
EC T ¢..
n=1

Hence, by (2),
0 fo o
15, B lo=w{f 0.)]—wE=0.
n=1

n=1

By [10.1] it follows that

a0
IE’ ngl Qu Ip = 0’
and hence

»(ﬁ Q.—E)=0..

n=1
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which gives

From (2j it follows pX(E) = p(E).

11.1. - We shall prove that if we extend #° by adjunction
of all pl-null-somata of &, we get FL ie. FL is the
pnL-nullset-extension of F? within @, (see [8]).

Proof. Denote this extension by ¥'. If E € F', then
E =P+ P'—P’, where PEF® P, P"€6 with pLlP'=plP"=0.
Since P € rFL, by [9.5], and since P', P”"€ FL, it follows
that E € ¥L. Thus
(1) F' © FL,

Conversely, let E € FL. Referring to arguments in [11], we have
on
\ E; ] Qn 'P'L - Oy
n=1

for some somata @, wWhich i)elong to F°. Hence E equals

Q0

II @, modulo the ideal of somata Whose L-measure is zero.
n=1

Hence, (see Preliminaries),

E = ﬁ Q. + @ — Q", where pL(Q) = pQ") = 0. Hence
E€F.

We have proved that
(2) FLC F'

From (1) and (2) the statement follows.

11.2. - Remark. Suppose we have, in a denumerably
additive tribe @, a denumerably additive ideal .J, and

introduce on ¢ the new equality Z i.e. that modulo J.

Let E,, E;, ..., E,, ... be an infinite sequence of somata

of & which are mutunally J-disjoint, i.e. Ej. E; L0, for izj.
Then we can find an infinite sequence

(1) E., E,, ..., E,, ...€ @&,
such that
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E; L E;, and all somata are mutually disjoint, i.e. E;+ E;=O.
To prove it, we define in ¢:

El,;‘;'Ei? Ezg——fElzﬁE’l, E3;7E§-(E; +Ez”)""

12. - We are going back to the circumstances conditioned
by hypotheses (Hyp. BF@) in [1]. We admit (Hyp. 4d) :3]
and (Hyp. Gp) [5], and also the folloving hypothesis (Hyp. Lu):

(Hyp. Lp) The tribe ¢, its measure p and the subtribe
F satisfy the condition

G ="FLi.e.

¢ coincides whith the LEBESGUE covering extension of F.
as defined in [9].

12.1. - The p-null somata in & coincide with the pZ-null
somata. & is the p-null-somata-extension of F? within ¢,
[8). We have pLE = pE for all E€ @.

12.2. - The following are equivalent for E,, E € .
n=12, .. 1. E, —*E, [6.4], 1. From each subsequence
i Exoyt of {Ex} it can be extracted another omne | Ey,.,!
such that

lim Eyw =t lim Eyg, =*E,
7 —- 00 7?n—s 0

where =t is the equality modulo the ideal of all p,—null—
somata in &, (see (1)) (%)

(8) The theorem is proved in (1) for denumerably additive tribes
whose somata are sets of abstract elements, and where on the tribe
a non negative measure is admited, which is denumerably additive.
Now, since the proof in (1) does not use the relation € of belonging
of an element to a class, the proof is valid for all abstract denumera-
bly additive tribes.

lim A, means (4, + Ay + A5+ ...) « (ds+ Ag+-...) + (d3 + o) ...

”® —» 20
lim A4, means (4, 4s+ A3...) 4+ (45 - 43..) 4+ (d3...) +....

n-——m

Compare (4).
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12.3. - Under hypotheses [12], if E€ ¢ and 7 > U, then
there exists an infinite sequence ¢, g, .... gy, ... of disjoint
figures (i. e. € F), such that

oc oC
E, ¥ Qg.'y<m. ES I dy,.
n=1 n=1
Proof. By [9.1] and [12.1] there exists a sequence g¢,.
Y2 wovy Ons ... Of disjoint figures, such that
P2

1 EC T Ay,

n=1

and

0= El 1(gn) — WE) <.

n-=

Since ¢, are disjoint, we have
[e.e] .
0<u( ¥ agn)—wmen,
n—1

and, then, by (1),
[e o]
|E, S dgu'y<n.
1

n=

12.4. - Under hypotheses 12}, if E€ ¢ and n > 0, then
there exists a figure f, such that 'E, dfi, <.

Proof. By [12.3] we can find disjoint figures g,, ¢,. ...,
Un, . sich that

[e o] -n o o3
[E, M agn!}1<‘-), EC X Ag,..
n=1 ~ n=1
If we put
(1) P - afl "i_ afz + ses o
we have
@ |E, Ply< 3

Now, since the series (1) converges, there is an index
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n such that

WP —(4g: + dy- + ... 4+ dga)l < T,

Hence

. » v
(3) ' P: a M) 9x lp. < .‘)'
k=1 -

43

The soma f F oS oygn is a figure. Hence from (3) and (2)
k=1

we get
'E, fl. <. Q.E.D.

12.5. - Under hypotheses [12], if E€ ¢ and % > 0, there
exists an infinite sequence of disjoint bricks a,, a¢., ..., a,,
..., such that

oo} o
|E, S daplu<m. ES X ay.
k k=1

=1
Proof. By [12.3|, there is an infinite sequence {g¢,}! of
figures with
0

0
E— X g., \E, 3 ﬂgu!;,<‘r;.

n=1 n=1
Now, by (Hyp 4d)
ayn = aanl + aa,,z + LYY
where @y;, @ps, ... are disjoint bricks. Since the set | aux!,

m=1, 2, ..), (k=1, 2, ...) is denumerable, the theorem
follows.

12.6. - Under hypotheses [12], if E€ ¢ and 7 > 0, there
exists a finite number of disjoint bricks a,, ..., a,, (n =1)

with | E, da, + ... + danl, <.
Proof. By [12.4], we find a figure f, such that

() |E, afl, < 3
By (Hyp Ad) we have
af = 8aa, + da. + ... + Aa, ...
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where a,, @, ..., s, ... are digjoint bricks. We can find n
such that '

0 < pdf — w@a, + das + ... + da, <

5
2

2) [ af, Qas + .+ Gogly <3

From (1) and (2) the theorem follows.

13. - In the sequel we shall use brick-coverings of somata
of @, defined in [4], and often apply the theorems [12.3 —
12.6]. By a covering of E € ¢ we shall understand any
covering L such that E =< L. To simplify notations. we shall
write, for figures, f instead of Ef, and the same will be
for bricks. In the case of infinite sums we shall take sam-
mations from ¢}, as explained in [3.5).

13.1. - Remark. It does not seem true that in the case
where the measure . in effective, the (Hyp Ad) follows.

Indeed, if f€F we can find a brick ¢, <f, again in
f —a, another brick a., etc. But f—(a, + u; 4 ...) may
have a positive measure, though it may not contain any brick.

13.2. - The following two theorems can be proved, under
hypotheses [12]: If E € @, then there exists an infinite
sequence of coverings of E, L, =L, >..=L,=.. such
that u£ = lim p(ZL,) and lim¢ L, =+ E.

13.3. - Under hypotheses [12], if
1. E, FE€aq,
L,=L,=..=L,= .. are coverings of E,
M,>M,>..>M,==.. are coverings of F,
E.F =0,
{E, Lal. — 0, |F, My|, — O, then p(Ly - My)— O.

e 90 10

s)(

13.4. - As We mentioned in [6.23], the notion of distance
|E, F', organizes the tribe &, With governing equality =¥,
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into a metrioc space, hence into a topology. This topology is
is necessarily complete (°), but it may be not separable (*).

Later on, in [21], we shall discuss the condition of sepa-
rability.

14. - Hypothesis. To facilitate the discussion we shall
often admit that the measure p is effective on ¢&. This
hypothesis does not affect much the generality. Indeed, if
the measure p is not effective, we replace ¢ by the same
tribe, taken modulo the ideal J, of null-sets in ¢.

To get general theorems from those which were derived
under Hyp [14], we only need to change =, < into =Y,
<’ i.e. =#*, <+ respectively. The relation E <<+ F means
wE — F)=0, [6.3.2.].

14.0. - Theorem. Under hypotheses [12] and [14], the tribes
F® and FL coincide.

141 - Def. By a complex we shall understand a finite
(éven empty) set of mutually disjoint bricks. A not empty
complex P will be denoted by {p,, Pz, ..., Pu}, (n=1) or
i pi |, Where p; are bricks.

By the soma of the complex we shall understand p, 4
+ p2 + ... + p» Where n=>1, and the soma O, if the complex
is empty. We shall write som P, if P denotes the complex.

By the measure of the complex P, we shall understand
isom P). We shall write p{p;!, p(P) or p(som P).

, It P, @ are complexes and E €@, then by |P, Q|, |E, P|,
| P, E| we shall understand |d som P, d som Q|,, |E, € som
P|,, |a som P, E |, respectively.

14.2. - Under hypotheses [12] and [14], if E€ @, 1> 0,
then there exists a complex P such that |E, P|, <.

Proof. This follows from [12.6].

(°) This means, that the existence of the limit, [6.4], limp E, for
EL,€ @ is equivalent to the Cawuchy condition: for every % >0 there
exists n, such that if n=n,, m=n, we have |E,, B, [, <17%.

(4%) i. e. it may be not true that there exists a denumerable set of
somata ¢ G which is everywhere dense in G.
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14.83 - Under hypotheses [12] and [14], if £ € ¢ and A is
a brick-covering of E, > O, then there exists a complex P
such that |E, P|, <7, som P < A.

Proof. By [14.2] we find a complex @ with |E, Q|p<g.
We have E < A. By [4.3] there exists a sequence of mutually
disjoint bricks a,, @;, .., @n, ... With A = 3 a,. Let @ =
=1{¢, s, ., dm} Where g; are disjoint bricks, (m = 1). Con-
sider the bricks a,g;, for alln and ¢. They are disjoint. We
have som Q- A = 2‘.‘ angi, because som ¢ =2 g;. We have

”,s 1 2

|E4, som @ - 4| <3, [B.15)
€Y i.e. |E, som Q.Algﬁ

Let us arrange the bricks a.g:, into a sequence; denote it
by p:, ps, ... If it is finite, the complex {p,, p,, ...} yields

o
the thesis. If it is infinite, take m such that | X p,,
k=1

pkl<y ie.
k

@ - |som Q- 4. % py| <

" »n

From (1) and (2) we get |E, Z p,| =<7, I px= A: the com-
k=1 k=1

plex P 7P, ) Pl yields the thesis.

15. - Lemma. If
1. E,, ..., Ex€G6,n=1, 2, ...,
2 E=E +E + ..+ En+t .,
3. all E, are disjoint,
4. 15 sup By - n>0,

n=1,2,.

then
1) there exists i With p(E;) = 1.
2) the number of all j, for which w(E;) = v is finite.
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Proof. Suppose that there does not exist any index ¢
with p(E;) = 7. There exists an infinite sequence of indicex
a(l) < o(2) <... with lim pwE,;) =7, pE.m) <. Hence,

i—s 0

starting from some k¥ wWe have p.(E,,(k))>g-, p(E,(k_}_l))>g,
Since \W(E) = M(E,) + 1(E,) + ... it follows that p(E) = WExx)+

+ WE xk+1) + ... and then pWE)=m - g for all m=1, 2, ...,

which is impossible. Hence there exists ¢ with wE;) = 1.
Now the number of those indices s must be finite, because
if not, we would have p(E)=m « n for all m =1, 2, ... which
is impossible.

15.1. - Def. By a partition of a soma E€ ¢ We shall
understand an at most denumerable sequence of mutually
disjoint subsomata E,, E., ..., E,, ... of E, with E =E, +
+ E. + ..., but where we do not take care of the vrder in
which E,, E,, ... are written. (For a more precise setting

see [(10), § 2).

15.2. - Def. Given two partitions
A: E=E1+Ez+ .o and
B: E=F,+ F,+ ... of a given soma E€F;

by the product A-B of them we shall understand the partition

E = X E;F; where the terms E;Fx may be arranged, in any
ik

way, into a sequence.

15.3. - Given two partitions Z E; and “F, of E, we say

that the second partition is a subparmzon of the first, whene-
ver for every k& with F, 3= O there exists i with F, < E;.
This index ¢ is unique for a given k.

15.4. - If 2 E;, 2 F;, ... is an infinite sequence of parti-
i !

4
tions of E, we say that this is a nested sequence of partitions
of E, whenever every partition, starting from the second, is
a subpartition of the preceding one.

16.6. - 1f A, B are partitions of E, then their product
is a subpartition of 4 and of B.
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153.6. - We shall be interested in partitions whose ele-
ments are either bricks or figures.

15.7. - Def. Given a partition E; or a complex P{p;!,
by the net-number 9T E;!, OUP of the given partition or
complex we shall understand the maximum of the numbers
W(E;). w{p,) respectively. If the complex P is empty we
define 9TP as the number O.

15.8. - If P is a not empty complex :p,, pz. e, Pui, n =1,
its bricks constitute a partition of som P. If P' is a complex
which constitutes a subpartition of P, then OUP' < 9UP.

16. - In § 2 we shall introduce a kind of integration which
will be based on approximation of the given soma of &
by complexes. The integration requires «small particles »
i.e. complexes whose elements should have «small » measures.
This is, however, impossible in the case Where & possesses
atoms. To master this difficulty, several lemmas will be
introduced concerning special notions of « smallness » When
atoms are taken into account. We start with the case where
there are no atoms in ¢.

16. - Lemma. 1) Under hypothesis [12], hence especially
(Hyp Lp), and (Hyp Ad), we have the following: if 2) the
tribe ¢ has no measure-atoms (**) 3) ¢ is a brick, pe>0.
4) 7 >0, then there exists a partition of a: ¢ =a;, + a. +
+ ...+ ax+ ... into an at most denumerable number of
disjoint bricks a;, such that

max  pa,) <7,

n=i, 2, ...
i. e. the net number 9T { a;} of the partition is <.

16.a - Proof. We may admit that p is effective, so the
measure atoms coincide with genuine atoms. First of all

(41) This means that if E€ G and pE >0, then there exist E,,
E,€G with E, - E, =0, p(E,) >0, »(E;) >0, E,+E, —E. If p is ef-
fective, measure atoms coincide with ordinary atoms.
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we recall, that for any partition A:e=a, 4 e+ ...+ an+ ...
of a into an at most denumerable number of bricks, the
set of all numbers p(a,) admits a maximum [15 Lemmal,
which we shall denote by 9U(4) [15.7). The theorem says
that there exists a decomposition A of a with 9T (4)<q.
Suppose this be not true. Hence, if we take all possible
above decompositions of ¢ we shall have

) a3 inf OUA) =7

Hence there exists an infinite sequence 4,, 4,. ..., 4,. ..
of partitions of a such that

%(Al) 2 9?,(A2) 2 e — & 2 7] > O.

Take the sequence of partitions B, 7 41, B2 Ay - 4.,
By37 A, - A; - A,, ... (the products of partitions [15.2]). They
make up a nested sequence of partitions ([15.4], [15.5], B,,

B;, B;, .. where B,,, is a subpartition of B,, .., B,,
m=1, 2, ..). We have

9UB,) = NU(Bs) = ... — a.

16. b. - Denote by 1, the number of disjoint bricks b in
B, with p(b) = «. Their number is finite and = 1. Indeed,
we have 1, - « < (a), hence

wa)
(1) I

If A\, were =0, all bricks in B, would have the measure
< a, Which is excluded. In the infinite sequence

Ay Aoy ceey Apy e
we have
MELS <A <..

because | B,} is nested.
Hence, by (1), starting from an index n,, all A, are equal.
Put A 2 Ae = Ants = ... We have A =1. We shall call 1,

temporarily in this proof, characteristic number of the sequen-
ce { B, .
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Thus we have proved that if the theorem is not true,
then there exists, among all sequences yielding the inf-
imum «, a nested sequence of partitions { B, ! of ¢ Wwith
9UB,) = 9UB;) = ... — a With characteristic number A= 1.

Consider such a nested sequence with the smallest
characteristic number. Denote this number by A. We have
A = 1. Denote the sequence of partitions by {D,!. We have

(2) NUD)=9UD,) = ... — «

Denote the bricks in D, Whose measure = by d,,, d,.,
<y Gyy. Since the partitions D, are nested. we can admit that

A = dp = . = dpy = ...
Gre=ds = . =y = ...

---------------

Put

o)
(2% ﬁ ”El d,u, ey cx.—,——f‘ “gl dy) .

These somata may not be bricks, but they € . We have
B =, .., pey = c.

16.c. - We shall prove that for at least one index k& we
have pc, = a. Suppose this be not trme. Hence for all
indices + =1, ..., A we have pc;>a. Hence there exists
& <0 with

3) pe; >a 43 forall ¢=1, ..., A.

Consider the partition D,. There are only A bricks for which
#(b) = a, namely d,,, ..., du; for all other bricks b of D,
we have pb < a. Now the numbers pdy,, .., pds are all
> a 4 5. Hence 9U(D,) > a 4 & which contradicts (2).

16.d. - Take k such that
4 pey = a.

Since pcy >0 and & has no measure-atoms, there exist
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two somata E, F of « with wE>0, pf>0, E. F =0,
E + F =c¢,. We have, by (4),

9) pE + pF = a.
Take such sets E, F. Take n > O such that

®) 1 < gy min [p(E), p(F)

Since WME)<a, W'F)<a, we have 'q<94, i.e.
4
O] ~—121)>0

Take & >0 such that

8) 5<g— 12y,
and consider n such that
) Wdrn — Cx) S 8.

16.e. - Having that, consider figures e, f, such that, [12.4],
|E, el,<m, |F, fl,<7. Put e’;—;e e dpx, f’ﬁf « dux. Since
E<du, F<du, We have ¢ < dux, [ < dpx.

‘We have, [5.15],

(10 |E, €|, =| Eduk, edux|, <'E, ¢;<nm.
Similarly |F, |, <%. Put ¢’ we—F, il 7 ¢. We have
' Sduk, ' <du, ¢ - =0 and by [6.20], |E, ¢"|, =

|F, ¢}, < 31. Hence, by [5.17), ! ple") — p(E) | < b, * p(F")—
— W(F) | = 6. This gives

WE) — 6 = p(e") < p(E) + 67

11 A
(n WF) — 6y < p(f’) < WF) 4 67.

From (6) we get 67 <; min [(E) - W(F)|. Hence

1 1
(111) 61 <5 u(E) 6y < wF),
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and then

. 1 1

IE) — 67 > WE) — § wWE) = wWE),

(12, {
F) — b9 > w(F) — u(F) =, wMF)

Hence. by (11),

1

0 <o WE) < p(e”),
13) L
0 <5 w#) < wf")

Taking the right-hand-side inequalities in (11), we get, by
(11.1) and (5), p(e") < p(B)+ 6y <o - wF) + 6y <a— pF)+

1 1
+ o MF) < 2 — , (F) and similarly p(f") <a-— _l)p.(E). This

together with (13) gives

5 K(E),

Lv' —

) p.(E) <) <a—
(14

(SN

0< § bEF) < p(f") < 7 — g u(E).

We have from (11) a — 12v << (") + w(f").

Hence w(dux — (€% + fi))=pdur— plek+fi) <pdne—(x —12y),
by 9), < on)+ 8 — (@ —12), by ), <a+5—(a— 12n)=
=08-+127, by (8) < 5. Thus we have w(d.x — (ex + fr)) < a,nd,
b) (14/'1

" 1
w(ex) < x — 5 pW(F),
(19) 1
p(fi) <o — 5 WE).

16.f. - The brick d,x is thus decomposed into three disjo-
int figures: g 37 7 dur — (e¥ + fx), ex and f¥, all with a measure
smaller than «. If we decompose, (see (Hyp Ad)), each of
the figures g, ex, f¢ into bricks, the measure of every brick
will be surely <ea. If we do this, the partition D, will be
changed into another partition D’ of a, where the part
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outside d,x is not changed, and only d.x is replaced by a
partition with max. measure of bricks less than .

Consider the sequence D,D’, D,D’, ..., DD, ....

This is a sequence of nested partitions of a with
9UDuD') — a, but with characteristic number <<\ or without
any one, Which is a contradiction, since A is the minimal
characteristic number.

16.1. - Under hyp. [12] and [14] suppose that 1) & has
no measure-atoms, 2) we have a partition A of a soma of
¢« into an at most denumerable number of disjoint bricks,
3) <0.

Then there exists a subpartition B of A into bricks such
that the net-number 9B <.

Proof. This follows from [Lemma 16].

17.1. - Lemma. Under [12] and [14]. If 4 is an atom of
¢, E € @, than either A < F or A =< co E, disjointedly.

Proof We have A = AE + A co E. If AE = 0. then
A=A co E and then A< co E. If 4 co E =0, we get
A <E. The remaining case is AE3+0 and 4 co E=0 is
impossible. Indeed we would have p’AE)>0, w4 co E)>0.
so A Were not an atom.

17.2, - Lemma. Under Hyp. [12] and [14), if
1. 4 is an atom in G.
2. Pyy D2y «oes Duy - are disjoint different bricks.
3. A <2 p,, then there exists one and only one index
n such that A <p,.

Proof. First of all we cannot have two different indices
i, j with A -p;&0, A-p;F0. Indeed, by [Lemma 17.1],
we would have A =< p,, hence A =< co p,; because p;=< co p,,
and the bricks {p;i are different. Hence, since A <p,,
[17.1], we would have A <p;-cop; =0, i.e. A i8 not an
atom. Now, by hyp. 3., there exists an index = Wwith
A - py 3 0. Hence, [17.1], we have A C p,. This index = is
unique by virtue of what just has been proved. The lemma
is established.
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17.3. - Lemma. Under Hyp. [12] and [14], if 1. 4 is an
atom in «, 2. E€¢, 3. A, E <7, >0, 4. n<pA4),
then 4 < E.

Proof. We have
1) WE —Aj+ w4 — E)<n.

Suppose that the inclusion 4 < E is not true. Then. [17.1],
A=<coE; hence A-E=0. Since A =(A—E)-+ AE, We
get A=A — E, and then, by (1), (E — A)+ pd — E) =
= W(E — A) + pA= 7 hence pA =+, which contradicts hyp.
4. The lemma is proved.

174. - Lemma. Under Hyp. [12] and [14], if 4,, 4, are
two different atoms of ¢, then there exists a partition of
I into different bricks | a,! such that 4,. 4, are lying in
distinct bricks: A, <g@,, A: < a;, Where ¢; - a; = O.

Proof. We have p4,>0, p4,>0. Take n >0 such that
n < é min [pd,, pd,]. Find, [14.2], complexes P,, P, such
that | A4,, P, <%, |4., P.|<7. Since A4,4.= 0 Wwe get,
[6.20},i 4,, somP;— som P,| = 37, | 4,, som P.— som P, | < 3.
We also have 3n < p(4,), 37 <<4,). Appliyng [17.3), we get
A, <som P, —som P,, A, < som P, — som P;.

Since som P, — som P, and som P, — som P, are figures,
they can be, partitioned, (Hyp. Ad), into an at most denu-
merable number of disjoint different bricks. By [17.2] there
exists in som P, — som P, one brick of the partition, which
contains 4,, and in som P, — som P, there exists one brick,
containing 4,.

Since som P, — som P, and 8som P, — som P, are disjoint,
the mentioned bricks are also disjoint and different. Having
this, decompose the figure I — [(som P, — som P,) 4 (som
P, — som P,)] into a denumerable number of disjoint bricks,
(Hyp. Ad). Thus we shall have a partition of I into bricks,
such that A,, A4, are lying in two different bricks of that
partition. The lemma is proved.
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17.5. - Lemma. Under hypotheses [12] and [14], if 1) P is
a partition of I into bricks. 2) 4,, 4,, ..., 4,, ... are some
or all atoms of ¢. finite or infinite in number, 3) these
atoms are lying in distinct bricks of P. (Never two atoms
in one brick). 4; @ is a subpartition of P, then the above
atoms are also lying in distinet bricks of Q.

Proof. By [17.2].

17.6. - Lemma. Under hypotheses [12], [14] let A4,, A4,,
wey An, 'm =2, be some different atoms of ¢. (They may
be all atoms or not.). Then there exists a partition P of I
such that all 4,. ..., 4, are lying in distinct bricks of the
partition. (Never two atoms in one bricks).

Proof. Counsider a not ordered couple (4;, A;) where
A;+ A;. Take, by [17.4]. a partition P;; of I such that A;
and A; are lying in different bricks of P;;.

The product P’ﬁ (.'H' P;;. taken for all different above
couples of indices, is :i”partition of I into a denumerable
namber of bricks. [15.2]. and is, [15.5], a subpartition of all
P;j. By [17.5). the atoms A;, 4;, (¢5=j) are lying in different
bricks of P'. This being true for any couple 7, j of indices.
the lemma is established.

17.7. - Lemma. Admit the hypotheses [12] and [14]. 1f

1. 4,, 4., ... 4,, (n=1), are some, (or all), different
atoms of G.

2. >0,
then there exists a partition of I into different bricks:

(l) Ay, Q2. cees Qypy oo

such that:

1) The atoms A4,, A,, ... A, are lying in different
bricks (1).

2) if A; =< am, then 0 < p(am) — W(4) <.

Proof. Relying on [17.6]. find a partition P of I into
different bricks such that each atom A4,, .., 4, is lying
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in a separate brick of P, i.e. two different above atoms
are lying in different bricks. Let

(1) AIS al; eoey An San ]

where a;, .... 4, are bricks of P. Take %' >0 such that

7' < min [9, pd,, .., pd,]. By [14 2] find complexes P, ...,
P,, such that

(2) |4:, P.| =7, ..., |4,, P.|<7.
Since 7' < pAd; and | 4;, P;| <7, we get, by [17.3],
3 A; < som P;.

From (1) and (3) we get

4 A;<g;som P;.

From (2) we have, by [56.15]. | 4ia;, a;som P;| <7.
Hence, by (1),

(4.1) I A,’, 4; som P; | = ‘Y]'.
Hence, by 4),
)] 0 <p(a;som P)) — p'd,) < v,

Having this, replace the brick a;, (¢ =1, 2, ..., n), by the
two different figures a; som P;, a; — a; som P;, Whose sum is
¢;, and partition these figures into bricks. Since a; belongs
to P, we get, in this way, a subpartition P’ of P. Since the
atoms 4,, ..., 4, are lying in separate bricks of P, therefore
they are also lying, by [17.5], in separate bricks of P’, say in
a3, ..., an respectively. I say that a; < a; som P;.

Indeed, by (4), A;<a; som P; and, by (1), 4;<a;. The
brick g; is contained either in @; som Pi or in a;~som P;.
In the second case we would have A4; << co som P; which
is a contradiction. Thus

(6) a; < a; som P;.

We have, by (6), pai) — p(4) < p(a; som Py — 4,) =, by (5),
= p(a; som P) — pdy)<7n' <,

Thus we have got a partition P’ wich satisfies the requi-
rements of the thesis.

18. - Def. There exists in ¢ an at most denumerable

4
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number of mutually disjoint measure-atoms, say 3,, B,, ...
ey Buy .. Put Bgf‘ﬁl+ﬁz+.... Let P=1{p:, D2, «-, Pn! be
a non empty complex. Then by the reduced nei-number of
P, we understand the number

Ow(P) 77 max [p(p, —B), ..., wos — P
A similar definition we admit for any at most denumerable
partition into disjoint bricks, (see [15]).

18.1. - Theorem. If we admit hyp. [12] and [14], then
for every 7 >0 there exists a partition of I into bricks
such that 9Ug(P) > . [Def. 18].

18.1.a - Proof. First consider the case, where @ is purely
atomic i.e., every soma of @, Wwhich F0, is the sum of
an at most denumerable number of somata 4,, 4., ..., 4,,
.. With p{4,)>0 for n =1, 2, ... Where all 4, are different
measure-atoms. In that case § =1. We have p; —f = 0,
hence 9L g(P)=0 for any partition P. In that case the theorem
is true.

18.1b. - Suppose that ¢ has no atoms at all. Then we
are in the conditions of [16.1], applied to I. Hence if % >0,
there exists a partition P of I such that OUP)<y. If
P={p,, p:, ...}, We have max wpi) = max o —B) <.

Hence 9Ug(P)<7, so the theorem is true in our case.

18.1c. - The case where @ is not purely atomic, but has
only a finite number of atoms, will constitute a simplified
version of arguments which will follow in the discussion
of the case where we have an infinite number of atoms.

18.1d. - Thus we direct our attention to the case where
G is not purely atomic, but has a denumerable infinite
number of different atoms, say: 4,, 4., ..., Ay, .... We may
suppose that

(1) B4, = p(de) = oo = YAw) = ...
Let n>0. We can find n such that
) BAnts + Apsa + ) < 7.

18.1e. - Applying [17.1], take a partition P of I into dif-
ferent bricks a,, as, ..., such that

(4) A, Sa,, ey Ap < Gy
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and p(a; — 4,) <.

Putting
(3) By At Aot o+ A+ At o,
we get
(6) wa — B <mfori=1, 2 .. 5 a, .

We have 4, + ... + 4, < 0, + ... + a,, but there may also
exist atoms among

O] Ay, Augay ooy

which are incladed in a, 4 ... + a,. If all atoms (7) are
included in a, 4 ... + @,, the arguments which follows will
be simplified. Let

(8) Ah(l), Ak(zn ey

finite, or infinite in number, be all atoms taken from (7)
which are not included in @, + ... + a,. Then they must
lie in co [a, + ... + a,]; this by [17.1].

Let
9) Arays Auzyy oo

be all atoms among (7) which are lying in [a, + ... 4 ax].
The sets (8) and (9) make up the Whole set (7). These sets
are disjoint.

18.1f. - We have

(10) Ak(1) + Ak(ﬁ) + oo S CO (al + eoe + a”) .
Find, by [13.2], a covering B of Axu + Arag + ... such that,
(11) | Aray + Ars + o5 Bl <7.

The soma co(a, + ... + ay) is a figure, hence it is also a
covering [Def. 4]. Hence

(12) B’-d——f co(@ +..+ay) B

is a covering of A,u + Axex + ..., such that
(13) I Axay + Ay + -, B |p <,

and

(14) Aku) + A.(z) + eee S B’.

Let us partition B’ into disjoint different bricks
(15) b1y bay e

Since, by (2), MAray + 4 + ...) <7, We get, by [5.17], from
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(13), pB' <27, and then pb, <2v. It follows that
(16) b(bx — B) < 27
for all bricks (15).

18.1g. - Define

17 C;—, co (B + a, + ... + ay).

Since 4,4+ A, + ... +An<wts+ ... + @n, A)yy + Aoy + ...
e = @y F oo + an, and Ay, + A + ... =< B, We have

(18) c—p=0c0C,
i. e. all atoms of @ are disjoint with C. We have
(19) C=<co(a+..+ an),

If co(a; + ... + a) = O, the thesis is proved, and so is if
C = 0. Suppose that co(a,+ ... + a,)F0 and that C3=0.
Consider the tribe

(20) (=4 Fco(@+ ..+ an)1G.

its zero is O and its unit I’ = co(a, + ... + a,). The tribe
& is the Lebesgue’s-p covering extension of the tribe

(21) F G I'NF.

The set B’ of all somata a - I, Where a € B, constitute a
base of F'. Its bricks are the bricks of B contained in I
We have supposed that C 3= 0. Consider the tribes

@2) G §C1G=CIG,

Take account of (19), and notice that C may not be a figure.
Denote by B” the set of all somata a « C Where ¢ € B. We
see that @” is the Lebesgue’s-p-covering extension of F”,
and B” is a base of F”.

18.1h. - The tribe ¢” has no atoms, so we can apply
[Lemma 16). By its virtue the B”-brick C (which is the
unit 1" of @"), can be partitioned into a denumerable number
of disjoint B’-bricks p,, P2, ..., Pn, -.., such that

(23) poe) <7 for n=1, 2, ....
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Now, p, =g, - C where ¢, is a B'-brick. We have ¢, € @'
Since C is the unit of @’, we have C € ¢”, hence C € ¢'.
Consequently

(24) . € G.

18.1i. - There exists in & a covering of p, : Qu = { ¢,
Qnz, ...} such that

(25) I (4 pnl < n

and then g,, are disjoint F'-bricks, hence F-figures. By
(23), (2b), by virtue of [D.17], we get pQ, <27, and then
#(q.4) <20 for all indices =, k. Let us decompose every
g.x, Which is an F-figure, into disjoint B-bricks gux = { w1,
Tukay o ?.

In this way every p, is covered by a denumerable number

of B-bricks r,;, such that
(26) Bruii) < 2.

Thus C is covered by a denumerable number of B-bricks.
The soma B’ is also covered, by [18.1f], by a denumerable
number of B-bricks. The soma a, + ... + a, is also covered
by the bricks a,, ..., a,. For all those bricks ¢ we have
either p(c) <27 or plc — B) < 2%, (see (16), (6), (26)). Hence
for all of them we have p(c — ) <<27.

Thus we have a denumerable number of bricks ¢ whose
sum equals 7€ @. Applying [cor. 4.4], Wwe get I decomposed
into a denumerable number of disjoint bricks d,, d;, ... such
that each d, is lying in one of the bricks c. Hence we get
for every n: p(d, — B) <27, so the theorem is established.

18.2. - Remark. The presence of atoms hinders making
partitions with small «meshes>», so the notion of redaced
net-number helps. Now, if the tribe & is composed of atoms
only, the reduced net number will always be =0, so another
kind of net - number shall be introduced - just to cover all
possibilities. Therefore we introduce the following definition:

19. - Def. Under hypotheses [12] and [14], if a4=0 is a
brick, put
?Jl’(a)ﬁ pla) — I;mx WA),

<a
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where the maximum is taken over all atoms A included
in a; of course, this happens, if there exists an atom A
included in a. If ¢ does not contain any atom, we put
9(’(::);,-7 p(a). 1f P is a complex {p,, ..., pu}, (n =1), then
by the atom-nei-number of P we shall understand the non
negative number

9(A(P ) E_; max (ng'(pl)i ) %,(pn))'

If P is an empty complex, We define 9Ty (P)5 0.

A similar definition is admitted for partitions into bricks.
‘We can do this because the maximum spoken of always
exists (compare [Lemma 15]).

19.1. - Theorem. We admit the hypotheses [12] and [14].
For every 7 >0 there exists a partition P of I into disjoint
bricks, such that 9U(P) <.

19.1a - Proof. If ¢ has no atoms, then the theorem
follows from [Lemma 16]. If ¢ has a finite numbers of
atoms, the theorem follows from [Lemma 17.7].

19.1b. - Suppose that & has an infinite number of atoms.
It must be denumerable. Let A4,, A4, ..., Ayn, ... be all dif-
ferent atoms, arranged so as to have

1) RA) = WA= o = pAg) = ..

This can be done, because the number of atoms Whose
measure is = ¢, Where ¢ >0, is at most finite. Let 7> 0.
Find » such that, if we put A5z A4n11+ Any2+ ..., We have
pd <m.

Relying on [17.7] we can find a partition P of I into
disjoint bricks, such that the atoms A4,, 4,, .., A, are
lying in separate bricks, say a,, ..., a., 8o that we have
A,<a,, ..., An <0y, and that p(a;)—p(4:)<yn for:=1,2, .., n.
On account of (1) we have

@) wa;) — max M) <m,

§—"%

because there does not exists any atom in a; whose measure
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were > pA;. Suppose that A 41, because if A =1 the
thesis follows.

Consider the tribe ¢' ;- co A16. The unit I' of ¢' is co 4;
it is a figure. The atoms of ¢ are A,,,, 4,:., ... if any.
By [18.1] we can find a partition @ ={q,, ¢, ...} of coA =
=T, so that max[p(g, — 4'), p(g=— 4'), ..]<7%, Where 4’
is the sum of all atoms of @'. Since A'< A, we get pA’' <7y
and max [Mg, — 4), pg. — 4), ...]<n7.

The only atoms contained in g; are among those of A'.
Since pA’ <17, it follows p(g;)=pg;—A4)+1(g;4)<n+n=2.

Hence
@) 0= u(g) — max p4,) <pgy) <2

s=4j
Now {a,, a;, ..., Gu, @1, @, ...} i8 a partition of I into bricks.
From (2) and (3) it follows that if 0 is any brick of this
partition, we have p(b) — max p(4,)<<2v, so the theorem

is proved. 4,=b

19.2. - If 1. A is a partition of I into bricks, 2. 9Tgd <7,
3. B is a subpartition of A into bricks, then OUg(B)<7.

Proof. Let b € B. There exists a€ A With b=<a. We have
#a — B) <7, consequently p(b — B)<<v. This being true for
any b€ B, the lemma follows.

1938. - If
1. A is a partition of I into bricks a,, a., ...,
2. Oulay) <7 for all n =1, 2, ...,
3. B={by, b;, ...} is a subpartition of A into bricks,
then 9y b,) <7 for n=1, 2, ....

Proof. Let b€ B. There exists a €A with b <aq. Now
Ma) -~ max p(A)<<7, where the maximum is taken for all
A<a

=
atoms A which are included in @, if they exist. We have
w(@)<7% if no atoms, lying in ¢, are available. Let
1) A, A,, ..., A,,s=0

be all different atoms included in ¢ wWith p4,=..=pd,=

= max p(Ad)=8.
A<a l"’( )df
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Now b < a. Concerning the atoms 4,, .., 4,, each one of
them is either included in b or in ¢ — b. Suppose that one
at least of (1), say A, is in @ — b. Since p(a) — & <7 and
since b <a — Ay, we have wb) <17, and then a fortiori
wb) — max wm4d) <.

Now suppose that no one of (1) is in ¢ — b. Hence they
all are in b. Hence max p(4) = max p(4). Hence p(z)—

A<Db Ad<a

— max pd)<7 and then p(h)) — max p4) <.
A<bd 4<b

The remaining case is, Where no atom is included in
a, then no atom is included in b; hence p(b) < p(a) <<7%. The
theorem is proved.

20. - Theorem. Under hyp. [12] and [14], if E€ ¢ and
7 >0, then there exists a complex P = {p,, ..., p»} such
that 1) |E, P|, <7, 2) if B is the sum of all atoms of &
in the case they exists, and f = O, if there are no atoms
in @, then p(p, —B), ..., wpa — P <7 i.e. IRP) <.

Proof. First we find a complex P such that |E, P|, <g .

co som P is a figare; hence it can be partitioned into an
at most denumerable number of disjoint bricks. This par-
tition, together with P = {p,, p., ...}, make up a partition
@ of T into an at most denumerable number of disjoint bricks.

By [Theor. 18.1] we can find a partition S of I into
disjoint bricks such that 9Tg(8) <7v. Take the product @ - 8.
This is a subpartition of 8 and of P. Hence, by [19.2].
OUR(QS) < . If we confine that partition to som P, we have
partitioned som P into a denumerable number of disjoint
bricks with reduced net-number < 7. Let this partition of
som P be p;, p,, ... For sufficiently great n we have

| P, p;+...+p;|,.<—g, and if we put P';ip;, wey D}, WO

have |P, P'|, < 721; hence |E, P'| <7 and 9Ug(P)<%. Thus

the theorem is proved.

20.1. - Theorem. Under hypoth. [12] and [14], if E€ &
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and n>0, then there exists a complex P =[p,, ..., p,] such

that: 1) |E, P|,<7%; 2) if A,, A., ..., are all atoms of @,

then p(p) — max 4,<y, (¢=1, .., n), and pp,) <7y, if

4=p;

there does not Jexist any above A4; =p,, i.e., U P)<1.
Proof. The proof is similar to that of [Theor. 20]. The

difference is that instead of relying on [18.1), we rely on

[19.1] and [19.3].

20.2. - Under hyp. [12] and [14], if E€ ¢ and >0, then
there exists a complex P such that 1) | E, P',<%, 2) 9T 4(P)<n.
3) OUr(P) < 7.

Proof. The proof follows the pattern of the two preceding
proofs. Take a complex P such that "E, P|, <2.The soma

co som P is a figure; hence it can be partitioned into an
at most denumerable number of disjoint bricks, getting a
partition @ of I. By theor. [18.1] we can find a partition
S, of I into bricks such that 9Ug(8,)<<y. By theor. [19.1]
we can find a partition 8, of I into bricks such that
OT8,) <. The product Rz Q-8.-8, is a partition of I
into a denumerable number of bricks. By theor. [19.2] we
have 9T 4(R) <7, and by theor. (19.3] we have DU4R)< 7.
Let us confine the partition R to som P; we get a partition
P';—r—{ D1, Pz, ...} of som P. For sufficiently great » we have put-

ting P"d:f' iDL, s Dty IP', P |!"<;} which gives |P/'E |p<12]

We also have U (P") <7, 9Ug'P")<7. So the theorem is
established.

20.3. - Theorem. Under hyp. [12], [14], if E€ &, 4 is a
brick-covering of E, (hence E< A), 1 >0, then there exists
a complex P such that
1) som P <4, 2)|P, E|,<v, 3)9(P)<7m, 4) IrP)<n.

Proof. We rely on [14.3] and apply [20.2].

21. - The p-topology on & is always complete but it
may be not separable, (see [13.4]. In farther sections we
shall need an important property (see [21.2]) of complexes
approximating somata of @, this property being strongly
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related to separability. Therefore, in what follows in this
§ 1, we shall admit, in addition to hypotheses [12] and [14],
the following hypothesis (Hyp. 8) of separability:

21.1. - (Hyp. S). There exists a denumerable sequence
(1) M, M, .., M, ... '
of somata of @ such that for every soma E€ ¢ we can

find a subsequence { My, ! of I such that |M,,, E|, — O,
for n — oo,

We have
The following important theorem:

21.2. - Theorem. Under hypotheses [12], [14] and (Hyp. S,
if 1) E€@, 2) A is a brick-covering of E, then there exists
an infinite sequence { T,,} of complexes such that

1) 92'fR(T") - 01 gtA(Tn) - O’

2) som T, < A,

3) |E’ Tn'p'_’oy

4) for every soma F <<E there exists for every n a
partial complex R, of T,, (i.e. R, < Ty), such that |F,
Rul, — 0.

21.2. - Proof. Since the p-topology is separable, there

exists a denumerable set of @,
(1) M, M, .., M, .. as in [21.1].
Let FEG and F <E. We can find a subsequence { Mgy, !,
(n=1, 2, ..), of (1) such that | Mxy), F|. — 0. We have,
by [5.15], |Mk(,) +E, F-E I = I My, FI -_ O; hence |Mk(”) .
-E, F|— 0, for n — co. Thus the set of all M,.E is
everyWhere dense in the fopology restricted to E.

21.2b. - Having this, let >0 and find a complex P,
such that P,< A, and where

(1.1) |E, P,| =",

[14.2]. Find another complex @, with som Q, < A4, [14.3],
such that

(1.2) |M, - E, @] <.
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Put
(1.3) B, a7 som P, - som Q,, C, 2 som P, — som Q,.
B,, C, are figures. We have
2 B,C, =0. B, 4+ C, =som P, -
Let R,, 8, be complexes such that, [20.3],
3) som R, <B,, som §, <0,
C)) | By, By, =7, |8, Cif <.
OUR(B) < . DURS) <7, DLaB) <7, OTu(8) < 7. The set
(4.1) T,3 B, U 8,

is a complex because of (2) and (3). From (4) it follows
| som R, 4+ som 8,, B, + C,|<<2v, [b.11], i.e. |T,, B+ C.' <<
< 2. Hence, since B, + C, =som P,, we have |T,, P,| <27,
and hence, by (1.1),

) |E, T,| <3n.

21.2.c - We have (1.2): | M, - E, ,|<w, |E, P,| <. Hence
|M,-E-E, som P,.som @, <|M,-E, Q.|+ |E, P,|<2y,
[6.12], i.e., | M, - E, som P, - som @, | < 27, i.e., (1.3),

(5.1) |M, - E, B,|<2n.

Since, |M,- E, R,| <|M,-E, B,|+ |R,, B.|, we get, by
(4) and (5.1),

(6) |M, - E, R, | <=3m.

Now R, is, by (4.1) a partial complex of T,.

Thus we have found a complex T, such that som T, < A4,
|E, T,| <3, ML) =7, OKT)<1, and found a partial
complex R, of T, such that |M, - E, R,| < 3v. This can be
done for every % > 0.

21.2d. - Let us consider the somata E, M,E and M.E.
We like to find a complex T, within A, approximating E
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and such that it would contain one partial complex R,,
approximating M;E and another one approximating M,E.

First find complexes P, Q.,, @,, all within A, and
such that

6.1) |P;, E|<w, |M,+E, Qu|<7%, |M;-E, Q.|<n.

Let us agree, for the sake of simplicity, to use the same
symbol for the complex and its soma. Consider the figures

) P:0nQs, P:0nQs2, P2Q@n0Q:e, P200:

where, in general, X means co X. They are all disjoint
figures, which may be also null-figures. We have

(7.1) P =P:0n@s: + P202:Qs2 + P:0uQs2 + P2@ni0s

and

(1.2) Py@Qn=P:0nQs+P ansz, P.,Q;;=P z@lezz + P02 Q-
Find complexes

®) R, R, R, Riz,

contained in the figures PzQz:szy Pansz, PanQ_z:, Paémé:z
respectively, such that their atom-net-numbers are < v,
their reduced net-numbers <7 and that

l Rz, P2, | <y, | Ri, Paészzz I <7,
i Bz, Pszsz i < N, i Rz, Pzén@zz ! < /B

Since the figures (7) are all disjoint, so are the complexes.
(8). Hence if we put Tz;—7R12UR;2VR1;VR;;, We get a
complex, for which all (8) are partial complexes.

(8.1)

21.2¢. - Now we have, by (7.1) and [5.11.1],
[ P2y To| <|P:Q2Qs2, Bia| + |Pansz, Ry | +| Pansz, Rz|+
+ | P2@21Q:2, Biz | < 4.
Hence, since by (6.1), | P,, E| <7, we get, [5.7),
C)] |E, T.|<bm.
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Now we have, (6.1), |M, - E, Qn|<7%, |M,-E, Q|<n,
|E, P,|<n.

Hence |E - M\E, P.Q.,'<2v and |E «- M,E, P,Q,.| <2y.
Hence, by (7.2),

(10) |M:E, P:Q2Q2 + P:Q21Q:n | <27, | M,E, P30:Qs +

+ P:0:10Q: | < 27)-
Since, by (8.1),

| P2Q2Qs: + P ansz y Bi ™Y Rz | <2y,
| P zQquz + P zézlézh R, ™Y Biz | <2,
we get from (10):
(11) |ME, R, R <<4w, | M.E, R, Riz ,<4.

Since R,,\” Rj; and Ri;\’ R;; are partial complexes of T,,
we have found a complex T, such that |E, T, <4, the
atom-and-reduced-net number of 7, are <7, and wWhich
contains a partial complex R{" with |M,E, R"| <4y, and
which also contains another partial complex R{’ with
| M:E, RS | <4v. This can be done for every 7> 0.

21.2f. - Using a similar method we can prove that for
7 >0 there exists a complex 7, contained in A, with
| E, Tu| < (2" + 1)y, with the atom-and-reduced-net-num-
ber <7v. T. is such that it contains partial complexes: R,
R{", .., B" such that | R{”, M;E | << 2*y. This is true for
every 7 >0. We leave to the reader to develop this argu-
ment with details.

1
+1
a complex T, such that som 7, < A4, |T,, E| S:—l with re-

21.2g. - Taking 73 F | ;1‘, we can find for every =

duced-and atom-net number < 11;, and such that it contains

partial complexes R{™, (i =1, 2, ..., n), such that

an—

RS") ME|< t=1, 2, ..., n).
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21.2h. - Having the sequence {T,!, let F < E, and take
e >0. Find m, such that

(12) | Fy EMu, | =<

nyl ®

Take n>m, with ;llg—;, |Tn, E| S}z' There exists a par-

“tial complex R, of T, such that | EMm,, Bs| = ;lls-; . By

(12) we get | F, R, ! S; +; = ¢ for sufficiently great n. The

theorem is established.

21.3. - Def. The sequence {T,} having the properties 1.,
3., 4., expressed in [21.2], will be termed completely dis-
tinguished for E.

The property 4. will be termed property (S) for E.

21.3.1. - Corollary. A slightly modified argument yields
the following theorem: Under hypotheses [12], [14] and
(Hyp. 8), if 1. E€@, 2. 4,, A,, ..., A,, .. is an infinite
sequence of coverings of E. then there exists a completely
distingnished sequence {7,! of complexes for E such that
som T, < A,.

21.4. - Remark. The validity of theor. [21.2] implies the
Lkypothesis (Hyp. S).

21.5. - Considering the item [21.2d], in the proof of [21.2],
we had (6.1): | P,, E|<7%, |M\E, Q.,|<7 and |M.E, Q.| <7y
and we have found the complex T; = R,,"Y B;"Y R;; Ri; <
< som P, with |T,, E| <4y, (in [21.2e]), getting partial
complexes R,.\Y R; and R\’ Rr3, approximating M.E, M.E
respectively up to 4y, [21.2e].

A similar remark can be said of the general case Where
M.E, M.E, .., M,E are approximated by subcomplexes

R™, ..., B® of a complex T,, Where som Ty < P,. We get

|R™, M.E| <2™. i=1, 2, ..., n) and |E, T,|<(2*+ I)m.
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Now let { Q4! be a sequence of complexes such that
| @n, E| — 0. We can find a subsequence | Qxn,} of {Qn!

1
such that | Quu,, | < T
ponding { Ty, !, We have | Ty, E| — O, and in each Ty,
we can find partial complexes | R} ®y with | R}, M.E|— 0,

(t=1, 2, ..., n(k)). This allows to state the following:

. Taking the corres-

21.6. - Corollary. If |P,, E| — O, then there exists a
subsequence k(xn) of indices, and a sequence of complexes
{ Ty} such that som T, <som P,,,, and that {T,}! is com-
pletely distingmished with respect to E.

21.6. - If {T,! has the property (8) for E€ G, then any
subsequence | Ty, } of it also has that property.

219. - If 1. E-F=0, 2. {P,} has the property (8) for E,
3. Q. has the property (8) for F, 4. som P, - som @, = O,
then { P, Q,! has the property (S) for E | F.

Proof. Let H<E + F, H€G. We have H . E<E,

H . F < F. By theorem [21.2] there exist partial complexes
Py, Q. of P,, @, respectively, such that

(1) |H'E1P:t"_’07 |H'E,Q:l"_’0-

Since som P, < som P,, som @, <som Q,, We have som P,, -
- som @, = 0. Hence P,\ @, is a partial complex of P,\ Q,.
We have |P,, E| — 0, | Q, F| — 0. Hence ! P,\Y Q,,
E+F|—0, and from (1) we have |HE + HF, P, @, | — O.
i.e., | H, P4\’ Qu| — O, which completes the proof.

21.8. - If 1. E€ @, 2. The sequence | P,} of complexes has
the property (8) with respect to E. 3. F<E, F€agq, 4.
QS Py, n=1,2 .., 5 |Qu, P|, = 0 for n — oc, then
{ Qu! has the property (8) with respect to F.

Proof. Let @€ @, G< F. Since {P,} has the property
(S) with respect to E and since @G < E, there exists, for
every m, a partial complex 8, of P, with

(1) | Su, G|, — O for n — oo.
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‘We have
@ 8, S Py, @uS Py, 8N Qn S Q,

and som (S84 @Qn) =somS, .-som¢@,. By (hyp 8) and (1)
we get |som 8, som @., FG| = |som 8,som @,, G| — 0. Hence

(3) lSnr\QnaG|’_’O-
From (2) and (3) the theorem follows.

21.9. - If 1. { P,} is a completely distinguished sequence,
for E, 2. F<E. 3. Q. < P, for alln=1,2,... 4. |Q., F;—0
then {Q,t is a completely distingnished sequence for F.

Proof. Follows from [21.8).

2110. - If 1. E.-F =0, 2. { P,} is a completely distin-
guished sequence for E. 3. | @,} is a completely distingui-
shed sequence for F. 4. som P, - som @, =0, (n =1, 2, ...),
then { P, @.} is a completely distinguished sequence for
E+F.

Proof. Follows from [21.7).

21.11. - If 1. E€@. 2. { P,} has the property (S) for E
and |P,, E| — 0 for n=1, 2, .... 3. {P,} is a complex
whose every brick is contained in a brick of { P,}. 4. |P,,
P,|— 0 for n=1, 2, ..., then { P,} also has the property
(8) for E.

Proof. Let F < E. By hyp. 2, we can find a partial
complex @, of P, such that |F, Q.| —0 for n=1, 2, ....
Denote by @, the maximal partial complex of P, Whose
bricks are contained in the bricks of @,. We shall prove
that

M |Q;’F|—’O'

Let Pu = {Du1, Dus; -} Suppose that k is such that p,,
contains at least one brick of P,. Denote these bricks by
Dukis Durz, -. and their sum by pyx. If p,, does not contain
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any brick of P,, put p,x = 0. We have som P, — som P, =
= Zx(Pnx — Pua)- Since the somata p,, —pm, k=1, 2, ...)
are disjoint, we have p(som P, — som P,) = Z,p(Puk — Dma)-
If we confine ourselves to those indices k' only, for which
Dac € Q. We shall get psom @, — som @) = Zpp(Purr —
— DPukr) < Zpp(Puk — Puk). Since | P,, P, | — 0, we get

(2) lQn; Q;tl'—.O'

From (1) and (2) we deduce that |F, @,| — O, which comple-
tes the proof.

21.12. - If 1. E€ @. 2. The sequence { P,} of complexes
has the property (S) with respect to E,
then we can find complexes { @,} such that

1) each brick of @, is contained in some brick of P,,
2) { @n} is completely distinguished for E.

Proof. We partition every brick p of P, into a denu-
merable number of bricks so as to have the reduced net num-
ber and the atom net number tending to O for n — co. Having
this we take for each brick p a finite number of meshes
of partition, sufficiently great so as to have p approximated

with error << ﬁ), where k(n) denotes the number of bricks

in P,. The theor. [21.8] will complete the proof.

21.13. - If. 1, E€@. 2. {P,} is a completely distinguished
sequence for E, then there exists a subsequence k(n) of
indices and a sequence { Qi) } such that

1) som Py * 80m Qi) = O,

2) { Py ™~ Qrmy} is a completely distinguished sequen-
ce for I.

3) Qkm) is completely distingnished for co E.
Proof. We have | P,, E| — O. Hence, [5.13],

1) | co som P,, co E| — 0.
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The soma co som P, is a figure, hence a covering. Hence,
[4.3), it can be represented as a denumerable sum of mutually
disjoint bricks, say aw, @u;. ... Hence there exists a finite
number of them, say b,,, b,2, ..., such that |an + a.. + ...,

1
Bua bz | S

It follows from (1), that |b,, + dps+ ..., co E| — O.
Bugi{bm, buzen} is a complex, for which |R,, co E| — 0.
Hence we can apply [21.5], by virtue of which there
exists a subsequence k(n) of indices, and a complex Qw,
such that
1) som Qi) < s0m Ryn) = c0 s0m Piy),
2) { Qkmy} is completely distinguished for co E.
Now { Pk} is, [21.6], completely distinguished for E,
{ Qemy} is completely distinguished for co E, som Py, - som
Qxn)= 0, hence Piwu) M Qxuy= Q. Hence, [21.10], the sequen-
ce {Piwm ™’ Qxm! is completely distingnished for I. The
theorem is established.

21.14. - If 1. p40 is a figure. 2. P, is a completely
distinguished sequence for 1. 3. @, is a partial complex
of P, with |Qu, | — 0, @w=1{Qu, qnz. ...}, then, by [21.9)],
{ @u! is completely distinguished for p. 4. Let a,; and e,;
be those among g.x for Which a,<p, and e, - p 40,
eni O 3= O respectively, then |Za,; 4 Ze.p, p| — 0, pCen
co p) — 0.

Proof. Since |Q,, p| — 0, we have |p - som Q,,, p| — O.
Now the bricks of @, whose soma of their sum contributes
to p - som O, are @, Guz, ... and €,,, €y, .... Hence p - som
Qn = Ja,x + pIenx, so the first part of the thesis is proved.
Now we have

(1) I‘?‘hank + Skbnk + Skenk, p i - 07
where b,x are all bricks in Q, for which p - b,x = 0. Hence

| Brtnk + Saburx + Sxenk)Spbak,

(2) P -E.b,‘kl — 0, i.e. !E.b.k, 0’ — 0.
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By subtraction of (1) and (2) and by [5.14] we get | Sxane +
+ Speunr, p| — 0. Hence |, auk + Zxenxp + Shenccop, p|— 0.
By subtraction we get | Zxeqr cop, O | = 0, hence p(Z,eur - CO
p) — 0, wich completes the proof.

§ 2. - Vector flelds on a tribe
and their summation.

1. - We shall consider the tribes F, ¢ and the base B
asg before under (Hyp. FBG), [§ 1; 1]. We also admit the
{Hyp. 4d), [§ 1. 3]. To simplify arguments we admit that
F is a finitely genuine strict subtribe of @, and that p
is an effective (**) denumerably additive measure on @.
The tribe & is supposed to be the p-figure-covering-Lebe-
sgue’s extemsion of F, [§ 1; 9, 9.3.1, 12, (Hyp Lp). The
hypothesis of separability of the p-topology on @, [§ 1;
6.1, 21, (Hyp 8)] will be especially important.

1.1. - Hypothesis. Let ¥ be a F. Riesz-S. Banach-vec-
tor space, complete. Its elements z, y, ... Will be termed
vectors. The norm of z will be denoted by ||z ||, (20), (21).

2. - Def. By a V-field on B we shall understand any
function ¢ (a) where a varies over B and ¢ (@) € V.

2.1. - Def. In [§ 1] we have studied infinite sequences
. P} of complexes which have approximated a given soma
E of G. They have the following property: |E, P,|, — 0.
We shall call this property D-property. We may subject
the sequence {P,} to additional conditions, as 9Tg(P,) — O,
DAP,) — 0, [§ 1: 18, 19], called (R), (4)-properties, and if
(Hyp 8) is admitted. the sequence ; P, | may have the pro-
perty 4), expressed in [§ 1; Theor. 21.2, Def. 21.3), called
(S)-property.

(#4) The hypothesis that F is a strict subtribe of G is a non-essential
restriction. It can always be obtained by taking d(F) and &(B) instead
of F and B respectively, (see [§ 1; 1]). A similar remark can be
made concerning the effectiveness of measure, (see [§ 1; 14]).
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‘We shall consider various kinds of sequences {P,}, but
all with (D)-property; we shall call then distinguished
sequences for E and denote then by (D), (DR), (DA) (DAR),
(DS), (DAS), (DRS), (DARS) according to the specific pro-
perties admitted. The (DARS)-sequences Wwill be termed
completely distinguished, as in [§ 1; 21.3].

2.1.1. - To each of these kind of approximating sequences
there will correspond a notion of summation of
vector-fields, to be soon introduced. The existence of
(DRA)-distingnished sequences has been proved in [§ 1; 20.3],
and under hypothesis (S) of separability, the existence of
(DRAR)-distingunished sequences has been proved in [§ 1;
21.1]. If we shall speak in general of a distinguished se-
quence without specifying its character, we shall say simply
« distinguished » (D'-sequence).

2.1.2. - Remark. We do not know whether (DS) does
imply (DARS), or not. At present wWe do not mneed to be
interested in this question.

2.2. - Def. Let ¢ be a F-vector field on B and E€ .
‘We say that E’ is summable on E with respect to the given
kind (D) of distinguished sequences, wWhenever for every
D’-distinguished sequence { Py} = { Pu1, Dz, ...} for E the
sum ¢ (Pw) 57 2 2 @ (pni) converges for n — oo in the topology

of V. We call this limit « sum of the field ¢ on E (with
respect o D')» and denote it by Sgcp or Sg, (D) :p

2.3. - Remark. If instead of ¢ we consider the tribe
f16 restricted to a given figure, and suppose that E<f,
the notion of summability in E may change. Thus the
notion depends on the totality of the vector-field.

3.- We shall be mainly interested in distin-
guished sequences (DARS), so the theorems which
follow will concern that case. Changes in statements will
be given in remarks.

The sums introduced above constitute, some way, a
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generalization of Weierstrass-Burkill integrals (17). They
are more general than these in (14).

3. - Theorem. Under hypotheses [§ 1; 12, 14] and [1.1],
it 1. E€ @, 2. ¢ is a V-vector field in B, 3. ¢ is (DRA)-sum-
mable in E, 4. >0, then there exists >0 such that if
I A(P)<?, IUR(P)<<3, | E, P |, <3, Where P is a complex, then

I|'¢ (P)— Sgwray @1l <.

Proof. Suppose the theorem not true. For every >0
there exists a complex P such that 9Ug(P) <3, I (P) <38
and |E, P|, < 3, but nevertheless

I P)—Se| =7

Take & = ;1‘, mn=1, 2, ..), and find P,, P,, .., P,, ... ac-

cording to the above. We have

’

RN -

(1) I¥®)—SeF =1, |E Puly<
9Ur(P) S;ll, OUP) = ;1'

The sequence {P,} is (DRA)-distinguished for E. Hence,
by Hyp. 3,

lim ¢ (P,)=Sz7.

7 —» 00
This, however, contradicts (1), The theorem is proved.

3.1. - Remark. A similar theorem holds for the following
kinds of distinguished sequences (D), (DA), (DR), but the
above proof cannot be used for the sequences (DS), (DAS),
(DRS), (DARS).

4. - Theor. Let us admit hypotheses [§ 1, 12, 14], (Hyp. 8)
and [1.1]. We shall consider (DARS)-summations.
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It E€g, 2. F<E, FE€G, 3. Sk pars ¢ exists, then
SF, (DARS)? also exists.

Proof. Suppose that Sy ¢ does not exist. There exists
a completely distinguished sequence for F, [2.1],

(L Qs Qzy ooy Quy o

such that ¢ (Q,) does not tend to any limit. Hence., since
V is complete, there exists >0 and a subsequence

(2) Q1 Q) @, Q7 s Qu, Qu, ..

of (1) such that

®) 1% (@n) — @ (@) || =

(2) is completely distinguished for F, [§ 1; 21.6]. We have
@3.1) |Qn, F| —0, |Qu, F| — 0.

Hence by [§ 1, 5.16]

“4) ; som @y, + som @y, F| — O.
The soma
4.0) som Q,, + som ¢},

is a figure.
Consider any sequence P,, P., .., P,, .. completely
distinguished for E with

®) 9 (Pa) —Sgp il — 0.
We have
(6) | E, Pu| — O.

I'rom (6) and (4), by virtue of [§ 1, 5.14],

| som P, — (som Q,, -\ som @), E—F| — 0.
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Put

Ay = som P, — (som @, 4 som Q;;,.
The soma A, is a figure. We have
) |4, E—F|— 0.

By [§ 1, Theor. 21.5] there exists a subsequence k(n) of
indices and there exists a completely distinguished sequence
i s} for E — F such that

som S, + Som Qi) = 0, som s, » sBom Qrny) = 0.

Hence s, Qkw), s Qkm) are complexes. Since {s,} is
completely distinguished for E — F, and since Qkwm), Qkn)
are both completely distingnished for F, it follows, [§ 1,
21.7], that { s, Qkm)} and {s,\’ Qxwm)} are both completely
distinguished for E. Hence

@ () + @ Qkew) — SEP @ (5w + ¢ (Qhw) — Sz e
hence || (Qkm) — ¢ (@kw) || — O, Which centradicts (3).

4.1. - Corollaries. The theorem [4] holds true for any of
the summations with character (DS), (DAS), (DNS), and the
proof is similar. Denoting these categories by I, II, III
respectively, we make the following changes in the proof of 4],
respectively. Instead of the completely distinguished sequen-
ce {@u} in (1) we suppose its character to be (D) in I,
(DARS) in II, (DNS) in III. The éeqnencen {Qnl, {@n} have
the same character respectively. The sequence {P,} Will
be supposed to be (D»), (DAS), (DNS) respectively. The
remaining arguments Will be not chanched.

The theorem [4] is also true for the summations of
character (D), (DA), (DN), (DAN). Denote then by I', IT, IIT,
IV’ respectively. We take { Q,{ of the given character. The
character of { @y}, { @} Will be the same. Having obtained
the relation (7), we shall not need to select a subsequence
k(n), but we shall stay with A,. We shall choose s, With
som s, << 4, and with properties I, I, IIT', IV’ respectively.
The sequences { s, @Qn}, {sxY @u} Will be the required
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distinguished sequences, yielding the final contradiction.
Thus wWe can state the following theorem:

4.1a. - Theorem. Admitting the hypotheses [§ 1, 12, 14)
and (Hyp 8), if needed, take any character D’ of summation.
If F<E and Sg, (D) ¢ exists, then Sk ) @ exists too.

- Lemma. If 1. -c}:a, —q_a;, «) Pm.. AT vectors of v,
2. from every sequence { Paw } another subseqnence {'p”m, }
can be extracted, such that lim o, Prrony = 9, then lim P = 9.

Proof. Suppose that { cp.. } does not converge. Then, since
vV V is complete, there exists n >0 and subsequences { @, },
{ Pemy | sUCh that

1)t —1)<sn) <tn)<<smn4 1), (n=2),
1) 2) | Pem — Pem =1, (n=1, 2, ..).
Extract from {'c_p:(n,} a subsequence {5:(.'.,)} with
@) lim E’:(s'n) =TP’-
We get from (1)
3) | Prarony — Pearem || =1 for n=1, 2. ...

Now from {?w(..,} another subsequence {_cp.,,,,,(,,,i can be
extracted with

—

4 lim 5:1’:'(") = 9.
From (3) we get
(5) ".‘_;u't’(m —an’t’(n) | = 7.

Since, by (2), Peseeny — 9, We get from (4): 0=y which is
a contradlctlon
Hence o, converges. Put qa lim @y. There exists a par-

tial sequence tending to @ Hence Y= ?.

5.1. - Theorem. Admit the hypotheses [§ 1; 12, 14], [1.1]
and (Hyp 8). We shall consider (DARS)-sums. Let 1. E, E,,
E:, ..., Es, ..€Q, 2. E, < E for n=1, 2, ..., 3. p(E,) — O,
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4.7p is (DRAS)-summable on E,
then SE",(DRAS)? ——6.
Proof. Let { A, } be a sequence of complexes with
(0) |A., E|— 0.

By [Theor. 4], ¢ is summable on E,. Find, for every n=1,
2, .. a complex P, such that

[,

©.1) ¢ P —8g ¢ |<

’;l’
1
Oa(Py) — 0, OURP,) — O, |E, | < n
Let {Pyw,! be a partial sequence of { P,}. We have

-—»HS 1 1
¢ “S;‘y

(1) 19 (Pao — Sg o

kin)

1
(2) I Ek(nn Pk(n) l = ;1’9 QZ'A(PRM)) - O, g’)‘(«R(Pmm) — 0.

Consider the figure

6 Qremy af A yny — s0m Py, .

Since W(Exw,) — 0, we have | Ey,,, 0| — 0, hence, by (2),
(4) IPMm’ OI"’O-

It follows, [§ 1; 5.14], from (0) and (4): | Ay, — som Py,
E—0|—0,i.e.

(5) I Qnm): El — 0.

By [§ 1; 21.5] there exists a sequence (n) of indices 1, 2,
.. and a complex T, =< @, such that {T,} has the pro-
perty (8) with respect to E, and in addition to that;

(6) IR(Tn) — 0, OUY(T,) — O.
It follows that

(6.1) P(Ty) — Se'e.
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Since Qxyn, and som Py, are disjoint, it follows that som
T, and som P,;,, are disjoint.

(7) R“ ﬁ T” v Pk'(”)
is a complex. By (2) and (6), we have
® OU4(By) — 0, 9UR(R,) — O.

Since |E, Tx| — 0 and, by (4), | U, Pixym| — O, it follows
[§ 1; 21.7], IE, T,. ) Pkl(”)l —0 i. e.

(9) |Er R,,I"’O-

T. has the property that for every FE€EG, F <E there
exists a partial complex T,, (n=1, 2, ...) with |T,, F|— 0.
Now T, is also a partial complex of Ry =T, U Pyyy,. Hence,
by (8), (9), { Bu} has the property (S) with respect to E. It
follows 3 (Ru) — Sk 9, i.e.

(10) G (Tw) + % Primy) — Sk 5.

Hence, by (6.1);(Pk;(,.)) — 0. If we take account of (0.1)
Wwe get
| —_

1) Sz ¢ —0.

kl(n)

Thus we have proved that from every increasing sequence
k(n) of natural number another sequence ki(n) can be extracted
so as to have (11). It follows, [Lemma 5], that Sz, ¢ — O.

6.2. - Corollaries. In [Theor. 5.1] we have considered
(DARS)-sums. Now the theorem holds true for any one of
the followang summations: (DS), (DAS), (DRS). The proof is
almost the same. In these three cases, denoted by I, II, ITI,
respectively, we shall drop 9T (Py) — 0, 9Ui(Ps) — O in I,
we shall drop 9Ug(Ps) — O in II and 9U,(Py) — 0 in IIL
The theorem holds also true for summations 1, II', IIT,
IV’ of the character (D), (DA), (DR) and (DAR) respectively.
The proof is even simpler. We omit the conditions
Y 4(Py) — 0, OUg(Py) — 0 in I, omit OUgP,) — 0 in II,
omit 9 y(Py) — 0 in III'. We do not choose any partial
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sequence { Py.,!, but stay with { P,}. So we get, instead of
(51, | Qu, E| — 0. Now, instead of (6) we find T, <@, , with
| Tw, E| — 0, som T, <Q,., OTR(Ty) — 0, U4 T,) — 0. Thus
We get cp (T,.) — bE ¢, and puttmo Ry af T. U P,, we get

? (Tw) + 2 (P — Sgp, 9, and then g (P,) — O, so the proof
can be completed. Thus we can state the general theorem:

5.3. - Corr. Admitting hypotheses [1.1], [§ 1; 12, 14] and
(Hyp 8), if needed, consider sums of any kind (D). If 1.,
2. as before and 3'.. ¢ is (D')-summable, then

—

Sg,,mn ¢ — 0.

6. - Theorem. Take the hypotheses [1.1], [§ 1: 12, 14],
and (Hyp S) if needed. Suppose that E € G. Let (D', be any
kind of summation. Suppose that Sg )¢ exists. then

\ —
So, iy ¢ = 0.

Proof. We apply the [Theor. 5.1}, taking E,=0. We
get So, 0y @ — O. Hence, since this is a constant sequence,
We have

So,01¢ = 0.

—

6.1. - Theorem. If Sy ) exists, then Sy ;¢ = 0.

Proof. This follows from [6], because 0= 0.
6.2. - Theorem. If So,(pl)-c_;; exists, then ¢ (0; = O.

Proof. The sequence {0}, {0}, {0}, ... is a sequence
of complexes each of which being composed of the single
brick O. This seqlience is distinguished of any character
conmdered Let @0 79 (O) We have lim cp (. 0}) = cpo Since
bo (D,)cp exists, we have S (D,)q:o ="go. Hence, by [6.1],
9o = O, Which proves the theorem.

6.3. - Theorem. If SE () 9 exists for some E, then
¢(0)=0.
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Proof. By [4], the sum S¢ 5,9 exists; hence, by [6.2]
9 (0)= 0.

7. - Theorem. Consider the hypotheses [1.1], [§ 1; 12, 14
and (Hyp 8). We shall consider (DARS)-summation.

If 1. El, E,G G, 2. E; . Ez = 0, 3. SE1+E.,(DARS) P exists,
then

SE,+E=, (DARS) ¢ = SE.,mARs.\ ¢+ SE,. (DARS) 9 -

Proof. By [4], the sums Sz e, Sk, ¢ exist. By [§ 1; 13.2)
we can find coverings Ly, =>Lay=> L =..=Lin=.. of E
such that E, < L,,, (m=1, 2, ..) and

(1) lim WMLw) = ME,).

Similarly we can find coverings L, =, Ly, =...=2Lww=...
of E, with E, < L,,, (n=1, 2, ...) and

2) lim W(L.) = WME>).

Since E, - E; = 0, we have, [§ 1; 13.3],

@) W(Lyn + Lan) — O.

Find complexes P;. P;, ..., P,, ... such that

(&) som Py < L,,, | Pn, Lin[— 0,

and complexes Py, P;, ..., P,, ... such that

[6)] som Py << Lsn, |Px, L3n| — O.

Since som P;, < L,,,, som P, < L,., We have, by (3),
{6) lim p(som P, .som P,) — O.
Consider the figures

0) Q. 37 som P, — som Py, @57 som Py —som P,,.

They are disjoint.
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By (4) we have |P,, L,,| — 0, and by (1), |L,,, E,| — 0;
hence | P, E,! — 0. Since, by (6), | som P, - som P, 0| — 0,
we get, by [§ 1; 5.14], |som P;, —som P, - som P,,, E, — 0| — 0,
i.e.

©) |@n, E; — 0.
In the same way we obtain

(9) |Q;l17 Ezi“’o-

Having this, apply theor. [§1; 21.5]. getting a subsequence
k(n) of indices and a completely distinguished sequence
i{ Ry} for E,, such that

(9.1) som R;c(n) < Q;c(n)-
Since, by (9),
(10) | Q;é(n)’ Ez' - 0’

we get, by the same [§ 1; 21.5], a subsequence i kl(n)} of
the indices { (kn)}, and a completely distinguished sequence
i Rkymwy} for E,, such that

(1 1) R%l(n) = Q;C’l(u) .

Since som @, som @), are disjoint, so are som Qiyn), 80m Qkin),
and then, by (9.1) and (11), so are Riym), Rum). By [§ 1;
21.6], Riyn) is a completely distinguished sequence for E,,
and Riys) is a completely distinguished sequence for E..
Hence, by [§ 1; 21.10], { R, } 7 Riymy U Riymy} is a completel‘
distinguished sequence for E, + E,. By hyp. 3, lim R, (3)
exists and equals bE,—i—E,? Since Sz ¢, Sg ¢ exist, and
since { Riyw)} and { Rki ! are completely distinguished
sequences for E,, E. respectively, we have

lim R]’;l(,.) = SE;&;, lim R;;;(,.) = SE!-C_P’
Since

lim Rn (¢) = lim Riyn (:-P" + lim Riyw (%.»
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it follows that

Seies=S57% + Sz . Q.E.D.

7.1. - The above theorem is valid for the following kinds
of summation (DS), (DAS), (DRS). The proof is almost the
same. Indeed, instead of taking completely distinguished
sequences Riyw), Riyn) We take only those of the characters,
{DS), (DAS), (DRS) respectively

The theorem also holds true for any of the following
kinds of summations:

1 (D), (DA), (DN), (DAN)

The proof will be even simpler. Having obtained { @, { and
1 @} and the relations (7) and (8): | E,, Q.| — 0. |E,, Q.| — O,
we shall not need to consider subsequences, but we shall
find R,, R, so as to satisfy the corresponding condition (1)
with som R, < @,;, som B, < @,,. Thus we can state the

7.1. - Coroll. Under hypotheses [1.1], [§ 1; 12, 14] and
(Hyp 8) if needed, consider any kind (D') of summation.
It E,« E.=0. SEI+E2,(D) v exists, then

— — < —
SE,—:E-J.(D') P = SEx.(D’) ¢ + bE,,(D') ¥

8. - Theorem. Let us admit the hypotheses [1.1], [1: 12,
14]. (Hyp 8). We shall consider (DARS)-summations.

If 1. E, FEG, 2. E-F=0, 3. ¢ is (DARS)-summable
on E and on F. then ¢ is (DARS)-summable on E+4F.
.Hence. by [7]: SEA,,F -:;.2 SE -t;; + SF 5’

Proof. Consider a completely distingunished sequence
i P, ! of complexes for E + F. There exists a partial com-
plex R, of P,. n=1, 2,..), such that !R,, E|, — 0. Let
P,=R,US8, where B, N 8,=08. We have |P,, E4+F|—0
and |R,. E — 0. Hence, [§ 1; 5.14],

Pu—-H;,, 'E—I—F)—E!—'O i.e. ISn’ F —0.
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By virtue of [§ 1: 21.9), { R, } is a completely distinguished
sequence for E and {8,} a completely distinguished sequence
for F. By hyp. 3 we have

(1) lim 3 (Ry) = Sgp, lim 3 (8,) = Sro.

Since P, =R, U §S,, We have ?(P,,) = —q;(R,.) + ?p’(S,,).

It follows, from (1), that lim c?(P,.) exists. Since the
completely distingnished sequence {P,! wWas any one, the
field p is summable on E + F. Applying [7] we get the thesis.

8.1. - Corollaries. The theorem is valid for summation
of the character (DAS), (DNS) and (DS). For proof it is
sufficient to drop, in the forgoing proof, the condition
N r(P,) — 0, OU4P,) — 0, or both respectively.

8.2. - Remark. The theorem 7 is not true for summations
(D), (DA), (DR), (DAR), even if we admit (HypS8). The fol-
lowing example shows it:

Let B be composed of all half-open rectangles

a<z<b|
(z, y where 0<a. b, ¢, d<1.
c<r <d

F is defined as the finite union of those reetangles and G
as the tribe of all Lebesgue’s measurable subsets of the
square Iz {(z, Y[0=2z<1, 0<y<1}, p will be the
Lebesgue’s measure. Define

1

Eg—,-k(z, »I0=z<1, 05y<:,f,
1

File wl0<ss<1, j=<y<t]

We have E-F =9, E4+F=1. Let €V, 9+0. If
a = {(z, 3 _/)|az<:c<ﬁ, 0=y <1}, when 0<a<BSl, put

p(a) =0, and for all other bricks b put p(b)=0. The
sums SEcp = S ?— O exist, but b,cp does not exist if
we do not use the (S)-property for complexes, yielding

the sum.



80 OTrTON MARTIN NIKODY{M

9. - Theorem. If 1. E€ @, 2. Sk, (p) ¢ exists, 3. {P,} is
a sequence of complexes with pwP,) — O for n — oc, then
¢ (Pyn) — O.

Proof. { P, } is distinguished of every kind for O. Since
SE, 9P exists_,__ therefore, [6], So, (P =0. We have
So, o 9 = lim ¢ (P,); hence, lim 9 (P,) = O.

9.1. - Theorem. If 1. E€G, 2. Sg p) ¢ exists, 3. a >0,
then there exists § > O such that if P is a complex with
wP <B, then |3 (P) || <e.

Proof. Suppose that the thesis is not true. Then for
every B >0 we can find a complex P such that pP <f and

(1) 1@ || = e

Putting § = %, %, ey ;1', .. and finding the corresponding
P,, we have p(P,) — O: hence, by [9], ¢ (Pa) — O Which
contradicts (1).

92. -If 1. E€G, 2. Sg, 0y 9 exists, 3. «> 0, then there
exists B> 0 such that, if p(F) < B, F€ G, then || Sg, p) ¢ ||<B.

Proof. Similar to that of [9.1], through contradiction
with [5.1).

10. - Theorem. Under hypotheses [1.1], [§ 1; 12, 14] and
(Hyp 8), if needed, we have: If 1. E,, E,,..., Eq, .., FEG,
2. Sp,(y)?exists, Where (D) is any fixed of summation,
3. EZE+E+..+Eu+..,4 E<F, 5. E,, E.,.. are
disjoint, then

SE,(D)?= § SE”,(D’)—(_':

n=1
where ¥ is understood as convergent in the V-topology.
Proof. By hyp. 2 and by virtue of [4.1a), the sums Sg'¢

Sk, ¢ exist, (n =1, 2,...). Put Au5E— (B, + ... + Ey). Wo
have E=E,+ ..+ E,+ A.. By [4.1a] the sum Ssp
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exists. By [7.1],
(1) See =Sg¢ 4+ .. + SE,,?-F SA,.?-

Since G is denumerably additive, we have p4, — 0; hence,
by [9.2], || SA”?H — 0. Consequently || Sz —(Sg e +
+ ..+ 8g,9)|| —0,i.e.

S —

bE:p=”Z=IISEn<p. : Q. E.D.

10.1. - Theorem. Under the same hypotheses as in [10],

if 1. E€EG and Sg,(py ¢ exists, 2. we put for all F<E,
FE€@Q KF)77Sr¢, then K (F) with variable F<E is
denumarably additive. Hence K is a kind of .vector valued
measure, (see (6)).

Proof. Follows from [10].

11. - Remark. We can prove the following: Under hypo-
theses [1.1], [§ 1; 12, 14] and (Hyp 8S) consider any of the
sammations (DS), (DAS), (DRS), (DARS). Suppose that 1. E,,
E.,..., E,,... are all disjoint. 2. Put EE.+E:+...+ En+....
3. Suppose that Sg, ¢ exists forall n =1, 2, ..., then See
exists too, and wWe have

— (o] —_—
SE P =“E SE” P.

The theorem is not true for the summations (D), (DA), (DR),
(DAR), even if (Hyp 8S) is admitted.

12. - Theorem. Under hypotheses [1.1], [§ 1; 12, 14] and
(Hyp 8), if needed, consider any kind (D') of summations.
Let E,, E,, ..., E., ..., E€ G, F€G. Suppose that E, < F,
E<PF. If1. Sp-c_p’ exists, 2. |E,, E|, — O, then SEA?——
— Sg ¢ for n — oo in the P-topology.

Proof. We rely on [4.1a] concerning the existence of
sums to be now considered. We have

See = Sek. ¢ + Ser, @
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by [7.1 cor]. Since WE — E,) — 0, we have, by [5.3],

lim SE_ 9 =0.
Hence
(1) lim Sgr 9 = Sg’p.
We have

SE”?= SEn—E?P"l' SE”.E_';,
by (7.1 cor]. Since w(E, — E) — 0, we have, by [5.5],

—

lim SE”—E?P'z' 0.

Hence, by (1), we get
lim Sg ¢ = Sz . QE.D.
12.1. - Remark. The theorem [12] says that Sz, con-

sidered as the function of E, is (p-limit)~( P-limit}~conti-
nuous for any kind of sommation considered.

13. - Theorem. Let (D) be any kind of summation of &.
Suppose that ¢ is (D )-summable on I. Put K(a)= i S. ¢ for

every brick a, then Kis (D')-summable on I and we have
for every E €@, S K =Sk

Proof. Let E € G. Consider a (D)-distinguished sequence
of complexes {Py!y, { Pyl= {01, P2, ...} for E. Put
K(P,.) i E K(p,,‘, ‘We have

K(Pn) = % Spm.@) = Ssom P”?,
[4.1a)], [7.1 cor]. Since |som Py, E |, — 0, We have, by [12],
somP, ¢ — OE 9, i. e.
§) K(Py) — Sg'p.

This being true for any (D')-distinguished sequence { P, }
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for E, it follows that K is summable on E, and we have
@ K(P.) — Si K.
From (1) and (2), the theorem follows.

14. - Theorem. Admit the hypotheses [1.1], [§ 1; 12, 14]
and (Hyp 8), if needed. We shall consider any kind (D)
of summation. If 1.y is (D)summable on E, Where E €@,
2. X is a number (real or complex, depending on Whether
V is a real vector space or a complex one). 3. We define
for all bricks a the vector field E'(a)i—fl?(a); then ¢ is
also (D')-summable on E, and

SET =1Sz7%.

15. - Under previous hypotheses, if p, and ¢, are two
vector fields, both (D’)-summable on E, then the vector-field
¢pa(a) 7 P a) 4 ¢(a) is also (D')-summable on E, and we have

Sr¢e = Se'e + 8z v,

Proof. Both [14] and [15] follow from the linearity of
the vector-field V.

16. - The existence of the (D)-sum Sz requires more
than the existence of any other (D)-sum on E. Generally,
the «addition » of a letter «increases» the size of sum-
mable fields. )

17. - Let 7 >0 and let A be an atom of G, them, by
[§ 1; 14.2], there exists a complex P such that |P, A, <7.

If we take 7 < %p.(A), then, [§ 1; 17.3], we get A < P. Hence,
by [§ 1; 17.2], there exists one and only one brick p of P
with

¢y A <p.

Since |P, A|,<m, A <P, We have pP — pd <7; hence,

by (1),
pp —pd <.
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Thus, if A is an atom of G, then for every v <O sufficiently
small there exists a brick p such that A =p, pp—4) <.

17.1. - Let 9, — 0. We can find, by [17], a brick p, with
A Spuy, Mpn— A) < Nu. If We put gy=2p,...0s, (n=1,2,...),
we get bricks

2) GG ==
with
6) A<qu, pMgn—4) — 0.

Thas if A is an atom of G, there exists an infinite sequence
of bricks (2), satisfying the condition (3).

17.2. - Now, suppose that A is an atom of G. Suppose that
9 is (D)-summable on 1. Then o is (DARS)-summable on
the set A} composed of the single soma A4, [4.1a). Consider the
sequence (2) in [17.1] with properties (3). The sequence of
complexes

(4) tQI‘, ‘Q2',---, H.Zn'

satisfies the conditions (R) and (4), and also (S) for A4}
because the only subsoma of 4, differing from 4 is O.
Thus (4) is a completely distinguished sequence for |A41.
It follows that
Si = lim o (g
” — Q0
173. - Let A,, A;, ..., Ap ... be a finite or infinite se-

quence of different atoms, (some ones or all), of G. Sup-
pose that ¢ is (DARS)-summable on 1. Then, by [10], [7.1],

S, 9+849 + .o+ =Saia.. 9 -

17.4. - Since the hypothesis of existence of the (DARS)-sum
on I is less restrictive that each one concerning (DS), (DAS),
(DRS), the above holds true for those summations too. But,
even if (Hyp 8) is not supposed, our arguments are valid
for (DAN)-sums; hence for any one of the sums of character
(D), (DA), (DN) too.
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18. - Suppose that % is (D)-summable on 1. Let a be a
brick. Since iai, lal, ... is a (D)-distinguished sequence
for {a} we have

See = 7 ()

If a=a,+a,... + a, + ... is a finite or denumerable sum of
disjoint bricks, ‘we have [10]:

D@ =9 @)+ ¢ @)+ -+ ¢ @)+,

a quite strong condition imposed on ? (a). Dealing with
bricks and atoms we can get examples showing that the
different kinds of summations do not coincide.

§ 3. - Measurable sets of traces and integration
of funetions of a variable trace.

We shall need an auxiliary theory which aims at the
foundation of a general orthogonal system of co-
ordinates in Hilbert space, [§ 6], that system being
adapted to discontinuous spectrum of hermitian and normal
operators as Well as to their continuous spectrum. The
auxiliary theory to be now developped deals with the no-
tion of trace (**) and constitutes a generalization of a
similar notion defined in our Comptes Rendus notes: (23),
(24), (2b), and in (14). The notion of a trace we shall deal
with is just the notion spoken of in (11), (26) and used
in (22). Since in all these papers the theory has been sket-
ched only, and many theorems have not been accompanied
with proof, therefore it seems to be in order to supply
now the proof in the present paper.

1. - We admit the hypotheses [§ 1, 1] and take over the topic
and notations of [§ 1; 1 - 4.4], but we do not admit neither
(Hyp A,;) nvor (Hyp A,). Thus we shall consider the tribes
F, G and the base B of F. To avoid non essential com-
plications, we shall admit that F' is a finitely genuine strict

(43) The french term is «lieus.
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subtribe of G, and that G- admits an effective, denumerably
additive non negative measure p.

2. - We shall consider infinite descending sequences
G=0=..-0,=>041=.. of bricks. If }a,!, 1b,! are
two such sequences, we say that {a,i ¢s ¢ncluded in b, |:
@, =|bnl, if for every n there exists m such that a,, <b,,.
We see that the sequence {0, O, ...! is included in every
sequence, and every sequence is included in i1, I, ..|
If (a,! <1b,!, 10, <{cs!, then la,i<1ic,!, We have.
{aw} < {ani, We say that {a,} is equivalent to \b,}:

18atcotby,l, ifja,! =ib,! -and |by! =< |a,!.

The notion of equivalence obeys the formal rules of iden-
tity, and the notion of «being included » is invariant with
respect to the equivalence.

If the sequences a,!, | b, ! differ only by a finite number
of elements, they are equivalent.

2.1. - Def. A descending sequence }a,! of bricks is said
lo be minimal if the following conditions are satisfied;
1) ja,.! is not equivalent to {0, O, ...\,
2) if | by} << !awl, then either ib,1c>10, O, ...\ or else
butcolay,!l.

2.2. - Remark. In the general case We cannot prove the
existence of minimal sequences without supplementary hypo-
theses concerning B. Thus, in what follows we shall
admit the existence of at least one minimal
sequence.

’

28. - Def. A saturated class of mutually equivalent
minimal sequences of bricks will be termed #race (**), and
each of those sequences representalive of that trace. All
elements of a representative of a trace are =+ 0.

(44) The notion of trace is related to ultrafilters (27), (28) and also
to maximal ideals in Stone’s-rings (Boolean rings), (18), (29). However,
the notion of trace seems to be more adapted to application to Quantum
Physics than ultrafilters.
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2.3.1. - Remark. Notice that there does not exist any-
thing like a «null-trace ».

2.4. - Def. Two traces z, y are said to be equal z =y,
if their representatives are equivalent.

2.4.1. - This notion of equality obeys the formal laws
of identity. It coincides with the identity of classes of
sequences, suitably restricted.

2.5. - Def. We say that the brick a covers the trace =z,
whenever there exists a representative a.{ of z such that
a, <'a. (Of course it follows that all a, < a).

3. - In [§ 1; 4] we have defined a covering as an at most
denumerable sum of bricks. In this chapter we take over
that definition.

31. - If L, L,, ..., Ly, ... are coverings, finite or infinite

denumerable in number, then X L, is also covering.
n

3.2. - If L,, L, are coverings, so is L, - L,. Indeed, if
L1 =3 Ay, Lz = 2‘ bn, we have L1 Lz = E 2 a”b", 5 a.[ld anb”,

nm
is a brlck

4. - Def. Let X be a set of traces (it may be even empty),
and L a covering. We say that X s covered by L if the
following implication is true: «if x € X, then there exisis
a brick ¢ such that 1) ¢ <L, and 2) « is covered by g,
[Def. 2.5] ».

- 4.1. - The empty set of traces is covered by any covering.
Every set X posseses a covering, namely the soma I.

4.2. - The following are equivalent:
I. The trace z is covered by the brick g,
II. The set (z), composed of the single trace z, is
covered by the covering a.

5. - The following lemmas hold true: Let X, Y be sets
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of traces and L a covering. If X © ¥, and L is a covering
of ¥, then L is also a covering of X.

5.1. - Let L, M be coverings and X a set of traces. If
L=< M, and L is a covering of X, then M is also a cove-
ring of X.

5.2. - Let 80 be a collection of indices. Suppose that
for every i€ 8 the set X, of traces is covered by the cove-
ring L, then U, X;, (¢€8) is also covered by L.

53. - If X,, X,, ..., at most denumerable in number,
are covered by L,, L,, .. respectively, then U,X, is
covered by I,L,.

3.4. - Theor. If L, M are coverings of the sets of traces
X, Y respectively, then L, M is a covering of X ~ Y.

Proof. Let z € X ~ Y. There exist bricks a, b, both cove-
ring z, and such that ¢ <L, b < M. Since z is covered by
a, there exists a representative {a,! of z such that ¢, =g,
(mn=1, 2, ..). Since z is covered by b, there exists a repre-
sentative {b,! of z with b, =b, (n =1, 2, ...). The sequen-
ces ja,l, |b,! are equivalent, [2]. Hence there exists p
with b,, <a,. Hence b, <a-b < N - M. Since ib,, b,4,, ...1 is
equivalent to b, b,, ...!, it is equivalent to {a,!. Since
a-b is a brick, it follows that z is covered by L .M. The
lemma is proved.

6. - Denote by /¥ the set of all traces. Il X is a set of
traces, denote by co X the complement of X with
respect to W, i.e. W —X.

We admit following two hypotheses:

Hyp. I. - If X is a set of traces, L, M, are coverings
of X and co X respectively, then L+ M = 1.

Hyp. I1. - If ¢ is a brick and X the set of all traces
covered by a, then co a is the covering of co X.
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6.1. - Suppose that 73 has at least one element b diffe-
ring from O and I. From (Hyp. 1) it follows that there
exists at least one trace. Indeed, by [4.1] the empty set of
traces is covered by any covering. If W =098, we would
have W = co W. The brick b would cover both W and
co W,but b+ b1

From the hypotheses (Hyp. I) and (Hyp. 1) it follows
that, if a=: O is a brick, but not an atom, there exists a
trace covered by a. Indeed, suppose that there does mnot
exist any trace covered by a. Then, by (Hyp. 1I) W is
covered by co a. There exists a brick b with 0 <) <a. Now
co W =08 is covered by b. Hence, by (Hyp. I), b 4-coa == 1,
which is not true.

If ¢ is an atom, then ;a, @, ...! is a minimal sequence,
hence representing a trace covered by a.

If I and B are composed of O and unit only, I is an atom.

Thus we have proved, that if f€ I is any figure =0,
then there exists a trace covered by f.

7. - The above hypotheses (Hyp. I) and (Hyp. II) and
the existence of an effective measure on G will make
possible to develop a theory of measurability of
sets of traces. The theorems which will not involve
the measure p explicitely, will be indipendent of
the choice of the effective measure.

We emphasize that, given the tribe F, the notion of
traces depends on the choice of the base B of
F, so we may call them B-lraces in F.

7.1. - We shall rely on the following theorem by Wecken
(12): If G is a denumerably additive tribe admitting a denu-
merably additive, non negative and effective measure, then
G is completely additive.

72. - Def. If X is a set of traces, then by its oufer
coat we shall understand the soma of G': [X|* =1IIL, where
the product is extended over all coverings L of X.

73. - Def. If X is a set of traces, then by its inner
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coat We shall understand the soma of G:
[X], = I —[¥* = co [¥],
Where ¥ = co X.
74. - Theorem. For every set X of traces We have
0 <[X], < [X]*

Proof. Put Y=co X = W—X. If L is a covering of
X, and M a covering of ¥, we have, by (Hypothesis I):
L+M=1
Multiplyng both sides by co M, We get L.coM =coM;

hence co M << L. This being true for a given L and any
M, we get

)] ScoM <L

where the summation is extended over all coverings of Y.
The inclusion (1) being valid for any covering L of X, we
get ZcoM <IIL i.e. collM <<IIL, hence co [Y]* << [X]*
and then [X], << [X]*

7.4.1. - Theorem. If X << Y are sets of traces, we have
for their outer and inmer coats the inclusions:

(X < [Y), [X])e < [Y),-

7.5. - Theorem. If X is a set of traces, then there exists
a denumerable sequence of coverings of X:

L12L22.-.2Ln2...
such that [X]*=1I,L,.

For such a sequence we have p(XJ*) = lim p(L,).
In addition to that we have w([X|*)=inf (M) Where
the infimum is taken for all coverings M of X.

7.5a. - Proof. First suppose that X — Q. Then all cove-
rings L will be coverings of X, (see [4.1]). Hence the soma
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O is also a covering of X, (see [§ 1, 4] and [§ 1, 1]). Hence
inf p(M) = p(0) =0, where the infimun is taken over all
coverings M of X. Put L, =0, n=1, 2, ... We have L, >L,>
=... and lim W(L,) = inf p(M). Now IIM < O, hence [X]* =0,
and then p[X]* = 0.

Thus in the case Where X — @ the theorem is proved.

7.5a. - Let X0, so if L is a covering of X, we have
L 3= 0. Denote by | L} the class of all coverings of X.
We have [X]J* = IIL where (LEIL!). We order well the
different elements of | Li:
e)) L,L,, ..., Ls, ..

where the indices are consecutive ordinals. Denote the
ordering of these indices by .

7.5b. - Suppose § is finite:
) Ly, Ls, ..., L,.

Then L a L1+ Ly ... Ly is a covering of X, (see [3.2] and [5.4]).
We have [XJ*=1IIL =L,..L, = L. This soma is one of
the somata (1). If we put

L;:L;:...‘#L,

we get lim p(L,) = p[X]* = inf y(M) where the infimum is
taken for all coverings M of X. The theorem is established
in the case considered.

7.50. - Let us suppose that § is infinite. Put, for
every &, Where 3 € §,

2) ps = W <sL,.

This product is meaningful because G is completely ad-
ditive: p; € G.
If ¥ <?%", we have py = ps», and then p(ps) = p(psn).
We say that the following are equivalent:

I-wps) =plpe), Ilep,=rpe.
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Indeed, the implication II — Iis evident. Suppose I, and
a > f. It follows p, =< pg, and then p(pz — p,) = p(pg) — Mp,) =
= 0, which gives, on account of the effectiveness of the
measure {1, pe — p, = 0. Hence pg < p,. It follows p, = pg,
i.e. II

7.5¢c. - Denote by :p! the class of all somata ps for 3€8.
For each g€ip! consider the smallest ordinal A(g) such
that pyq) = q.

If g d€ip!, and g < g, we have A(g) > A(g’), and con-
versely, if A(g) > A(g), we have g < ¢

79.5d. - The ordering § of indices, if restricted to the
set of all A(g), (¢€ip!), is a partial well ordering, say &':

3) 1=11)<12) < .. <B) <.,

where the variable § varies over a range of consecutive
ordinals. Denote the ordering of these indices by 9f. Put
rg = P for all B €.

There is one — to — one correspondence between the
somata g€ !p! and the indices § € 9f, where

C)) e =DPp) = Pr@ = &
and where the following are equivalent:
®) L ¢>q" IL«f)=Xq)<Ag")=rF"); IIL F<p"
Thus we have Ly = p, = >r,>..>rg>.. i.e.
Dr(1) = Prfz) = vee = Pri@) = ooe s

7.5e. - We notice at once that the well ordering & is
at most denumerable. Indeed, We have p(r,) > p(rs)>...>
>urg)>.. and 1 >r>..>rp>..., 8o all r,—r,_, are
disjoint and have positive measures, for p is effective.
If their number wWere non denumerable, we would have a
contradiction, for p is denumerably additive.

Let us emphasize the following remark: If g€{p!, g=r,
the unique index 7, for which ¢ = r,, has the property

(6) ' n=8.
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7.5f. - Now we shall prove that every rg is a denumerable
product of coverings of X. Suppose that the statement is
not true. Clearly r, is a denumerable product of coverings
of X, hence the smallest ordinal 7, for which this does not
take place, is > 1.

Suppose that n—1 exists. We have n—1>1
and r,—, is a denumerable product of coverings of X. We
have, by (4),

Tq—1 = Pr(q—1)5 Tn = Pr(n)+
We say that if
O M — 1 <§ <),
we must have p; = r,_,.

To prove this, notice that r,_, = p: =>r,. By (6) we get
n — 1 <n'<<7. Hence v = v Which gives p; =1, = r, =Dy
where & < t(n), by [7.5c] and (7). Now this is impossible,
because t(v)) is the smallest index v for which p, = p:. Thus
we have proved that (7) implies p; = r,.,.

7.6g. - Take £’ such that

(7.1) M — 1) <& < 1)
‘We have, by [7.5f.],
(7.2) Prq—1) = D&’ = O,<¢'La,

Consequently, by varging & in (7.1), and by taking the
product of all equalities (7.2), we get
Prin—1) = Hr(n—1)<£<r('n)L£ ’
which gives
® Pren—1) * Megn—ny<t<emls = Pria—1) -
Now
D) = Masemylix = ocntn—1) Doz « Wegn—sy<acnenylin * Lirn) = Prir—ar *
* HT('n—l)<a<-r('n)Lz * Lixwy,
and hence, by (8) and (4),
Ty = Prn) = o1 L)
Since L..) is a covering, and r,_, has been supposed to be
a denumerable product of coverings, it follows that also r,

is a denumerable product of coverings. The contradiction
thus obtained shows that » must be a limit ordinal.
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7.5h. - Since 9f is a denumerable well ordering [7.5e],
it follows that there exists an infinite sequence 7, <%, <
< e € Np < ... <7 such that

9) 7 = lim,, ,.

For every n the soma r,, is a denumerable product of
coverings of X. We have, by (3), (7.) < (%2 < ... <Mp) <
<..<71(n). Let 7 be the smallest ordinal = than all (y,).
We have

(9.0) Ne) <7V = 1(n)

for all n. We shall prove that v =1(). To do this,
notice that

9.1) Dr(n,) = D' = Pr() -

Determine the unique § for which p-=r;. We have r, >
= rg=>r,, Which gives, by (6),

9.2) M<3<7

for n=1, 2, ... Suppose that p. > pym. We get, by (6),
B <, and then, by (9), there exists m with 8 <7,,. Thus
we obtain, from (9.2), 1,, =<8 <1,, Which is impossible. It
follows that p., = pr. Since t(n) has the minimum pro-
perty, it follows, from (9.0), that v = t(%).

7.5i. - The equality ¢ = t(n) being established, we get
() = lim,t(n,). It follows that if 1 < & <1(y), there exists
m Wwith

(10) WNm) < 8.

Having this, we can Write

Tq = Pr(n) = HlSas'r('m)Lz . ngas'r(-ng)La oy .

g =g * Ty oee LT(.,)) .

Since L., is a covering, and each of the remaining factors
in the above product is a denumerable product of coverings
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of X, it follows that r, is so too. The contradiction thus
obtained proves that every g€ !p! is a denumerable product
of coverings.

7.5]. - Now we have [XJ* =II,L,, the index « ranging
over §, hence [X]* = Ilgpg, the index B ranging over 9.
Since the number of factors in this produet is denumerable,
it follows that [X]* is a denumerable product of coverings
of X. Let us write

[X]*= cole/”
where M, are coverings of X. If we put M, = II;_,M;, We ob-
tain

(10.1) (X =1_.M, With M,>M,>..,

and M, is a covering of X, (by virtue of Lemma 5.4). Thus
the first part of the thesis is proved.

7.6k. - If [X]*=II;>.,M,, Where M, are coverings of X with
M, >M.=.., it follows, on account of the denumerable
additivity of the measure p, that

p(XT*) = lim (M)
7.51. - To prove the last statement of the thesis, put
(11) A5 inf p(L),
where the infimum is taken for all coverings L of X. Take

the sequence :M,,| from (10.1). We have, [7.0k], A<<limp(M,)=
= p(X.

Suppose that A <<p(X]*). There exists ¢ >0 such that
A < p(X*) —e. By (11) there exists a covering L' such that
X < (L) < p(X]*) —=.

Since M - L' is also a covering of X, we have

(12) )< W(M,L) < W(I) < W(X]*) — e

Now, by (10.1), [X]* < I} M, L’ << I3, M,[X*]; hence [X]* =
= H°..°=1(M nL’)~
In addition to that we have M,I' << M,L’' = ..., and these
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somata are coverings of X. It follows, on account of [7.5k],
that p(X]*) =lim p(M,L"). On the other hand we get from (12),

r(X]) < W[X]F) — ¢,

which is false. Thus we have proved that ) = p(X]}*, and
this completes the proof of the whole theorem [7.5].

8. - Measurable sets of traces. Defin. A set X of traces
is said fo be measurable whenever its inner coat and its
outer coat coincide: [X], = [X]*. In this case We speak of
the coat of X and denote it by [X]. We have [X]=[X]*=[X],.

8.1. - Theorem. If X is a sets of traces, Y = co X, then
the following are equivalent: I. X is measurable, II. [X]* .
«[¥YT*= 0, 1II. Y is measurable.

In this case We have [X] = co[Y].

8.2. - Theorem. The empty set ® of traces is measurable.
The total set W of traces is measurable. They are different.
Proof. By [3.3] we have for X = Q:
0 < [X], =[X]~
‘We have [X]* = O (compare part [7.Da] of the proof of the
theor. [7.5])). Hence [X], = [X]*, so X is measurable. By [8.1],
since W =co Q, and since O is measurable, so is W. We

have [8]=0 and [W]=co[@]=co0=1, and O 1.
Since [Q]4=[W], the sets @ and W are different.

Remark. Soon we shall prove that if & is a brick, then
the set of all traces covered by a is measurable.

83. - Defin. If X is a measurable set of traces, then
the number

W) = WX = p(X]y)

is called measure of X and denoted by p(X).
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84. - Theorem. If X is a measurable set of traces,
[X]=1;_.,L, where L, = L,= ..., are coverings of X, then
W(X) = lim (Ly).

8.5. - Theorem. Let X be a set of traces, ¥ = co X, and
let L,, M, be coverings of X, Y respectively with

Ln+1SLn, Mn—;—l SM", (n: 1, 2, ...),

Where [X]* =11,L,, [Y]* = 0.M,. If X is measurable, then
lim (L, - My) = 0.

Proof. By theorem (8.1}, [X]* . [¥]* = O, hence O =1I,L, -
- .M, = 1(L, - M,). We have L.y, + My\; < L, - M, Which
completes the proof.

8.6. - Theorem. Let X be a set of traces, Y = co X. Let
L,, M,, (n=1, 2, ..) be coverings of X, Y respectively.
If lim p(L, - M,) =0, then X is measurable, and we have
[X] =11,L,.

Proof. Put Ly =1L,..L,, My=M,.. M,, (n=1, 2, ..).
We have L, - M, <L, - M,, and then

) lim w(L, + M) =0.

Now [X]* < L,, [Y]* < M,; hence

@ [(X]* - [Y]* << Hu(Ln « M)

Since Lyyy « Muy, << Ly - M,,, We get, by (1),
W(IL(Ln - M) = lim (L, - M) =0,

and hence, by the effectiveness of p, IL,(L, - M,) = O, which
gives, by (2), [X]* - [Y]* = O, and then, by virtue of theor.
{8.1], the measurability of X, and of Y.

To prove the second part of the thesis, notice that
co [X] =[Y] < M,; hence L, -co[X] <Ly M., p(La—[X])<<
< WMLy - M,). Since lim p(L, - M,) = 0 it follows

3) lim p(Ln — [X]) = O.
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Put
4) p = II,L,.

We have [X] <p < L,; hence p(p —[X])) < w(Ls —[X]). This
gives, on account of (3), p —[X]=0, i.e. p < [X], and then
p = [X]. Consequently, by (4), [X] = l,L., which is the
second thesis. The theorem is established.

8.6.1. - The measure of the empty set Q@ of traces is O,
the measure of the total set W of traces is p(I).

8.7. - Theorem. If o is a brick and X the set of all
traces covered by a, then X is measurable. We have [X]=gq,

w(X) = wa).

Proof. By (Hypothesis II), co X is covered by co a. Put
Ly=ga, My=coa, (n=1, 2, ..). We get, by theor. [8.6],
that X is measurable, [X] = ¢, and p(X) = p(a).

8.8. - Theorem. For every brick a==0 there exists a
trace covered by a.

Proof. Denoting by X the set of all traces covered by
a, suppose that X = @. The complement co X, is covered,
by (Hypothesis II), by co a. Now O is a covering for 8.
It follows, by (Hypothesis I), that co a 4+ O = 1, which
gives ¢ = O, thus a contradiction. The theorem is proved;
(see [6.1]).

8.9. - Remark. The theory of measure of sets of traces
is similar to the Lebesgue’s classical theory of measure of
point-sets, and it can be developped similarly. We shall
apply the original Lebesgue’s device (13) in proving that
the denumerable union of measurable sets is also measu-
rable. This device can be, however, greatly simplified owing
to the fact that p is a denumerably addifive measure on
G. The same device is used in the authors paper (14).

8.10. - Theorem. If X, Y are measurable sets of traces,
then X U Y is measurable and

[X U ¥] = [X] + [¥].
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Proof. Put X' =co X, Y = co Y. Let L,, L,, M., M, be

a4

coverings of X, X', Y. Y respectively Wwith L, ., <Ly,
L”‘-I-ISL:‘? Mu—|—1 S‘Mn; M:t—l—l g M;', a'nd

(1) [X] =uLy, [X'] = UuL,, (Y] = 1.M,, [Y]=1,M,.
By Lemma [5.3] and [5.4] Lu+ My, Ly« 3, are coverings of
@) XUy, xXny

respectively.
We have

(3) Ln+1 + Mn—l—l <L,+M,, L;i+1 . M’n+1 SL;& . M:z
and
(4) X’/'\YI-:CO(XU:Y).
In addition to that,
(5) p'[(Ln + Mu) M L:. ° M;] = P'(Ln * L;t) + P'(Mn * M;)
Since X, Y are measurable, we have, by (1) and theor. [8.5],
lim (L, - Ly) =0, lim WM, - M,) =0,
hence, by (5):
lim P'[(Ln + M,)- Ly M;t] =0.

If we take account of (2), (3), and apply theor. [8.6], We
obtain the measurablity of X ¥, and in addition to that,

6.1) xXo¥Y =1L, + M,).

To prove the second part of the thesis, notice that (1) gives
(X =1L(Ls + My), [Y] <L+ M),

which implies

(6) X+ X=X oY)

On the other hand the relations Ly, < L,, Mu1 < M, yield

Hf:l(Ln“"iMn):H;j: m(Ln+ Mn) = H:;M(Ln‘*'Mm;’:H(f:an'l'Mm-
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Hence, by (5.1),
X UY]|sS(X]+ U, (m=1, 2, ..
It follows
(X O Y| S TR (X] 4+ M) = [X] + MiMy, = [X] + (Y],
which together with (6), completes the proof.

8.10.1 - Theorem. If X is measurable, then coX =W —X
is also measurable, and [co X]=co[X]=I— X, plcoX)=
= w(I) — p(X).

Proof. By [8.1] and [8.3].

8.11. - Theorem. If X, Y are measurable sets of traces,
then X NY, X — Y, X + Y are also measurable, and their

coats are [X]-|Y], [X]— [Y], [X] + [¥] respectively.
Proof. We use de Morgan laws and theorems [8.1], [8.10].

8.12. - Theorem. If X, Y are measurable sets of traces,
X € Y, then [X] < (Y] and pX)= p(Y).

Proof. XC Y is equivalent toX =X"Y. We use
theor. [8.11].

8.13. - Theorem. If X, ¥ are measurable sets of traces,
and X ~ Y = Q, we have p(X  ¥) = pX) + ().

Proof. This follows from theor. [8.11], [8.10].

8.14. - Theorem. If

1) X,, X., ..., Xy, ... are measurable sets of traces,
2) X'AXJ'—_—' Q fOI' ‘i='=j,
3) X = U X,

then

1) X is also measurable,
2) [X] = 22X,
3) pX) = Zf;lp.(xn)-
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8.14a. - Proof. Let 3>0. Choose positive numbers 3, >
8.>... such that 252,85, < 3. Fix p and consider X, and
Xp = co X,. By theor. [7.5] and [8.5], there exist coverings
Lyu, Ly of X, and X, respectively, such that

1) Lnys <Ln, Lpnw=<IL,,
2) (Xl = OuL., [Xp]=,L,,
and
3) lim w(L, - L) = O.

”n — 0

Hence there exists n = N(p) sucﬁ that

“4) W(Ln * L) < 8, for all n < N(p).

8.14b. - On the other hand we have for n =1, 2, ...:
[Xp)S Lu, Lw—[Xy)= Ly [Xy]= Ly+1uLy; hence L, —
—[X,] = L, - Ly, which gives p(L, — [X,]) < w(Ln+ L;), and
then, by (3), lim (L, — [X,])) = 0.
” — 00

Hence there exists n = M(p) such that
(D) p(Lw — [X,)) = 8, for all n = M(p).

8.14¢. - Combining (4) and (5) we can say, that for every
p there exist coverings M,, M, of [X,], [Xp] respectively,
such that

(6) WM, Mp) <5, wM,—[X,] <85,.

Let us fix these coverings.

8.14d. - We have co X = NY-,co X,, € co X,, = X,. for
m=1 2, ... As M, is a covering of co X, it is also
(by Lemma [5]), a covering of co X. Hence M; - My - ..+ M,,
is, by Lemma [5.4], a covering of co X for any m. On the
other hand M, + M, + ... is (by Lemma {5.3]) a covering of
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X. We have (**) for a fixed m:

(My 4+ Mo+ o+ My 4 .) e My - My My =M, - (M, ... M) +
g My o (Moo M) + My » (Moo M)+ . <M, - M+
MMyt i+ My s Mg+ Mgy + M oo

Since p is denumerably additive and non negative, it follows

) wlM+M+.) e My M) = (M - M)+ o+ (M M) +
+ tMpmia) + MM pps) + o5
this inequality holding even if, by chance, the right hand
series Were divergent. Now, by (6), We have WM, - M) <3,
(p = 17 ooy m) and l"'(Mm+k - [Xm+k])S 6m+k7 (k = 11 27 '"):
hence, since [X,,4+3] S My ia, Wo got WM, p) — M X pyr) <
= Opmyn L p(Mpix) < MX msn) + Oinrs B=1, 2, ...
Consequently (7) gives:
B) WM+ M+ ..) My... Mp) =8+ oo + 3 + [M(X pyr) +
+ Smpa] + [ X mt2) + Bnaz] + oo, (m =1, 2, ...
8.14e. - We shall get help from the denumerable additi-
vity of p. We have supposed that X, ~ X; =0 for i3
Hence, by theorem [8.11] and [8.2], we also have [X,].-[X,] =0.

It follows that p(Sa-iX,])) = Za=ip(Xs). and hence, there
e;:ists m such that

Egim—h!'”(x ) =¢.
For such an m we get, from (8),
(B8.1) p[(My+ Ma+-...)- (M1..Mp)|<S01+... 48 -0y a+-.. - 0<28.

Thus for every >0 there exists m Wwith (8.1). Applying
Theor. [8.6], and what has been said at the beginning of
[8.14d], we deduce the measurability of X.

8.14f. - We have, by (6), (M, — [X4)) S 3, (n =1, 2, ...);

(4%) This is the Lebesgue’s device (13).
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hence WM,) = W(X,)+ ou. It follows
) Tl (M) < B3 p(Xy) + 3.

Since 2,_.M, is a covering of X, (by Lemma [5.3]), we have
pX) & l-‘-(-'n—1 »); hence, by (9), nX) Szlep(xn) + 2.
This being true for any &> 0, we obtain

(10) p(X) < Zalpw(Xn)

8.14g. - On the other hand we have [X,] =[X], since
X, < X, (theor. [8.12]); hence

(1) 22 Xa) S [X), WERX) S ().
Now, by hypothesis, all [X,] are disjoint; hence
(12) SR X ) < WX).

From (10) and (12) we obtain

(13) o (X)) = WX).

8.14h. - From (13) we get p(X)— p(Sa-,(X,]) = 0; hence
(X] — Z2.,[X,]) = 0. It follows
(14) [X] — S2.[Xa] = O i.e. [X] < 374Xl

This combined with (11) gives [X] = 23 [X,), so all items
of the thesis are proved.

)

8.15. - Theorem. If X,, X,, ..., X,, ... are measurable
sets of traces, then X3 Ua~: X, is also measurable, and
we have [X] = Za_,[X4)

Proof. Put Y, = Ui, X,, (n=1, 2, ...). We have

X]_Uqu-qu”: Ylu(Yz—" YI)U(YS_ Y’)V vee
N (Y —Tny), (m =2, 3, ...
Hence

(2) X=Ylu(Yz—Y1)u(Ys—"I’z)u.---
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The set X, being measurable, so are Y,, (Theor. [8.10];
hence Y,, — ¥, are so, (Theor. [8.11]). Since all terms in
(2) are disjoint, we can apply Theor. [8.14], which gives
the measurability of X.

In addition to that we have [Y,uii — Yu] = [Yni1] — [Yul,
(by Theor. [8.11]), and [Y,] = ZiL,[Xi], (by Theor. [8.10). It
follows

[X] = 235, [Xa),
so the theorem is proved.
8.16. - Theorem. If X,, X,, ..., X,, ... are measurable

sets of traces, then
X3 N, X,

is also measurable, and we have
[X] = 02, [Xa)

Proof. By de Morgan laws.

9. - Defin. A set X of traces is called null-set of traces
if its outer coat is O.

A null set is measurable, since 0 < [X], =<[X]* = O;
its measure is 0; @ is a null set, W is not a null set. We
shall state some theorems whose proofs we omit.

9.1. - If X is a null set, Y C X, then ¥ is also a null
set.

w9.2. -If X,, X;, ..., Xu, ... are null sets of traces, so is
Upes X

9.3. - For a set X of traces the following are equivalent:
I. X is a null set. II. p(X)=0.

9.4. - Theor. If X is measurable and N a null set, then
X — N is measurable, and [X — N] =[X], and p(X — N) = p(X).

Proof. X — N is measurable on account of [9] and [8.11]}.
‘We have (X—N) (N ~X)=2X and the sets X—N, N~ X
are disjoint.
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Hence by [8.13], /(X — N) 4+ p(N ~ X) = p(X). Now N ~
~X S N, hence w(N ~ X)=0. It follows u(X — N) = p(X).

9.5. - Theorem. If X is measurable and N is a null-set,
then X N is measurable, [X , V]=[X]and p(X _, ¥) = pX).

Proof. X _ N is measurable because of [9] and [8.11].
We have X U N=X,,(N—X), where X and ¥ — X are
disjoint sets. Hence, by [8.13], w(X  N) = p/X) + p(N — X).
Since N — X C N, we have p/N — X)=0. It follows:

wX o N) = mX). Q. E.D.

9.6. - Consider the class 7' of all measurable sets of
traces. We have Q€ T and WE€T. We have Q3 W.

If X€T, then coX =W —XE€T.

It X,, Xz, ., Xn, .. €T, then U,X,€T.

It follows that 7' is organized into a Boolean tribe with
identity of sets as governing equality and inclusion € of
sets as ordering correspondence. The tribe is denumerably
additive. The class J of all null-sets is a denumerably
additive ideal in 7. Hence 7' can be reorganized into ano-
ther denumerably additive tribe T, with 2L as governing

J J
equality and &, defined by XS Y- -5-X—Y€J as the
governing lattis ordering.

9.7. - The correspondence & which attaches to a variable
measurable set X of traces the coat [X] is pluri-one; be-
cause if XL, then [X] = [Y], (this follows from [9.4] and
[9.5]; see also Preliminaries). The correspondence & is
invariant with respect to the identity of sets in the domain
and equality of somata in the range. It preserves finite
and denumerable operations, carries the null set into O
and the set W into I. It also preserves the measure. B is a
homomorphism from 7 into G. The tribe BT is a denu-
merably genuine, denumerably additive strict subtribe of G.

9.8. - The correspondence B is also invariant with re-
spect to - in the domain, and as such one constitutes an
isomorphism from 7’;-into G, with preservation of measure.
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9.9. - The tribe $B(T) contains all bricks, hence it con-
tains the tribe F, and then the borelian extension of F
within . (Remember that we have supposed that F is a
strict subtribe of Q).

Theor. 1f we suppose that G coincides with the Lebe-
sgue’s covering extension FL of F within (7, then &B(T)
coincides with .

Proof. This follows from [§ 1; 12.1].

9.10. - Theorem. If A€ @G, then there exists a measurable
set X of traces such that A = [X]. All sets X, for which
[X] = A, can be obtained frum one of one of then, say X,,
by taking X, — N, N., Where N,, N, are null sets. If
A =% 0, then X is not empty.

Proof. The existence follows from [9.9]. If A 40, then
pA == 0, because the measure p is effective on G. We can-
not have X =@ because pX = p[4]=3=0. The remaining
thesis follows from that &8 is 1 — 1 from 7', into G.

10. - Admit Hyp. [12, 14] of [§ 1]. We shall have some
theorems on single traces.

Def. By neighborhood of the trace t we shall understand
any brick which covers ¢, (see [Def. 4]). Denote by u(t) the
set of all neighborhoods of ¢

10.1. - If a€ o) and b €o(t), then a-b 0.

Proof. Suppose that a-b = 0. Since a covers ¢, there
exists a representative

(¢3)] a=a,=>a=>.. of .
Since b covers ¢, there exists a representative
(2) b= b1 = b-_} = .. Of 1.

As a - b= 0, we have a, - a,, = O for all n, m. Now the
sequences ; a, !, : b, !, are equivalent, so We have {a, ! <{by!.
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Hence, [2], there exists m with a,, =< b,. Since a,, - b, = 0,
it follows that ¢, = O and then a,, =apu4y = .. =0, 80
{ an ! is equivalent to (0, O, ..), which is impossible.

10.2. - If a sequence ja,}c0{0, O, O, ..}, [2], then

there exists m such that ¢, =a,,4. =..=0.
Indeed for ¢ there exists n with a, <0 hence a, =0
and then a, = ayy, = ... = 0.

10.9. - If a;=a2=>... is a representative of t', a;'=ay >
= ... is a representative of t”, b, = ana, 3= O for all n, then
' =1t"

Proof. We get b, = b, = .... Since for every n We have
ly < a,, there exists m with b,, < a,; hence |{b,} <
< {a,}. Similarly we get ib,! < ia,!. Since ;a,! is a
minimal sequence [2.1], We have either 1 b,i=10, O, ...!
or |a,!colb,!. The first alternative is impossible, hence
taplco!by,!. Similarly We get jan!co!iby,!; hence i aplcolay!,
so ' =1".

10.4. - If ¢ 4=1¢", then there exist neighborhoods a’ of ¢,
and a¢” of t”, such that a’ - @’ = O.

Proof. Let a, =¢a¢: = ..., b =b.=... be representatives
of t, 1" respectively. There exists, [10.3], at least one n with
an + Uy = O; a, is a ueighborhood of ¢’; b, is a neighborhood
of ¢t". The theorem is proved.

10.5. - If u(t) = v(¢"), then ¢ = t".

Proof. Suppose ¢ §=1¢". By [10.4] there exist neighborho-
~ods d, a” of ¥, ¢’ respectively, such that a’' - a" = O.

Now a’ €vt), a” €v(t"). Since v(t') = v(t"), we get @', a” €Eu(t').
Hence, by [10.1}, a’' - " 4= 0 Which is a contradiction. The
theorem is proved.

10.6. - From [10.5] it follows - since # — t” implies
v(t) = ¥(") - that the set of all neighborhoods v(¢) comple-
tely characterizes the trace {. Different traces have
different total sets of neighborhoods.
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11. - Def. We say that ¢ is an elusive trace Whenever
pa, — O, where {as! is a representative of {. We say that
t is a heavy trace Whenever pa, — a« > 0.

11.1. - Theor. If 1) 0, >a, > .. =>a,= ... is a minimal
sequence of bricks, [2.1],
2) A> 0, 3) plas) = A,
then bd:f']],.a,, is an atom in G.

Proof. Suppose b is not an atom, We have pb=A.
Hence there exists a decomposition b = b’ 4 b” Where
b -b" =0, pb’ >0, pb” > 0. Applying an argument similar
to that applied in [§ 1; 16.d, 16.e, 16.f], we obtain a brick
¢, such that ¢ <b, pc > 0. Putting Cn3f C for n=1, 2, ...,
We get a sequence

CL=Cp= ... = Cyp = ...,
with ¢y ! < a,!, Where ic,! is not equivalent to {0, O, ...1\.
Since !a,! is a minimal sequence, it follows that
' €y i o0 | a, |. Hence there exists n with a, < ¢. This is, howe-
ver impossible, because pc < pb < pa,,. Thus we have proved
that b is an atom in G. In the above proof we have taken
into account the circumstance that p is effective on @.

11.2. - Theor. If b is an atom in #Z then there exists a
minimal sequence ! a,! such that

b = l.a,, pb =1lim pa, > 0.

Proof. Let A be an atom. By [§ 2, 17.1] there exists an
infinite sequence of bricks ¢, = a,= ... = a4 = ... = A4, such
that p(as) — (4)>0. We have 4 < I3 ,a,. Since the mea-
sure is effective, We cannot have 4 < IIg—,a,. Thus We have

A =T a,.

Consider the set U of all traces each of which being
covered by all bricks a,. We shall prove that the set U
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is not empty. Denote by U, the set of all traces which
are covered by a,. We have pU, = pa, >0; hence U, =+ 0,
[8.7). Since U= N,U,, and U,,, < U,, we have pU=
= lim pTUy = lim pa, = p4 > 0. Hence U= 0.

The traces belonging to U may be elusive or not. Denote
by U, the subset of U composed of all elusive traces.

We shall prove that U, is null-set.

Let t€ U,. Let ¢c,=c¢,= ...= ¢,, =... be a representa-
tive of .

Since ¢ in elusive, we have lim pc, = 0. Hence there
exists m, such that for all m = m, we have

M o) < B,

We have ¢,,A < A. Since A is an atom, we have either
Cm+A=0 or ¢, - A= A. In the second case we get 4 < ¢,,,
and hence p4) < p(c,,), Which contradicts (1). Hence
cmd =0, i.e.

2 Cm < COA.

Since t is covered by c, and by a,, and c. - a, is a brick, it
follows that there exists a brick cn(f) Which covers ¢ and
is contained in co A and a,. Hence

3) Cu(t) = an — A.

Such a brick can be found for every ¢{€ U, and for every =.
By the axiom of choice we can find for a given n such
set of bricks, ca(t) We have

“4) 2 cu(t) < an — 4.
teU,
Let L, be a covering of a, — A With (L, — (as — A))<;1'-
Such a covering exists, [7.5]. L, is also a covering of
U,. Indeed, if t € U,, cu(t) is its covering and cu(f) <a, —
— A< L,. Hence [U* < L,.. Now, since lim p(a,, — 4) =0,



110 OTTON MARTIN NIKODYM
and lim WL, — (a, — A)) =0, we get lim pZL, =0; hence
plUJ* =0,

Which proves that U, is a null-set.

Denote by U, the subset of all heavy traces contained
in U. Since U=U, L U,, Uph~ U,=08Q and pU,=0, it
follows that p Up=pU=pA. Weé shall prove that U, contains
only one trace. Suppose that t', t"€ U,, t'+¢'. Let b; =
= b= ...; by = b; = ... be representatives of ', ¢" respecti-
vely. Since the trace ' is covered by a,, there exists n with
by < am. Thus we can find a subsequence ! by, ! of ! b,! such
that biw) =as for n=1, 2, ..., and with K1)=k2)=....
Putting c;.a—fbi.(,,), we have ¢;=c;, = .., and ¢ < ay -
icnt is a representative of #. In a similar way we shall
find a subsequence ic,! of b,! such that ¢;'=c¢;=> ...,
Cn =an, and Where ic,! is a representative of ¢’. Since
t 34=1", there exists, by [10.3], an index n, such that c,,-cn,=
= 0. The sequences Cy, = Cnyy1 = ..., Cny = Cnyy1 = ... are also
representatives of ¢/, t respectively. The bricks of the first
sequence are disjoint with the bricks of the second one.
Since t, t" are heavy traces, we have

N

d:f”li{llw plew) >0, A7 5?”@03 plew) > 0;

hence, by [11.1], the somata
Ao, ATFID o

are atoms in G.
They are disjoint. Since ¢, <'au, ¢y =a,, it follows that

A< =4, A" <, ,a,= A.

Thus we have A"+ A" = 4, pA’ >0, pA” >0, which contra-
dicts the hypothesis that A is an atom. Thus we have pro-
ved that U, has the measure O and U, is composed of a
single heavy trace; denote it by #,. Let d,>d,=... be a
representative of #,. We can, as before, derive from it
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another sequence
h=d = ...,

representative of ¢,, with d, <a,. because %, is covered
by the bricks a,. We get

B E Mpidn < yiay = A,

hence B < A.
Since ¢, is heavy, we have lim p(d,)>0; hence pB > 0.

Now A is an atom; consequ?antf;r B = A. Thus we have
proved that if ¢, the unique heavy trace covered by bricks
au, then for every its representative :a,! We have Hled,.z A.
The theorem is proved.

11.3. - Coroll. If b is an atom in FL and ¢, >0, > ... is
a sequence of bricks with II® a, =0, then the set U, of
all elusive traces which are covered by all a, is a null-set,
and the set U, composed of all heavy traces which are
covered by all a,, is confined to a single trace.

11.4. - Remark. The theorems [11.1], [11.2], and [11.3],
yield information concerning the relation between atoms
and heavy traces. They are not the same, of course, —
but there is a 1 — 1 correspondence between them. Concer-
ning the proof of [11.2], we notice that J, may be empty.

11.5. - Remark. Aplying a theorem by Stone concerning
ultrafilters, (rather on maximal ideals)) we can prove the
following:

Every infinite decreasing sequence @, = a, = ... of bricks
with a, 0, lim p(a,) = 0, contains a minimal sequence b,,,
[2.1], though !|a,! may not be minimal.

11.6. - Theor. The set (f) composed of a single elusive
trace ¢ is measurable. Its measure is O.

Proof. Let a, be a representative of . We have pa, — 0
for n — oco. Let X, be the set of all traces covered by a,.
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By [8.7], X, is measurable, and we have pX, = pa,. We
have

) C N, X,
Now

Nz, Xy) = lim p(X,,) = lim p(ays) = 0.

Hence Ny, X, is a null set of traces. Consequently (f)
is a null set of traces; hence (f) is measurable.

11.9. - Theor. The set (t) composed of a single heavy
trace ¢ is measurable. Its measure is positive.

Proof. Let a;, = a,= ... be a representative of (). We
have

lim p-(an) > 0.

”n — 0
Let X, be the set of all traces which are covered by a,.
‘We have p(X,) = p(an). We have

(D ) S NaZy Xa.

The set N,, -, X, is measurable. By [11.1] the soma A 7 1
is an atom. Hence, by [11.3 Coroll.], the set U, of all elu-
sive traces covered by the bricks a, is a null set, and the
set U, of all heavy traces covered by all a, is confined to
a single trace. We have U,\Y U, = Na_, X,; hence U, =
=Ng~, Xy — U,. Hence U, is measurable. From (1) it
follows that (t)= U,. Hence (f) is measurable. We have
=N, X, — U,, and then
E) = pNasy X = plIG, ap = p4 > 0.

The theorem is proved.

11.8. - (Hyp. I) and (Hyp. II) are necessary conditions
for having a measure theory of sets of traces.

12. - Measurable functions of traces and integration,
The class 7' of all measurable sets [9.6] possesses the pro-
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perties: 1°. if X € T, then coX € T, 20, if X,, X,, ..., X,,
«..€T, then Uy, X,€T, and there is available a denu-
merably additive non negative measure pu(X) defined for all
Xer.

These properties enable us to apply Fréchet’s theory
of measurable functions j(z) of all traces, and, in addition
to that consider Fréchet’s integrals f flx)dp, (16), (7). (*%)
This theory follows the known features of the Lebesgue’s
integration theory. In our case of number valued trace-fun-
ctions wWe shall confine ourselves to a sketch only, referring
for detailed proofs to (7), (16), (17).

12.1. - Let f(z) be a real valued function defined almost
w-everywhere (a.e.) in W. (This means that p(co (| f) = 0).
We say that f(z) fits 1' or that f(z) iés measurable, if wha-
tever the real number A may be, the set

12| flz) < M
belongs to 7' (i. e. is measurable).

12.2. - This condition is equivalent to each of the fol-
lowing ones:
10, for every A the set | z|f(z) <A! is measurable,
20, for every A the set {z|f(z)=2X! is measurable,
3o. for every XA the set | z|f(x) > A! is measurable.

12.3. - Def. A measurable function ¢(z) is called simple,
if it is defined almost p-everywhere and admits an at most
denumerable number of values. The following properties
hold true:

12.4. - If f(z) is measurable, then there exists an infi-

(4¢) Integrals of functions defined on abstract sets are currently
called Lebesgue’s integrals, but Fréchet (15) was the first who has
liberated the integration theory from topological and metrical notions,
and this step in that time was a tremendous progress, and the corres-
ponding idea far from the intuition of contemporaneous mathematicians.
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nite sequence

Pi(Z) = @oZ) = oo = Pu(z) = ..

of simple functions converging on W a.e. uniformly to f(z),
and conversely, a uniform a.e. limit of a sequence ¢,(z) >
= ps(x) = ... of simple function is measurable.

12.5. - If f(z) is measurable, so is | f(z)|.

12.6. - If f(x), g(x) are measurable, so are are also f(z)+
+ g(@), fx) - g(z), flx)\r g(x), f(x) g(z). The last two functions
are defined as max [f(z), g(z)], min [f(z), g(z)] for a.e. point
z separately.

12.7. - If | fu(z)| is an infinite sequence of measurable
functions, and if lim fu(z), [lim f(z)], is defined a.e., then
it is a measurable function.

13. - Let ¢(z) be a simple function, admitting the values
P1s P2y -ers Pm, .. ON the measurable and disjoint sets X,,
X2y woy Xuy ..., respectively with p(co U, X,) =0.

Def. We say that ¢(z) is p-summmable, if the series
a1 ¢n (X,) converges absolutely.

13.1. - Def. The following definition is a generalization
of the above one. A measurable function f(z) is said to be
p-summable, if there exists two simple p-summable fun-
ctions ¢(x), J(z) such that a.e.

$(2) = flz) = 9l@).
If f(z) is summable,
P1(x) = pulx) = ...

is a sequence of p-summable function tending a.e. unifor-
mly to f(z), and if ¢.(z) admits the values @, Pou, .. ORD
the measurable sets X,., Xou, ... Tespectively, then

'limx Egﬁ__lcp...p(X )
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exists and does not depend on the choice of ; pu(z)!. This
limit is denoted by / fx)dp, and termed Frechet’s integral
of f(xz; on W.

13.2. - For a simple function ¢(z), admitting the values
®x in the sets X, we have

[oz)dp = S, gap(Xa)-

13.3. - Remark. The integral ff(a:)dp, can also be defined
similarly as did Lebesgue in his « Lecons sur !’integration »,
(13), and thus can be given an equivalent definition.

13.4. - Theorem. (Lebesgue). If
1. fu(z) are p-summable.

2. () = f,4a(x) a.e.,

3. f®) = lim fu(z) a.e., then the following are equi-
valent: e

I. f(z) is p-summable;

11.”1_i1nco [ful@dp = [ fz)dp.

14. - The notion of measurability of functions and of
their integrals can be extended to complex valued functions.
A complex valued function F(z) defined a.e. on W is said
to be measurable (or else, fitting T), if, in the representation

F(z) = f(z) 4 19(=),
the real valued functions f(z), g(z) are both measurable.

14.1. - Every measurable complex-valued function can
be uniformly approximated a.e. by complex-valued simple
functions.

15. - Def. If f(z), g(z) are both p-summable, the function
F(z), in [14], is also termed p-summable and we define
[F@dp = [f@)dn + i [ g@)p.

The corresponding notions for real valued functions are but
a particular case of the above more general notions.
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16. - The notion of integral can be further generalized
by introducing integrals over measurable subsets
of W. If X is a measurable set of traces, F(z) is a measu-
rable complex valued function defined a.e. on W, then
the function F,(z) defined by setting F,(zr) = F(x) whenever
z€ X, and F,(z) =0 whenever z € co X, is also measurable.

16.1. - Def. We define, in the case of summability of
Fy(z), [16]:

[F(z)p = [Fyz)dp,
X w
and we say that F(z) is p-summable on X.

16.2. - The following theorems are true:
If F(z) is p-summable and X is measarable, then F(z)
is p-summable on X.

16.3. - If F(z). G(z) are p-summable on a measurable
set X of traces, and «, § are complex numbers, then aF(z) 4
+ BG(z) is also p-summable on X, and We have

[(@F(@) + BX@)p = of F@dp + B Ge)dy.
X

164. - If P(z) is p-summable on W, X,, X,,... X,, ... are
mutually disjoint measurable sets, then if we put X = Z,X,,
We have

[F@)dp = Zu [ F(z)dp.
X ”

This theorem says that the complex-valued set-function
AX) 3 f F(z)dp, defined for all X €T, is denumerably addi-

tive on T.

16.6. - If X is measurable and F(z) is summable on X,
8o is | F(z)|, and we have

|[Fa)dp | <[| F)| dp.
>4 b.§
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16.6. - (Lebesgue), 1f
1) Pu(z) are p-summable functions on a measurable
set X,
2) giz) is a real valued p-summable fanction on X,
3) | Fu(z) | =9(@), (n=1, 2, ...), a.e. on X,
4) lim F,(z)= F(z) a.e. on X,

”n — 0

then lim [ Fu(@)dp = [F(z)ip.
X

n—>-Ox

16.7. - If F.(z) are p-summable functions on X, and if
F,(z) tends a.e. on X, uniformly to F(z), we have

[F(z)dp = lim [ Fu@)dp.
X X

17. - Def. We direct our attention to p-square sum-
mable complex valued functions F(z). We shall state defi-
nitions and theorems for functions defined a.e. on W, but
the analogous statements will be valid and useful also in
the case where F(z) are defined a.e. on a measurable set
X of traces.

A function F(z) is said to be p-square summable if

1) | F(z) > is p-summable on W,
2) F(z) is measurable on W.

17.1. - If F(z), G(z) are p-square-summable on W, so
is with aF(z) + BG(z), Where a, § are complex constants.

17.2. - If F(z), G(z) are p-square summable on V, then
F(z). G(z) is p-summable on V, and we have the Cauchy-
Schwartz inequality

|[F(z)- G@dp | < [| F(z) [fdp - [| G(a) ['dp,
and the Minkowski-inequality

V[ F@ + 6@ [dp < |/ [| Fa) Pag + | [| 66@) [Fap.

17.3. - If F(z) is p-square summable, then there exists
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a sequence | ®u(z)}, (n =1, 2, ...) of complex simple p-square
summable functions such that lim ®,(z)=F(z) .a.e. uniformly.
” —> Q0
18. - Def. Let | Fu(z)!| be an infinite sequence of p-square
summable functions. We say that it converges in p-square
mean, if for every ¢ >0 there exists N such that if n > N,
m =N, we have

[| F(z) — Po(@) Pap <c.

18.1. - If F,(z) converges in p-square mean, then there
exists a square p-summable function F(z) determined wuni-
quely up to a null-set of traces, such that llm / | Fu(z) —

— F(z)|’dp. = 0. We say that | F(z)! com;erges m p-square
mean loward F(z).

18.2. - If | Fu(z)! converges in p-square mean, then there
exists M= 0 such that f! Fz)Pdp =M for n=1, 2, ....

18.3. - If | Fu(z)! tends to F(z) in p-square mean, then
every subsequence | F,.,! confains another subsequence
| Fayny ! converging toward F(z) almost p-everywhere.

184. - If | Fu(z)!. | Gu(z)! tend in p-square mean res-
pectively to F(z), G(z), then aF,(x) -+ BGn(z) tends in p-square
mean toward aF.z) 4 fG(z), and

lim [Fu(z)Gu@)dp = [ F(z)G(z)dp.

186. - If ; Fu(z)! converges on V in p-square mean
toward F(z), if X is a measurable set of traces, then F,(z).
if restricted to X, converges in p-square mean toward F(z)
restricted to X.

18.6. - Def. If F(z), G(z) are p-square summable fanctions
defined a.e., we say that F(z) is equivalent to G(X), F(z) =
a. e. G(x), if the set

AF +G6) Nz | Flz) 3 G2)

is a null set.
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18.7. - The equivalence possesses the formal properties
of the identity. The addition of two fanctions, the multipli-
cation of a function by a complex number, the integral and
the p-square mean convergence, are invariant with respect
to equivalence.

18.8. - The square summable functions with this equi-
valence considered as a kind of equality, make up a sepa-
rable and complete Hilbert-Hermite-space (16), with the
equality-invariant scalar product (¥, G) = / F(z,@z)dp. Where
F(z) denotes the conjugate imaginary. Indeed all axioms$
for H.H.-space (16) are satisfied.

18.9. - If X is a measurable set of traces, then the
collection of all square summable functions F(z) such that
F(x) =0 a.e. in co X constitutes a (closed) subspace of
this H.H.-space. If we vary X these spaces make up a
Boole’an denumerably additive saturated tribe of spaces.

§ 4. - Quasi-vectors and their summation.

1. - We take the hypothesis (FBG) and terminology of
[§ 1; 1] concerning the finitely additive tribe F, its basis
B, and the denumerably additive extension G of F. The
hypothesis (Hyp. Ad), [§ 1; 3], will be admitted. To avoid
non-essential complications we shall admit, as in [§ 3; 1],
that F is a finitely genuine gstrict subtribe of G, and
that the denumerably additive, non negative measure p on
G is effective. In addition to that we shall admit that
G is the Lebesguean-covering-extension of F within G. It
follows that the borelian extension F° of F within G. coin-
cides with @, (see [§ 1; 12.1]). We shall take over the theory
of /’-traces in F and admit (Hyp. I) and (Hyp. II) [§ 3; 6],
to have the whole measure theory of sets of traces at our
disposal.

2. - Let ¥ be a F. Riesz-Banach normed and

complete linear space. Its elements —a_::'_—q: ... wWill be
termed vectors, as in [§ 2]
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3. - Def. Denote, as in [§ 3; 10], by v(z) the set of all
neighborhoods of the trace z. By a quasi-vector
Ta(p), (or fn) with support z, we shall understand any
vector-valued function defined for all bricks p belonging
fo v(z).

If ¥V is the space of real or complex numbers, we shall
use also the term quasi-number with support . We know
[§ 3; 10.6] that v(r) determines uniquely the trace, hence the
support is well determined by a quasi-vector.

3.1. - Various operations can be performed on qua-
si-vectors With the same support:

Let fx, ga, be two quasn—vectors By their sum (diffe-
rence) Fo+ 92, (f, gx) we shall understand the function

To(p) defined by Tap) 55 aF To(D) £ gu(p) for all neighborhoods
p of z.

By l?; we shall understand the function 712,({3) defined
by To(D) = Afa(p) for all p € vz). The number A is real or
complex according to the character of the space I~

If F(X) is a number-valued functional or a vector-va-
lued d_operator, F(X), defined for all X € ¥, we define F(f.),
[F (f,)] as the number-valued function h(p) deflned by
h(p) d,,If’ (Fl), [vector-valued function (p) defined by h(p) =

F(f(p))], for all p € v(z). As a particular case we have the
norm of the quasi-vector, | f||, defined as | f,(z)|| for all

p € v(z).

4. - Let E=Q be a set of traces. If we have defined,
for every z € E, a quasi-vector f, Wwith support z, We shall
say that we have a sef of quasi-veclors with support E,
{fo|z€E . The construction can also be considered as a
quasi-vector-valued function defined on E.

4.1. - We shall be mainly interested in sets of quasi-vec-
tors with support W, i.e. with the set of all traces
as support. Such a set of quasi-vectors will be termed Zotal.

4.2. - A set of quasi-vectors with support E can be con-
ceived as a function F(z, p) of two variables: z varying
in E, and p varying over the whole set v(z). It is not true
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that if p is the common neighborhood of two different
traces z/, ', We must have P, p)= F_(z", p). Thus to every
neighborhood p, which is taken into account, there corresponds
a set T(p) of traces z € E, such that p € v(z). Hence to every
p there corresponds a set ®(p) of vectors F.(p) Where z va-
ries in T(p).

4.3. - Thus we have a function F,(z, p) Which attaches
to every p considered whole set of vectors

@) { Flz, p)|z €T(p)}.

Def. If this set is composed of single vector for every
z € E, we shall call the set of quasi-vectors, regular on E.

4.4. - Especially, if the set of quasi-vectors is total and
regular on W, the set of quasi-vectors yields a vector-field
‘p(p) defined for all bricks p, |§ 2, def. 2]. If is it not regu-
lar on E, we can select in many ways, f for each brick p, a
trace £ — a(p) and consider the vector f,,(,,,(p) which is well
determined by the quasi-vector Tup(p). It we do that for a
total set of quasi-vectors for every brick p, we shall have
defined a vector-valued function }‘:(,',)(;';), thus constituting a
vector-field defined for all bricks. If, in the case of a total
quasi-vectors set, we consider all possible selection of «(p),
we shall get various vector-fields ‘D, (p). We shall call them
selected vector-fields or generated by the given ftolal set of
quasi-vectors.

5. - Def. We shall go over to the summation of a given
set of quasi-vectors with support E, Where E is a measu-
rable set of traces [§ 3; 8). We refer to [§ 2). Let f, be a
total set of quasi-vectors. Consider one of the vector-fields

®,(p), defined for all brlcks p, and generated by the given
total quasi-vectors—set T Suppose that @,(p) is summable
on [E] (*") in the sense of [§ 2] With respect to a kind (D)

(") [E] means the coat of E, [§ 3: 8].
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of summation. Now, if Whatever the choice of ®,(p) may
be, the vector-field @,(p) is (D)—summable on E, and the
sum Siz @, has for all choices of ®, the same value, We
say that the total set fa, of quasi-vectors is8 (D')-summable
on E, (over E), we denote the sum by

SE7;)
and call it «sum of f, on E, or (over E)».

5.1. - We shall be only interested in (DARS) sums [§ 2;
2.1 2.2] and admit the (Hyp 8), [§ 1; 21.1}. We leave the
discussion of other kinds of sums to the reader.

- For (DARS)-summation wWe shall prove the theorem :
If for all choices of ®,, the sum S[E,(I), exists, then all
these sums must be equal.

Proof. Let -ti).’(z;), ®"(p) be different vector-fields genera-
ted by the given ftotal set f, of quasi-vectors [4.4], and
suppose that 4’4 A", where

A 7 S @', 4" 3 Sgd@” .

Let | P,! be a completely distinguished sequence of com-
plexes for E, [§ 1; 21.3]. Put

Pn;-"pnl; Pnz, oo :’ (n= 17 2’ "')'

Consider the set of all bricks p,x, (n=1,2,..), (k=1, 2,...).
For such a brick p,, there is possibly, a double choice of
the vector attached to it:

-(I).'(p n k); —(B(pn k)'

If p.x is an atom, there exists one and only one trace .
covered by puk, hence in this case D' (Dur) = V"(ppx), 80 the
choice is well determined.

We call p. single choice-brick or double choice-brick
according to the case, Whether 57(p..;,). '(_I;”(p,.k) are equal
or different.
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Bricks which are atoms are always of single choice;
other bricks may be single choice bricks or not.

We shall find a partial sequence I(n) of indices, as fol-
lows. We put (1) = 1. We take the choice Tﬁ’(pu), D'(py), ..

The bricks py,;, piz, ... are finite in number.

I say that if » is sufficiently great, then not a single
brick among py;, P12, ... Will ocenr in the complex P,,, excep-
ting, perhaps, when the brick is an atom. Suppose this be
not true. Then there exists an infinite sequence #n) of in-
dices, such that in every Py,  there is available at least
one of the non atomic bricks p,;. The number of those
bricks p,, is finite. Hence there exists a non atomic brick,
82y Dim, and a subsequence ;| Pym)! of i Pyw) ! such that p,.
is a mesh in every complex Py, (n=1, 2, ..): Dim € Psn),
forn=1 2, ....

Since p,m is not an atom, and since p is effective, there
exist somata A, B such that pA>0, uB>0, A-B=0, A+
+ B=10im. NoW | pym)| is completely distingnished for E
[§ 1; 21.6]. We have !E, Pyu |— 0 for n — co. Hence
| EDim, 80m Py + Dim| — O for n — oo, i.e. |Epim, pim| — 0.

It follows, as this is a constant sequence, ! Epim, pim| =0
and hence Ep., — pim, Which gives p,, < E.

11 follows that 4 < E. Hence there exists a partial com-
plex @, of P,, with |Q., A| — 0, for n — co. Hence
| som @Qp * Pim, APim| — O;

1) | som Qyp + Py, A| — O,

because A < Py -

Since @, is a partial complex of Py, to Which p,. be-
longs as a mesh, We have either som @, « p;,, = O or som Q,, -
* Pim = Pim -

The first alternative cannot occur for an infinite num-
ber of indices m, because from (1) we would get '0, A|— 0
i.e. A =0 which is not true. Hence the relation spoken
of can occur only for an at most finite number of indices
n. Hence, for sufficiently great » we have surely

som Qn * Pim = Dim
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and hence (1) yields |pym, A|{— O, hence !pyn, 4A!=0
and then p,, = A which is not true. The obtained contra-
diction proves that the supposition, stating that p,u € Pyu) for
n=1, 2, ..., is not true.

Hence, our statement that if n is sufficiently great, then
not a single brick among

) P11y Dizy «ee

will occur in py,, P, ... €Xcepting, perhaps, when a brick
(2) is an atom, is proved. Thus we can find an index (2)> 1)
such that not a single non-atomic brick of Pj, will occur
in any P, when n=>12).

Considering Pj, We shall repeat our argument, finding
an index [(3), such that if n = I(3) non a single non atomic
brick of Py, will occur in P,. By induction we shall
find an infinite sequence of indices I(1) <<2) <... <lYn)<...
such that if # <=, not a single non-atomic brick occu-
ring in:

(3) Pl(ln Pl(zn seey Pl(k)

will occur in P,,,. Thus if we consider any brick which
occurs in all (3), we see that either this is an atom, and
can occur in many complexes, or alse it occurs only once
in (3). The sequence P,q,, Pys,, ... is completely distinguished
for E. Consider the vectors

(—F(Pm),l), a_;'(Z’m),z),
Vi) V' (Pr 0,
® i1y D Drsr,2)y -
Dy, 1)y D' (Dicwr,2)y oo

which are defined for bricks pyu,x, #=1,2,... and k=1,
2, ...). We denote these vectors by

S (pymahy =1, 2, .., k=1, 2, ...

They are defined only for bricks p;,,x. There may be some
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remaining bricks in B, b;, b., .... We put
Do) = D (b), n=1, 2, ...

Thus ®”(p) is defined for all bricks € B and they constitute
a selection of a vector-field generated by the total set f, of
quasi-vectors. Now @"(Pyw) has a limit, say 4, by hypo-
thesis. because | pyq) ! is completely distinguished for E. We
have:

O"(Pyon—y) — A’ and " (Pyomy) — A"

Hence A’ = Z: 4" = X, and then 4’ .—_-Z”, which contradicts
the hypothesis that A4'4=A". The theorem is established.

5.3 - Remark. The theorem [5.2] is true for (DS), (DAS),
and (DNS)-summation, but it is not true for other kind of
summation.

6. - The fundamental theorems [6.1 — 6.10] on sums of
quasi-vectors will be given for (DARS)-summations only,
hence we admit (Hyp 8), [§ 1; 21.1].

These theorems are direet consequence of the correspon-
ding theorems in [§ 2]

6.1. - Considering (DARS)-summations, suppose that
1) 7. is a total set of quasi-vectors,
2) E, F are measurable sets of traces,

3) FC E, 4) {. is summable on E,
then f. is summable on F.

Proof. Let ¢,(p) be a selected vector-field, generated by
.. By hyp. 4 and [Def. 5], the sum Stz; pars) P exists.
Since [F]<[E], [F]€ G, it follows, by [§ 2; 4], that Sin'e,
also exists. Applying [Theor. 5.2], we get the thesis.

6.2. - If 1. E,, E, are measurable sets of traces, 2. E, ~
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~E. =98, 3. SE,UEJ’: exists then
Sg5 fr = S5 f: + Sg.f.

Proof. We apply [Def. 5], [§ 2; 7], and the fact that
[El b Ez] == [EI] + [Ez]v [§ 3]'

6.3.-If 1. E,, E, are measurable sets of traces 2. E, N E,=
=0, 3. SE, f- and Sg 7. both exists, then SE,UE! fr exists
too, and

SE,U E,-c_p; = SEI?: + SEg?:. (For (DARS)-sums).

Proof. We rely on [§ 2; 8].

64. - If 1. E, E, are measurable sets of traces, (n =1,
2, .), 2 pE, —0, 3. E,C E, 4. Sgf, exists, then

lim SE,, ?,: :U

in the V-topology.

Proof. We rely on [§ 2; 5.1] and on equality p[E,] = pE,,
(§ 3

6.5. - If 1. E is a measurable set of traces 2. SE-f: exists.
3. >0, then there exists § >0, such that if p(F) < «, where
F is a measurable set of fraces, then

| S 7l <8.
Proof. We rely on [§ 2; 9.2].

66. - If 1. E,, F are measurable sets of traces, (n =1,
2, .., 2. E, are disjoint with one another, 3. E,C F,
4. Sy {- exists,
then, if we put £ 3 Us_, Ex, We get
Sefr= 22 Sg 7o,

so the vector-valued function S¢ 7. of the variable measu-
rable set G of traces, with G C F, is denumerably additive.

Proof. We rely on [§ 2; 10, 10.1], and on the equality
(Usli Ea] = 23, [E.), [§ 3]
6.7. - If 1. E,, F are measurable sets of traces 2. £, C F,
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mn=1,2 .3 Ex. El, -0, 4 SF?: exists,
then lim SE,.F-: Sz 7. in the F-topology.
”n— C

Proof. We rely on [§ 2; 12].

6.8. - If SE?: exists for a measurable set E of traces,
then if pF = 0, we have

SF7.=0.
6.8.1. - 1f Sz 7. exists, and E =¢ F, then
SET::- SF -f_:.

6.9. - 1. SW?: exists, (W is the set of all traces), 2. we
put for every brick p: K (p) if Sr 7., where [P]Ep,
then for every measurable set E of traces we have

Sk fe = Sig K (p).

Proof. We rely on [§ 2; 13].

6.9.1. - Remark. In relation to [6.9], if We define the
quasi-vector k. by putting k.(v) a7 K) for every neighborhood
of 1, we get Sk 7. = Sgk. for every measurable set E of

traces. Hence the (DARS)-sums of quasi-vectors can be
transformed into sums of regular quasi-vector-sets, [4.3].

6.10. - If f. is summable on a measurable set E of traces
and 1 is a number (real or complex depending on the cha-
racter of §'), then

Ser T = ASgT-.
Proof. [§ 2; 4.1].

6.11. - If f., g. are both summable on a measurable se
E of traces, then

SE(_f: :Z:) = SE?: =+ SEZ:.

Proof. We shall represent the set of quasi-vectors f, as
a function f (z, p) of two variables: t© and p, where p is a
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neighborhood of <. Similarly for g-. By definition of the
sum ¢ of two quasi-vectors [3.1], for the quasi-vector hj'f?, +
+ g- we have

(1) hE ) =Tk p)+ 9 D)

whenever p is a neighborhood of <. Take a choice of a
vector field -h'(p) generated by h-. It is determined by the
choice of the function t = «(p) Where p is a neighborhood
of ©. Then the vector fields for he, frr g- Will be T (a(p), D),
T ((p), p), 9@ p), p) and, by (1) We have

@) R(alp), p)=T («p), P)+ g(2(p) D),
for all bricks p. We have
SeT: = S T (a®), »). Skg- = Stz g (a(p), p).
Hence by (2) and [§ 2; 1]
3) SeT: + Seg. = Sk («(p), p).

Thus the sum on the right in (3) exists and has the same
value for any choice of the vector-field generated by h-.

Hence [Def. 5]
Sk 7.+ Seg- = Su(F. + 90 Q.E.D.

7. - We shall deal with (DARS)-sums only. Let f., g
be two total sets of quasi-vectors, which are summable on W.

Def. We say that f, is equivalent to g,:

-— —
fz== 0z

whenever for every measurable set E of fraces wWe have
J 7 S -
bE fe= bE' gz -
7.1. - We have for total, summable sets of quasi-vectors
1) It F.==29gn, then g, == fa,

2) f,,,-::?;,
3)if froo29n, 9x==ha, then fz==hy.
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7.2. - If 7, =29, and % is a number. then 77y == % Oz -

—_— e

3. - If fo==g,. f::::: 5.]_: then E—l— f:’:::.g—;-}-:q_;
Proof. We rely on [6.11].

7.4. - From [6.9.1] it follows. that every total summable
set of quasi-vectors is equivalent to a regular total sum-
mable set of quasi-vectors.

8. - An important case of the vector-space F is the
space of real number and the space of complex numbers.
The vector-fields. in these particular cases, will be termed
scalar fields and guasi-vectors will be termed guasi-numbers.

The function p(a) of the variable brick a is a scalar
field. and if for all neighborhoods p of r we define p, a7 wp).
We get a real quasi-number. We shall call it measure-qua-
si-number. The total set p, is regular.

8.1. - Quasi numbers f,, g, can be maultiplied. getting
a new quasi-number f, - g, defined as the function f,p,.
- g»(p) for every neighborhood p of z. Given a quasi vector
f. taken from a general Banach space T. and given a
quasi-number a,, We can multiply them, getting a qua-
si-vector in ¥: a, - f,, defined in a similar way, as above.

9. - If M, is a total set of quasi numbers. summable
on W, then there exists a complex-valued function F'z) of
the trace z variable in T, such that. for every measurable
set A of traces, we have

S, M, = Fizdy.
.
The function F is p-unique. The integral is Fréchetian.
i§ 3: 10].

Proof. Put K'4) 7 S_4 M, for all measurable 4. By theor.
[6.6] the set-fanction K(4 is denumerably additive. If

¢
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(4) =0, we have [4] = O, since the measure p is effective
on G. Hence K(Q) =0. Consequently, (7), K(4) is p-conti-
nuous. Hence, by a known theorem, (7), there exists a
p-unique function F(z), defined p-a.e. on W, such that

[Fz)dp =S4 £z,
A

80 the theorem is proved.

10. - Def. Let f(z) be a complex-number-valued function
of the trace z variable in W. Suppose this function is
p-Fréchet-summable on W. Hence the integral

[ faap
A

exists for every measurable subset of traces. Considering
a brick p, and a measurable set P of traces, with [P] =p,
the integral

[ fz)dz
P

does not depend on P but on p only. Having fixed z for a
moment, and considering all neighborhoods p of z, we put

i

1 .
val, f 37 wP) [f(-"’)d}"-
P

We may call it: The mean-value quasi-vecior of f at z.
This is a quasi-number with support z. We also define:

1
val, f;? RP%) / fdp.

b 4

11. - We shall prove the theorem: Under circumstances
[1], if f(z) is Fréchet-summable on W,
then the total set of quasi-numbers p, - val,f is summable
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on W, and we have
Sy val, f« pp = [ f@)dp
4

for every measurable set A.

Proof. Put %, P val,, f. This quasi-number is defined
as the function

— ) . L
kalD) 57 1) ‘”“’)p[ flaxn

defined for all neighborhoods p of z where [P]=p. Hence
ka(p) = [ f@)dp:
P

Now, let P—=|p,, ps, ...| be a complex. Since the somata
p, are disjoint, we get

(1) Spka = [fx)dp,
P/

Where [P'] = som P. Now let A be any measurable set of
traces, and let {P,} be any sequence of complexes With
| Pu, A|, — 0. If we denote by P, the set of traces with
[Py] = som P, , We get

lim [f(z)dp = [f(z)dp.
7n—0oo P, A
Hence, by (1), the sequence {Sp,,,k,} converges to

[ f@)dp.
A

On the other hand this sequence converges to Skk,, [6.7).

Consequently

Seks = [f@yip. Q.E.D.
A



132 O1TON MARTIN NIEODY)M

11.1. - Remark. Notice that the quasi-number-set 9= 37
ﬁval,f is regular, but it may be not summable.

Ex. Let f =const=1, we get val,f(pj=1 for all p.
Hence if a complex P has n bricks, the number gP) = n.
so it does not tend to any limit.

12. - We shall be in circumstances [1] till the end of
the [§ 4] and shall consider only (DARS)-summation. We
admit (Hyp. S).

13. - If f(z), g(z) are Fréchet-summable on W, then

tazval, (f + g) == up val, f 4 n, val,g,
[Det. 7).

Proof. Since f and ¢ are Fréchet-summable on T, so
is f 4+ g. By [11], we have for every measurable set A of traces

(1 Savaly fep, = [fl@dp,
A
) Saval,g.pr = [g@idp,
A
and
3 Saval, (f + g)pr = [(f + g)dp
A

Since the sum of the right-hand integrals in (1) and (2)
equals that of (3), it follows that the same is for the
left-hand sums, so the theorem is proved.

14. - Suppose [1]. If f(z) is Fréchet-summable on W,
and A is a number, then

pa valy O f) 2= X py val, f.

Proof. Similar to the forgoing one. based on [11].
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15. - Theorem. If f(r) is Fréchet-square-summable on
W, then

Rp Valy | P 2= po | vala f %

The proof of this theorem will require few auxiliary theo-
rems and steps. In what follows, till the end of this § 4.,
we shall agree to denote by the same letter a measurable
set of traces and its coat: this for simplifying the exposi-
tion. There will be an ambiguity up to null-sets of traces.
These null-sets, however, do not matter: see [6.8.1.].

Notice that p, val,|f|* is summable, [11], because |f|*
is Fréchet-summable. The summability of the right-hand
side expression in the thesis shall be proved.

15.a. - First of all we shall prove the theorem [15] for
the functions f(z) defined as follows: there is a brick c3=0
such that f(z) =1 for zx€c.and f(z) =0 for z€coec.

Let A be a measurable set of traces. Consider a completely
distinguished sequence P, of complexes for 4, and select
any subsequence { P, | of it. By [§ 1; 21.6] this is also
a completely distinguished sequence for 4. Applying [§ 1;
21.13] find a subsequence | Pyy! of it and a sequence
{1 @. ! of complexes for co A such that som @,, - som Pyymy =0
and Where | Py, @ | is a completely distinguished sequence
for 1. Put

R”a_f Pkl(n) U Q”, (n = 1, 2, ...).
The complex Py, is a partial complex of R,.

Denote by g,, h, the quasi-numbers p,val,|f|* and
Bz | val, f|* respectively. For any brick p we have

I _ | uo) [,
9(p) —,,J ap=pipo),  hp) ="CF%
Hence

o)
Consider the bricks of Piywy. Denote by a,, Guz, «e; boa,
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Duzy <o} €myy €nz, ... those of them for Which a,<<cj by -
c¢c=0; enxc F= 0, e co ¢ = O respectively.
We have

I(Priw) = Zkg(uk) + Zxglenk),
and

MPriym)) = Skh(ank) + Srh(enx),

because g(bux) = 0.
Now

g(ank) = (anxC) = Mank),  h(ank) = p(ank)-
It follows that

t{enx * C)r(enk CO C) )

©0) 9(Prm) — h(Piam) = Sk (enr)

We recall that e,, are all those bricks in Py, for which
ek cF 0, enxcoc=O0.

Since {Rs} is a completely distinguished sequence for I,
there exists a partial complex S, of R,, such that {S.! is
completely distinguished for som c.

We have |c-8,|—0. Hence |co8, T, |—0 Where T, R,c8,.
We have

€Y 8

n

AT":Q, S

UT”=R“.

By [§ 1; 21.9], T, is a completely distinguished sequence
for coc.

Consider all bricks d,,, d,.... of B, for which dyu;- c3=0,
dyi>coc=0.
They make up two classes: one composed of those bricks
which are in 8,,; denote then by

@) duss Quy oo,

and the second composed of those bricks, which are in T:
denote them by

3) dpyy dinzy o
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The classes (2), (3) are disjoint and make up the set d,.,
dnz2, .. of bricks. By [§ 1; 21.14], p(Edsxcoc) — 0 and
1#(Zduk ¢) — 0. Now a brick e,, either belongs to (2) or to
(3). Hence all e, can be devided into two disjoint classes

”

€n1, €nzs oo, ANd €n1, €4z, ..., Where We have
(e coc) — 0, p(Zewc) — 0.

Having this, resume the formula (0):

9(Pitomy) — (Przo) = En (enn €) « p(enx €O C) —
enr)

{t(€nk €) (U enk CO C)

M Wenr)

= Zape’ co c) + Zap(emrc) — O.

+ 3, w(enr C) P,'/(e;lc co ¢) <
P‘(uk)

— ¥
=

Since, as we know, [11], the quasi vector set p, val,|f* is
summable, it follows that Z,h(a.x) tends to Sgp, val,|f[%.
Thus from every partial sequence {Py,}! another one can be
extracted { P! such that lim A(Puy) = S, pevaly | f 2
Consequently

lim A(Py) = Sap, val, | f %
Hence

Spr ival, f|? :‘S,.p, val, |f[?

for every measurable set A of traces. Thus we get

Bo | valy f|° == p, valy | fI° Q. E.D.

15.b. - If f(z) is the function as in [15a] and we put
g(z) = Af(z) where A is a number, then the thesis holds
for g(x).

15.c. - Lemma. If 1. [c] 3= 0 is a figure, 2. f(z), g(x) are
p-square summable on W, 3. fix)=0 for z€¢, g(zj=0
for z€coc= W —c¢, 4. A is a measurable set of traces,
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5. Py = {Pm, Pnzs .}, (0 =1, 2, ...), is a completely distin-
guished sequence for [4]. then

[1ap - [gdp
=3 in n
An ﬁ i Ex P-(p:::) - O

for n — oo, (pur are considered as sets of traces).

Proof. We take over the notations from the preceding
proof. { Py} is subsequence of { P,{. We build Ry 37 Prin) )
U Q,.

We find {8,} and {7,} with [¢, 8,| — O, |coec, T,|—O.
We get the bricks awx, Onx Where aux < p, bur - p = O, and
énk, enx Which all belong to P.y. We have

AN

WSepcoc) — 0, (Seprc) —O0.

Now
ffdp- [gdp [fap - [gdy
A, =S, %t Cnt v Om wr
e T w

Denote the first term by B’, the second by B”. We have

Vetews) [1£Fap - | utewe) [1g[*dp
’ B’ i S' gk e',,;, e,nk —

1(enx) -

=3y [IfPau-| [)gFan.

e’nlt elnk

Applying ence more the Cauchy-Schwarz-inequality, we get

| B | <Y [1fidp -y [lgldp.

€ nk € i

Since f(z) =0 for z€¢ and g(z) =0 for z€coc, We get

|B'|<}Zx [|fPdp-Y3x [lgPap.

g /
e qrcoc ¢ ic
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Since p(Seqrcoc|— 0, we get

IB'ESI /Ifl’dlL /' [1g7ap — 0.

Iie'pkcoe W

In a similar way we get | B”| — 0. It follows 4,, — 0. Q.E.D.

15.d. - Lemma. If 1. f(z), g(x) are p-square summable
on W, 2. ¢ is a set Whose coat ¢ =[c]€F, 3. p, | val,f|* ==
=apevaly [ f 2 pe valogP=apaval,jgl? 4. flz)=0 for z€
€coc, gx) =0 for z€¢, 5. h(z) 7 @) + g@), then

Be|valy hi? == povaly | |2

Proof. |k =(f+gf+9)=Ff+of +fg+g9=If]+
+ |9 " + fg + gf. Hence

(1) val, | h[?== val,,lflz+val,|gi’+val,|fg} +
+ val, | gf | =2 val, | f|* 4 val,| g |?
because fg = gf = 0.
The quasi-number val,(z + g) is the function p—(lp—) / f+
+ g)dp, hence |val, (f + g);® is the function .

1 2 2
P(p)z [(f-f— gp - /(f+ gdp = (1;)—2:|fdpl -i-p/gd}" +

+”/ fdp -_/gdu +ffd|1-f§du}-
P P P »
Hence

2 |valoh|? =|val,f[* 4 |val.g|*+ val,f-val g 4 val,f-val.g.
From (1) and (2) we get
iz valy |R|?— p|val k2 2c — pyval, fval,g— pyval, f - val, g.

If we apply the [Lemma 15c.], we get

pevaly |k =2z p, | valo k2 Q. E.D.
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15.e. - If f(z) is a step-function, then
o | Valo £ [ 2 o vala | £ 1
Proof. [15.a], [15.b] and [15.d].

16.f. - Lemma. If f(z) is square-summable, then there
exists an infinite sequence of step-functions f,(z), fAz), ...
which tends in p-square-mean to f(x). This is known from
the general theory of Fréchet’s integrals.

156.g. If
1. fu(@), fA), ... , fu(Z), ... aTe all p-square summable on W,
2. f(z) is the square-mean-limit of } f,(z)! in W,
3. for every n We have pvaly|fu |’ 2= pe| vals fu %,
then p,vals|f|* 2= ps | vals f|°.

Proof. Suppose that for all functions fi(z), fa(z), ... , fu(Z), ...
Which We suppose p-square-summable in W, we have

) ke Val, | fnl’ 2= po l val, [, Iz;
Suppose that lim f,(z) = fiz). We shall prove that

bo Valy | F|? 2= po | Vals F [P
Put

A-ﬁ/lfn Fdp, A.;—;flfl’du,
b4 b 4

. 1 |2 . 1 2
s ] v f ]
where p==0 is a brick. We have
n— A= n [Pdp — Zdp = n_n_ Adp =
A p/lfl n Pflfldu pf(ff fhHdy
=p/(fnfn—fnf+fnf—ff)dp'=

——;_[fn(fn - f)dl" _l;/f(fn - f)dp"
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Hence

1) | Ao — A| <Y [|fodp ) [ fa—FPdp +
b 4 b4

V7R -V [ifa— 1 Tan < V[ Fa— T rap -
b 4 p b4

V1 Pan V1 £ Pap]-

We have w(pXB, — B)=|[fudp{* —I[fdp|* =/fadp - [fudp —
_ . »_ _ » P P
— [fdp - [fdp = [ fadpe + [/ (F. — Pdu] + [Tdp - [[(F — Dap).
» p P r b 4 b4

Hence

@) | Bo—B| <|'[|fatdp -} [1fa—Fldp+
4 b4

YV IFEaw - [ 1 fo— FFdp <
b 4 b4

<[Jifmfan+V]] Flraw| -y [17, —fFan.

We have the same estimate in (1) and (2). Take any mea-
surable set E of traces.

Now let P, = { Pa1y P2y ..}y (=1, 2,..) by a distingui-
shed sequence for [E]. The relation (0) says that

2.1) SE povaly | fI* = SE o | Valy fo
The left sum is the limit of the sequence

nz—'zkp'(pzl) P(P )[lfnldp'—zhflfnldp'

Pak

for » — oo, while the right one is the limit of the sequence

o) 1

sz Pak

N = Sapoa) - |Mp1 fudp

1
— i
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for n — oo. Consider the sums

. i { .
Mzﬁgk“f‘zd}" Azg_f-‘-“»m /-fdl"l
psk Pak

Taking (1) and (2) into account, we have

|M.,1—M’Ezs3k V/—f—:;FTP

| Nux — N, |
pzk
|V [itran+ ) [rran)
Pak pak

Applying once more the Cauchy-Schwarz lemma, Wwe get

:;l:::él\l]::; S]’/Ek / | fn— F Py -
Dak -
V) [1rras+y [irran).
Pak Dak

Now since in general. for non negative numbers, z, y, we
we have

@EH+yr=2+2zy+ v =2 + ¥ + (& + ¥) = 2z* + ¥),
we get

;x:::?\f:::SV[lfn—*fl’du . ]/2([!f.. |’dp+[|f|=dp).
w

w w

Since the sequence | [ | . [’dp | is bounded, because {f,{ is
11%
convergent, there exists K > 0, such that
3 &)/ [1£.—frap.
) Ho — W)= llwlf f Fap

We see that this estimate does not depend on a.
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Having that. we shall prove that
4 lim Sg oy, val, f, *=Spnyval, f=

7" —C

The sums in (4 exists by virtue of [11]. We have

lim M= SE P Vﬂl_,; fn .:

n—C
and
. . A\ )
4.1 lim M, =Sgup,val, f°
n—2C
Hence

lim M,,— M, _—_.‘SE noval, fo 2 — g uyval,: f

2=+ C
By 3) we get. When z — oc,
Sty val, fa = Sk pevaly 2 =S K| I [ — [ 2dp.

Hence, for n — oc we get

lim |Ngpyval, fo*—Sgu,val, f2 =0.

n—sx
which gives

lim Sg e val, f°= Sk wpy valy f
so (4) is proved.

Now we shall prove that lim X, exists. Suppose it does

n—C
not. We can find 3 >0 and an infinite sequence of indices

a; < @) < 23 <2, <.. such that Ny —N,” [=¢forallm=
1,2,... Now we have in aeneral
|Nn1 n3|> \'—Y ( nx 1)+( ,3)2

= tngl—-t\gl'—,-Z\.nl'_"- 2 _'INS_‘\"? .
Hence by (3),
: ‘Nn, P Nn, 2'm = ‘VI'm - iVl”m [

A N . — Y
- | N L2 m Alml . | N": an’ A) 2 =

=8—2K| [(fa—f “dp.
w
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If we choose n, so as to have
. 5
K|/ [1fa—fran<g
w
we shall get

| N”o: am N”o: a'm I =

Dol o7

for all m. Consequently the sequence

Nno,a.’u Nno.a"ﬂ Nﬂo.a'n Nﬂo,a”g; soe

does not converge. Hence lim N,,,, does not exists, Which

7 —» Q0

contradicts the fact that

lim N, ,= Sk B | vél_., Ial

a =30

Thus We have proved that the sum Sgp,|val,f|* exists,
and we have
®) lim N, = Sgp,|val, f|*;

a —» Q0

we also have, by (4.1),
6) lim M, = Sgp, val,|f[.

a =— Q0

Having that, consider the following circumstances:

lim Nus = Sg gy | val, £ [% lim N, = Sgp,|val, [’
n Q0 ” —> Q00

| Nua — No | SE ) [| fo — f Fdp.
w
It follows that

|8k o | val, fu ' — S po | valo £ | S K |/ [| fa — f[dp-
w

Consequently, for n — oo we get

lim Sgp,|val,fa|? = Sgps|vals %
% —> 00
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On the other hand we have, by (4),

lim Sgp, val, | f. * = Sg pe val, | f

7 —» Q0

If we take account of (2.1), i. e.
SE P l val;fn Iz = SE (122 valw | fn |2’
we get When n — oco:
Sep, val, | fI? = Sep, |val,f?ie. p,val,|f| 2= p,| val, fI2

15.h - The items [15 ¢ — g] imply the theorem [15], so
it is proved.

16. - Theorem. If f(z), g(z) are p-square-summable
complex-number-valued functions on W, then

By valy (f « g) 3= pyp val, f e val, g.
Proof. We have the formula for numbers:

o . il i1l
ab =5 {a+ bXa + b) — 5 (@ + bia + b)) + 5 aa + 5 b0,

Hence we have

fo=yTF N+ —SsTFa+io+ 5 ff+"5 " 5

Hence
- 1
(1) [fydu=§[|f+y|2dp———[If+zg|’du+
?

—1

[lfl’d +i]

Putting
aﬁ/fdp, bﬁ[ﬂ"l"
b 4 P
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we also have

@ | fdy - /-gdp =.§ /'fdp + {.gdzl — —'3'[ fap + i fnad'rl +
P P )

b 4 p r 14

ST T I
T "(ld';*.

p ¥y

+5 | faw

From (1) it follows

LY

3 valfoy=5vale fHgi—5val, f4ig 4

a

-|-[—:——l\'alI ff-i-}_; val, g >

and from {(2) we get

val, (f + g7 2 — 5 1 vale (f +ig. * +

1!

4y val,f.val,o=

1— 1 C1—1 "
4 vl o+ vl g

By theor. [15.5] We have
pevaly f == gl val, f °,
pevaly ¢ ° =2z gz valyg %
uyval, f+4g =z, val'f+9. %

Rz val, [+ iy "<tz I val, (f + ig. ¢
Hence. by /3. and {4, we get

wpval, (g, 2= pe val, f - valag.

Since f. g are arbitrary square-summable functions. the
theorem is proved.
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§ 5. - Summation of quasi-vectors in the
separable and complete Hilbert-Hermite-space.

1. - In this § 5 we shall apply the theories, developped
in preceding sections, to tribes of subspaces in the separa-
ble and complete Hilbert-Hermite space H. We refer to
Preliminaries concerning terminology and notions to be
now used. Let G be a denumerably additive tribe of (closed)
subspaces E, F, ... of H, with H as unit 7 and the space
composed of the single vector 0, as zero, 0. The ordering
of the tribe is the inclusion of spaces, and co E denotes
the ortho-cowmplement of E in H, The relation E . F =0
implies « E orthogonal to F ». All spaces of G are compa-
tible with one another. Let F be a finitely additive tribe
of spaces which is a finitely genuine strict subtribe of G.
Let B be a base of F, satisfying the conditions (Hyp. Ad),
[§ 1; 3] and the hypotheses (Hyp. I) and (Hyp. II) of [§ 3).
‘We suppose that G is the smallest denumerably additive
extension of F. There always exists en effective, denume-
rably additive measure p on @, (2= 0). G is not only the
Lebesgue’s—-covering extension of F, but also it coincides
with the borelian extension of F. Thus We are in the
conditions [§ 1; 12, Hyp. Lp] and [§ 1; 14]. In our paper
(14), p. 21-22, we have proved that the p-topology on the
tribe G is separable. Consequently, in our case, (Hyp. 8),
[§ 1; 21.1] is satisfied. Having this, We can apply the theory
of measurability of sets of traces [§ 3], and use all kinds
of summations of quasi-vectors [§ 4].

2. - We like to make remarks concerning (Hyp. Ad),
(Hyp. I) and (Hyp. II). There are important cases Where
these hypotheses are satisfied. We are going to define them.

2.1. - First, let us define some auxiliary tribes Whose
somata are Lebesgue-measurable sets of ordinary complex
numbers. We consider the plane P’ of complex numbers,
provided with a cartesian system of coordinates z, y. By the

10
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rectangle
R(ay, @55 21y o),

—co <@, = 400, —o0=fy, f; = oo,
we shall understand the set points (z, y), (complex numbers),
(@ Y]am<zsa, h<y=ht
The rectangles will be termed bricks.

We define F' as the collection of all finite unions of
bricks. If we consider the relation of inclusion < of sets
as the ordering relation, F’' will be organized into a finitely
additive Boolean tribe with unit P’ and with the empty set
® as 0. The collection B’ of all rectangles is a base of F".
The condition (Hyp. Ad) is satisfied. Even more, (Hyp. 4f),
(§ 1; 3] holds true.

2.2. - Concerning B'-traces in F”, (see [§3 ]), We have the
following situation. If (z, y) is a point on the plane, then
there are four different traces attached to it with represen-
tatives

1 1 1 1
R(x_a; T, y—;‘y y); R(x_;‘, T Y, y+;l)’
: 1 1 1 1
R(‘) x+;‘; y—;" y)’ R(z) x+;‘; Y, y+;‘); ('”:.11 2:-")
respectively. The point (z, y) Will be termed verfex of these

traces. In addition to that there are eight «side-traces»
at infinity, with representatives, e. g.

1
R(-—oo, —n; y—_, y), n=12,..)

and four «corner-traces» at infinity, with representatives,
e.g. R(—oo, —n;n, +oc). These are all existing traces.
This can be proved by considering ultrafilters and two-va-
lued measures on F", (29); (see also [§ 3; 2.3] footmote).
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2.3. - If we consider F’' modulo an ideal, the traces
will be essentially the same, though some ones may not
exists, because some rectangles seemingly eligible for
yielding them, may belong to the ideal.

2.4. - The following theorem is important:

If 1. u(f) is a finitely additive (and finite), non negative
measure on F’, 2. G’ is the collection of all borelian sub-
sets of the plane P’, then the following are equivalent:

I. the measure p can be extended over G’ so as to
obtain a denumerably additive measure on &,

II. 1o, If
U= = =y = tends to «,
Bi=f=..=B.=.. tends to B,,
(— o< S“n) %o, B“’ SOS +o0), (n= 1a2) )y
then
RR(— o0, 2,1 — o0, B,) — pR(— o0, ag; — oo, B);
20, if
G =S<..—Fo0, Bjh=f=..—+occ
then

P’R(— o0, &y ; — OO, 5,1) - P‘(P')-

The proof relies essentially on the fact that the plane P,
is locally compact. ‘

2.5. - Put, in general,
A ﬁ)'&_f-R(_oo’ a; —oo, B) for —co< @, B < + oo

We call these rectangles: plane-quarters. Let & be a cor-
respondence Wwhich attaches to every plane-quarter @ a
closed subspace of H with the conditions:

Io. If Q,, Q. are two plane-quarters, then $(Q.), §(@-)
are compatible,

II°. §®) =(0)=0, S(P)=H=1),
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III°. it @,  @,, then S(Q.) =< S(Q»)

This correspondence can be extended in a unique wWay
to another one, also denoted by &, which attaches to every
figure f€ F' a space &(f), the resulting correspondence
having the properties: S(f N g) = 8(f)-8(g), S(FU g) = &(f)
+ 8(9). § is a homomorphism from #’ onto a tribe F of
spaces. The set of all figures f for which §f=0 is an
ideal in F'.

2.6. - Now, in order that § can be extended to all
borelian sets of the plane, the following condition
is necessary and sufficient:

DIy, == —a, B,=8,=..— P, then
Hf:l S(Q(ant@n) - 8(0(“0.80));

2) If a, S‘dz < e > + ocC, [ %% = ﬁz =.. — + oo, then
21 8(Q(enf) =1 = H.

Let us remark that this situation is present if we consider
a normal maximal operator in H, (16), and consider its
spectral scale. Usually in the spectral theory projectors are
used. We prefer to consider the spaces themselves rather
than the corresponding projectors, (22), (26), (11).

2.7. - The extended correspondence & yields a denume-
rably additive tribe G = §(@') of spaces. The tribe F=§(F")
is its finitely genuine strict subtribe, and the S-correspon-
dents of rectangles of P’ constitute a base B for F, so SR
may be called bricks of F, («space-rectangle-bricks »). We
define space-traces, as in the general theory of traces by
means of these bricks. Let us remark that it is not true
that to every B'-trace in F there corresponds through §
a space-trace; indeed, if a; = a;= ... is a representative of
a trace z on the plane, the spaces §(a,) may be all =0, so
they do not yield any space trace.
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Now, in the above construction one can prove, (conside-
ring circumstances on the plane), that for the space-traces
the hypotheses I and II hold true, so we can apply the
theory of measurability of sets of space-traces.

2.8. - Remark. A similar construction of tribes of spaces
with a base can be obtained, if wWe consider the straight
line instead of a plane, and instead of rectangles we con-
sider half open-intervals. This construction would
be related to the spectral scale of a selfadjoint operator.
The construction by means of half open ares on the
unit circle will correspond to the spectral theory of
unitary operators. '

2.9. - The iribe 84’ may be saturated or not. Whatever
will be the case it admits an effective denumerably additive
measure. Any tribe of spaces can be saturated by a suitable
adjunction of spaces, (see Prelimin.).

3. - In the sequel we shall pay special attention to tri-
bes of spaces obtained trough the above rectangle or half-open
segment-construction, but in the general discussion which
we shall soon start in [D], we shall consider the general
situation as specified in [1]. We shall consider any kind (D)
of summation, [§ 4].

4. - Let us admit that the tribe & of spaces is saturated,
(see Prelim.). Then there exists an isomorphic mapping of
the space H onto the space of some measurable, complex-
valued fonctions of the variable trace, (14). This mapping
G~* is obtained as follows:

Since G is saturated, there exists a generating vector
‘w of H with respect to G. Choose © and define, on G, the
measure :

1(@) 57 | Proj, w ||* for all a € G.
This measure is denumerably additive, non negative and

effective. It induces a denumerably additive measure for all
measurable sets of traces, also denoted by p. We shall
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consider p-square-summable functions, [§ 3], of the variable
trace t, defined almost p-everywhere on the set W of all
traces. These functions will be considered modulo p-null-
sets. They are a kind of «functionoids», (30), (31), (32).

To define the said isomorphic mapping G, first consider
step-functions. Given a step-function §&(t), there exists a
finite number of mutually disjoint, measurable sets E,, ...,
E,, with Ux_, Ex = W, and there exist complex numbers
A1, Az, ey A, such that

(1) &(t) = E;:=1 QEk(T))‘k )

where Qg,(t) is the characteristic function of the set, E, i.e.,
Q=0 for t€E, and Q=1 for T€E,. Denote by & the
correspondence Which attaches to (1) the «step »-vector

@) Y;ELI Proje,  » Xy

Where e, —[E,). This correspondence does not depend on
the way of representing §(t) by the formula (1), it preserves
operations of addition, multiplication by a number and the
scalar product

(81, E2) Ef@,&z(‘t)dp..
w

Since w is a generating vector, every vector ¥ € H can be
approximated in the H-topology by step-vectors (2). Hence
the correspondence G can be extended to all p-square-sum-
mable functions. The extended correspondence, also denoted
by G is an isometric, and homeomorphic isomorphism from
the set of p-square-summable functions taken modulo null-
set onto the space H.

5. - Def. Under circumstances specified in [1], a quasi-
vector ¢ (p) With support z Will be termed normal whenever
¢ (p) < p for all p € v{z). (See [§ 4; Def. 3)).

d.1. - Theor. Under circumstances [1] if
1. A is a measurable set of traces,
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2.7, is a set of quasi-vectors (D')-smmmable on A,
(see [§ 4], and [1]),

3. The set is normal [Def. 5],

then the set of quasi-numbers .|7; |* is also summable on 4
and

Sallfeilf=11Safal

Proof. Take any choice of a vector-field, (see [§ 4; 4.4]),
say f(p), generated by f,. Let

Pn - i DPnis Pnzy oo }7 (n = 1? 2’ "')?

be any sequence of complexes distinguished for [4]. We
have

(1) -‘—P. ar Ei_f(pni) - SA-f:

in the H-topology. Now, since the spaces p,;, Pnz,... are
mutunally orthogonal and since f(p,;) € p.;, We have

@) i %n |F = Sl F@ns) I
From (1) it follows that

®) [ on [* = 1 Sa T
Hence, from (2) it follows that the sequence

i Ei “—f’(pm) Hz %7 ('n = 1, 2, ...)

possesses a limit, viz (3). Hence, the limit does not depend on
the choice of the selected field f(p). Hence this limit is
S4|| 7> |I>- Consequently

Sallfe?=SaTsl Q. E.D.

6. - Theorem. Under circumstances [1] if

1. ;‘: is a total set of quasi-vectors, (D')-summable
on W,

2. the set is normal [Def. 5],
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then there exists M >0, such that
(1) ISafelF =Sallfalr<u

for all measurable sets A of traces.

Proof. By theor. [5.1] the sums (1) exist and we have
EA) 5 |SaTe P =SallTe |

Now, by theor. [§ 4; 6.6], the function K(A) of the variable
measarable set A is denumerably additive. Since K(4) =0,
it follows, by the known theorem, (e. g. (7)), on denumerably
additive non negative measures on a denumerably additive
tribe, that K(A4) is bounded, so the theorem is proved.

7. - Theorem. Under circumstances [1] if

1. 7, and g, are sets of quasi-vectors (D')-summable
on A,

2. A is a measurable set of traces,
3. The sets f, and g, are normal [Def. 5],

then the set of quasi-numbers (scalar product) T ?]_;), (see
[§ 4; 3.1)) is also summable on A4, and wWe have

Su(fer 92) =S4Tz, Siga)

Proof. Let us choose a selection of vector-fields, one for
fo another for 9»- Denote them by 7(1'7), ?(13) respectively.
They belong both to the same choice z = a(p) of traces
covered by p. (Indeed, We can operate only on quasi-vectors
having the same support).

Let Py = {Pn1;, Pnz, ...} be a distingnished sequence of
complexes for [A]. Since pu,, Duz, ... are mutually orthogonal
spaces, and since

T(Puk) € Purs ?(Pnh) € Dux»
it follows that

1) CaT @m), Zx 9 @an) = Za(T @m); 9 (Du))-
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We shall prove the existence of the sum

SA(?; ’ .}/_‘;)
We have

( 7;, fz'+./x) 9@+Ez’7;+a)+

I\')l -

(fe) 92) =

@—1——»

(fes ) + (Jm g

By (§ 4 4; 6. 10] and [§ 4; 6.9] the sums of the quasi-vectors
f,,.—{—g,, T» + igs are (D -summable. Hence by [5.1], the
(D')-sums

Sall 7z + 9217 Salfa+ 1917, SalFz P Sallew |
also exists, and hence, by [§ 4; 6.10] the (D")-sum

SA(_/; ’ 5;)
exists. We have
ST @m), 9@m) — Sa({fzy 92)-

Since

Eh?(pnk) - SA -f.;
and

Eh-._(/.(pnk) - SA -.(7.:- ’
it follows from (1) that

SA(—f;: ;]__;) = (SA 7.;, S, E;)- Q.E.D.

8. - Under circumstances [1] if fas Jw are quasi-vectors
sets, both (D)-summable on a measurable set A, and they
are normal, then

|S4(fas 92)| < 1| SaT 9a |l
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Proof. This follows from [7]. Indeed we have

SA(?;’ -g_;) = (SA 7:7 SA E;)
and the Cauchy-Schwarz irequality completes the proof.

9. Under circumstances [1] if

1. fx, g are quasi-vector sets, both (D')-summable on
a measurable set A of traces,

2. fz, 9» are normal,
then {§ Su(fz + 9 || <847l + | Sags |-
Proof. We have, [§ 4; 6.10],
Safe+ 920 =Safe+ Sage.

Hence
I Salfe + 9217 = (Safe+ Sage, Safe+Sagn) =
=|ISafeli* + Safs, Sag) + (Saga, Safe) + |Sag:i

Hence

i Salfe + 9 IF<I1Safel* + 21 (Safe, Sav)i+ 1840l
Taking [8] into account, we gét

I 8afe + 02 1" < (1 Safell + | Sagell
which completes the proof.

10. - Lemma. If

1. the sequence 4a,, Gz, ..., Gy, ...€ G of spaces p-tends
to ¢,

2. &, €au,
& lim —E; =—£:
then ?E a.

10a. - Proof. Since lim* a,, — ¢, We can extract, by [§ 1,
12.2], from {a,{ a partial sequence {aym) } such that
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a=1I32,0,, where b, P Snzs Gxmy- We have b,=> b,,,. Con-
sider the sequence {Z,.,'. We have &, €ay,,: hence &, €b,
for s=1,2..... We have

—_—

) Erer = Proj, Exiy + Projeo s Enes -
Since
Projeo o Eaer = Projeoa Projo, Ere,

we have

—

Ms {1? Projco a Sk = Projbs—-a ék(n €b, —a.

Since projecting is a continuous operation, we have

lim Proja-g_;(n = Proja[ lim -E;m];
8 —+= 20 8—» 20

hence

lim Proj, &y, = Proj, &
8§ —>0

From (2) we get by the passage to limit:

3) T = Proj, £ + lim7,, where 7, €b, —a.
Hence
(3.1 lim 7, exists.
If we put
¢ 37 bs —a,

we have ¢, = ¢,,,, and
n2,c,=0, 7,€c,.
To prove the Lemma it is snfficient to prove that
lim -'r_): =0. (This because of (3)).

8§—>QC

10.b - Supposing that this be not trmue, we have by (3.1),

Wy lim 54T

8$—>00
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To disprove that supposition we shall apply the representa-
tion in [4]), which is valid for saturated tribes. Now, our
tribe G may be not saturated, but it can always be extended
(by adjunction of an at most denumerable number of spaces),
so as to get a saturated tribe G,. Take an effective mea-
sure i, on G,. The topology on G generated by p, will
coincide with that one generated by p. This follows from
[§ 1; 1 21).

Having this, we can operate in @G, instead of G.

Let us consider the p,-square summable functions of the
variable trace z:

H(z), H,(x),

which are images of :f_)-and —n_: respectively. Let E,, E,, ...,
E,, ... be p,-measurable sets of traces with supports c,, c,,
«ey Cyy ... Tespectively. We can admit that

E,D2E2..2E,2..

(because if not, we can replace E, by E;a—TEl -E,..E,,
whose support is ¢, « ¢;...c, = ¢,). We have

3.2) t1(En) = palcn) — O.
The functions H,(r) can be chosen so as to have
“4) H,(z)=0 for z€co E, .

Indeed, 'ﬁ:E ¢,; hence Proj., .,“7;’=—0T Since 7{:}:5: there
exists a set E of positive measure such that H(z)3=0. Hence,
there exists a measurable set F and « > 0 such that p,(#)>0
and | H(z)|= =« for all z€ F. We have

| H,(z) — H(s) i dz — O.

Since H,(z) tends in p-square means to H(z), there exists
a partial sequence H,(z) Which tends almost p-everywhere
to H(z). By the theorem of Jegoroff, given ¢ > 0, there exists
a set @ such that p,(G)> p(1)—e, and where H;,, converges
uniformly to H(z).
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Hence, if € > 0 is sufficiently small, we can find a sub-
set F' of F with p,(F')> 0 where H;,,z) converges uniformly
to H(z). Hence for n sufficiently great

®) |Hiw(@)|=5  onFflors=12..

But, by (4), H,(z) =0 for z € co E,: hence
©) miz|H,2)F0}=pmE, — 0,

by (3.2). Since
{z|Hyz)F 0} =F foralls=1,2,...,

we have

iz H@) %01 = wmF > 0.

But by (6) 1, =0, which is a contradiction. The lemma
is established.

11. - Theorem. Under circuamstances {1] if 1. 7o is a sets
of quasi-vectors in H Wwith support 4, 2. f, is normal, 3.
A is a measurable set of traces, 4. f, is (D')-summable on 4,
then, S, 7. € [4] Where [4] is the coat of A.

Proof. Let { P,} be a distinguished sequence of complexes
for [A]. Let

P, = {Pn1, Dnzy oo b

‘We have
ﬁpn) - SA 7;1

and |P,, 4| — O; hence

(1) lim som P, =[A].

Now T(p,,.-) € p,i, hence ?(P,,) €som P,,. By {Lemma 10], we
get lim f(P,)€[A]. Hence

S, 7. €[4) Q.E.D.
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12. - Theor. Under circumstances [1] if

1. f, is a total set of quasi-vectors in H,
2. 7. is normal,

3. 7; is (D)-summable on W,

4. A is a summable set of traces,

then S, f, = Projiq Swf,-
Proof. Puttin-g co Aﬁ W — A, we have
AV (coAd)= W,
co A is a measurable set of traces. By [§ 4; 6.2]
(1) Swi,=8S4F, +Sewafa-
Now, by [11] we have
S4f,€[4), Seoaf,€col4]

Hence S, f, is orthogonal to Seo 4 f,. Taking in (1) the
projection on the space [A], we get

Projia Sw f, = Proj Sa £, + Projuy Seou f,.-
The second term is the zero-vector. Since S, f.€[A], we get

Pl‘Oj[A] SW fz = SA f,, . Q. E. D.

§ 6. - General orthogonal system
of coordonates in the separable
and complete Hilbert-Hermite-space.

1. - We admit the hypotheses of [§ 5; 1]. Thus F, G,
are tribes of subspaces of H, and B is a base of F,
satisfyng all conditions required for the theory of measura-
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bility of sets of B-traces and for applying the (DARS)
summations of sets of quasi-vectors.

1.1. - We suppose that the tribe G is saturated and
Wwe select a generating vector w of H With respect
to G, (see Preliminaries). The effective measure on G will
be defined by

pa) = | Proj, o |I%

1.2. - Def. The set B (yields by extension through F)
a saturated tribe G and © will determine a system of refe-
rence) [ B, 75] for vectors in H. We shall call it frame (or
system) of orthogonal coordinates, in H, (14), (23), (24), (25),
@6), (11), (22).

2. - Def. We introduce the following important notions, rela-
ted to the given frame of coordinates. Let X € H, and let
B be a B-trace in F. By the B-component of X we shall
understand the quasi-vector 7z, with support B, defined by
X 3 Proj, X for all neighborhoods p of B. By the B-com-
ponent—density of X we shall understand the guasi-vector
z} With support B, defined by

for all neighborhoods p of B.

By the B-coordinate of X, we shall understand the
quasi-number z; With sapport 8, defined by (p) ;- (Proj, o,
X) for all neighborhoods p of 8. By the B—coordmate-den
sity of X we shall understand the quasi-number z} With
support B defined by

for all neighborhoods p of f.

3. - We have Proj,_f =?*(p)- u(p), hence [§ 4; 8.1],
(§ 4; 8],

) Tp=p - g
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We have (Proj, , X’i = z*(p) - M(p; hence
(2) x?, = zé“ . lJ,o .

4. - Since (Projp—t:): X) =(Tn., Projp—:f), we have (7:;3, X)=
= (v, Xg) = z;.

5. - Theor. The total set of quasi-vectors z is regular,
and normal, [§ 5; 5]. The same is for z*.

Indeed —:Z;(p) = Projpi; €p, ;é"(p) €p,

which proves the normality. Since Proj, X does not depend
on the choice of the trace § Where B€p, the set of all
B-components and also the set of B—component densities is
regular, [§ 4; 4.3).

5.1. - Theor. The total sets of quasi-numbers z; and z}
are also regular. We shall consider (DARS)-summations
only, though some theorems are also true for any kind (D)
of summation.

6. - Theor. The total set of S-components is (D')-sum-
mable on W.

Proof. It suffice to prove that the vector-field Proj, X
defined for all bricks p is (D'-summable on I. Let Py = {pn,,
Duz, .} be a distinguished sequence of complexes for I.
We have I, Proj,,, X = Projeomp, X, because all space p,x
are mutually orthogonal, and since Projp,; X € pax- Now,
since | P,,, I|j, — 0 i e psom P,) — pn(l); we get
lim Projeomp, X = X, [§ 53 10. This proves the summability
of zz on W.

6.1. - If E is a measurable set of traces, then conside-
ring (DARS)-summation, we have

SE;;, = P].‘Oj[E] Z SW;; = X.
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Proof. From [6], and by virtue of [§ 4; 6.1] it follows
that zp is (DARS)-summable on E. By theor. [§ 5; 12] we have

S £ zz = Projim S, 7; = Projiz X, Q. E. D.
7. - The total set of zp is (DARS)-summable on W.

Proof. It suffices to prove that the vector-field za(p) is
summable on I. Let P, = {p,1, Dnz, ... be a completely
distinguished sequence for I. We have

Zx2e@na) = Zp(0, Proj,,X) = (v, Projsmr,X)— (v, X)
The summability follows.

7.1. - We have for every measurable set E of traces:
if X € H, then
SE = (Z)., Pl‘OjE?), SW:IJB = (-(—1)’, -X.).

Proof. The set z; is summable on E, (by [7]). Taking a
completely distingunished sequence {P, } for E, We obtain,
as in the proof of [7],

Si(w, Projp"h';_f) =3I\, Projso,.,p”—f )—(w, Projz X )
8. - We have
S z; uf = Sezf pg = Spzy = Projm X,
Sezeps = Spaf pe = Sgpeg = (o0, Projz X )

for every measurable set E and every X € H. (The quasi-num-
ber p is defined by p*(p) =1 for all neighborhoods p of §).

9. - If X€ H, X is a complex number, then
(A X)p=Azg, A X)p =z}
10. - If X € H, Y € H, then

(X =Yg = zp =g, (Y:?)g =zF =yp.

11
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—_— —

X =Y, we have

@, vo) = (x5, V) = (zp, 0)-
Proof. We have
(Proj, X, ¥) = (X, Proj, ¥) = (X, Proj,Proj, ) =
= (Proj, X, Proj, T).

13. - Our next purpose will be a proof of the formula
zga=wg - 2}, [§ 4; 7]. It will be proved by steps expressed
in few Jemmas.

13.1. - Lemma. If X = Proj, o, and ¢ is a brick, then

~— e ¥
Ty R Wg .Ta.

13.1a. - Proof. To simplify formulas, denote by ‘wg the
vector Projz v for any E € ¢, use the same letter for a
measurable set of traces and its coat, and write | E| instead
of pE. We have
—_— —_—— — (P i@ X) .
z3 = Proj; X, wga} = Proj; v - (ﬂ‘lﬁ”—’—@;
)
hence
Zp = Proj; Proj, = Projpe © = 0,
o, ) 5 o0,
I | |p|

where p varies over all neighborhoods of B. Hence

Cwprr = w,
B<g — Yp

—_— — — — 'a
(1) Tp — wg T =m",¢-——w",ll—pi—’—ll.
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13.1b - Take any brick 9= 0. We have

- el L
A(Q)df Woq Wy rﬂzmqa_(wqa“'wqcoa)'Ilq||=
— _— |ea| —  [qa]_— |an)
=W, — O - — = 0,1 — —
qa qa |‘“ q coa |Q| qa( 'QI
—_ al — |qcoa| — a
— W4 coa Lq‘—ilzwqalq“li l'_"')q(-oa Ilq II
Hence
(1.1) A(q) € ga + q coa = q.
Since the spaces qcoa, qa are orthogonal, we get
—_ coa |? a|?
@ 1@ =l L% 4 qooa| . L]~
lql q|
1q1|+]|qcoa . — R al-|qcoa
= Ll g aoa 4 fqa]) i 1T = 122122,

valid for any brick q 3= 0.

13.1c. - Now let E be a measurable set of traces and
{P,} a completely distinguished sequence for E. We shall
use arguments similar to those in the proof of [§ 4,15]; they
rely on [§ 1; 21.6, 21.13, 21.9, 21.14]. Take a subsequence
{ Pxyyt of {P,}, and get a completely distinguished se-
quence Py, U @, of I. Considering a partial complex
{Rn,} of Pryny U @, such that { R, } is a completely distin-
guished sequence for g, take the bricks e, én;,.. With
Rk enx coa) — O and also the bricks e,,, e, ... With
1(Zx enx a) — 0. The bricks belong to Py;,,. We have, putting

Aajif-:ca—wxg’

| AP [P = S5 1A (eni) |12 + S5 1| 4 () |12

Hence, by (2),
’ ’ " ”
le,;al-|e,;coa| Zjle”’.a[.le”jcoﬂ

3) “-ZZPMm) “2 = E’-

| €l | €51 -

SEjie;jcoaI—}—E,-]e;'jal: p(Z,-e;jcoa)—l—p(.‘.‘a,-e:ja)»O.
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Thus from every partial sequence {Q,}| of {P,}, another
partial sequence {Qy,} can be extracted with [3].

Hence | 4 4 (Py) || — 0, which gives 4 (P,)— 0 i.e. the
quasi-vector . — g z3 is summable over any measurable
set E of traces, and we have

Sezs —wg28) =10.
Since z; is summable on E, [6], it follows, by [§4; 6-4], that
“zp— (ep — wp2§) = wp 2§
is also summable on E, and we have
Seae = Sgwegag
for all summable E. Hence, by [§ 4; Def. 7]

Tp 2= wg - 24 Q.E.D.
13.2. - Lemma. If X is a complex number, z = A Proj,o,
where a is a brick, we have zg== wg « 24

133 Now we notice that if X, YE_H' EY 7Y,

and 7g == wp « 74, Yg == wg « Y&, then z§ == “wp -

“_’«-"a”

Proof. We have for a measurable set E:

bEzB_SEmBa’B, SEyg bEwByﬁr
hence

Srzs=Sg(ws + Ex§ + wp - nyd) = Sgwp 2,
which completes the proof.

13.4. 1t follows that the theorem is true for any “step”
vector Zi_, A; Projs, ,(n = I), Where a,, @, ... ay are disjoint
bricks with 3;a; = I and A; complex numbers.

13.5. Now we shall prove that if || X, Xxll, =1, 2,...) are
step functions as above, and if X, — X, then the theorem
[13] holds true for X. It will follow that the theorem [13] is
true in general.
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Indeed, since w is a generating vector and @ is the Lebe-
sgue’s covering extension of 7, therefore for every X there
exists a sequence of step-vectors X,, X,,... Which tend in
the H-topology to X. Take ¢ > 0. Find k with | X — X|; <e.
Put for any brick p
(PIOJp ), X)

¢ (@)

(PrO),,u) X
wp)

B (p) 3 af PPO),,.X Tip) = ar Proj, o

-Pk(p) Proj, Xx, Ua'p) ar Proj, o

First we shall prove some inequalities. Let
P, = {Dn1, Pnzs s Duiy oty m=1,2,..),
be a completely distinguished sequence for a given measu-
rable set E of traces. We have
S B () — Pa(pni)) = Si(Projp "X — Projp X,) =
=5 Projpm_(—f— X,), and
since the spaces p,; are disjoint, the expression

—_—

= Projs p (X — X,).
Hence

1) 1) S (B (pui) — 5 i0ui) | < | T—Xpl] <

A “E (Pni) —?(pni) ” 2 e

On the other hand we have

—

w« rojplli L . -_— =
” —'ti lIf (pﬂi) - ‘I)k (pm) I T [(PI'OJPM. w, X) -
P’\pﬁl}
. —_— . Proj?ni-;; « T ==
— (Projp,, w, Xp)]|i* = || &i ———— « (Projp 0, X — X,) |’ <
B{Dw)
Proj, . o ©
<% % (Projp,, o, Proj, (X — X)) ||*<

W(Dni)
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_—

Proj,, , »

o - Broie, 0 Projp, (X —Tapl}* =

<Z|

| Proj, v || ®

l"‘(pni)z

=3

£

«|(Projp,, o, Proj, (X — Xp)|%

by CAUCHY-SCHWARZ inequality :

<3 P | Proj,, 5 - || Prof,, & —En) =
n

\] n ) L] v =2 K
=3, LB 4 ) - || Profy, @ — T =

=3[ Proj,, X — TN f<Z i X — Xy [F<e.
Hence we have proved that

s, !|TI;"(p,,,.) _@j(p,,,-) iI’<<¢® is true for all n=1, 2,...(2)
‘We have

26 | plui) — W (i) [P = Zi 1 { © (D) — @n (0i) | +
+ {9k @ni) — $ (0nd } + 1 0nd) — T (pai) } |* <
< 4% [ @ i) — Fn (0ni) [ + 454 1 Pa (Pws) — Sa (Pud) * +
+ 4% 1§ on) — T (0wi) |
Hence, by (1) and (2)
2 | ® (om) — Tlpwi) [P < 8¢ + 4Z; [ o (Dui) — Pa (Dui)

for all n=1, 2,... Now we know, [13.4], that

_—

-?B':a T Wg z;g
for k=1, 2,... It follows that, given ¢ > 0, we have
Zi || @aPns) — $aloni) | < €
for sufficiently great n.

Consequently for every ¢ > 0 there exists n, such that
for every n =mn, we have

ST (pwi) — F (pui) | < 12¢7.
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It follows that
@ @) — TP | —0,

for n —oo.
Now, lim ®(P,,) exists and equals SE.-:—c;.

Nn—=-0

Hence lim —‘IT(P,,) exists too. Hence Sg wp-—x.g exists and

7 — 00

equals Sz 7z;. Thus we have proved the theorem.

13.6. - Theorem. If X is any vector in H, then

—

xﬁzzwg-x‘?.

§ 7. - Dirac’s Delta-Function.

This § 7 is devoted to a mathematically precise theory
of the d-function, (see Preliminaries). We shall introduce
even more general notions having some properties of the
g-function. Our theory is based on the general topics Which
were developped in the preceding sections.

1. - Def. We admit the hypotheses stated in {§ 4; 1 and 2],
concerning the tribes G, F, the basis B and the linear vector
space V.

Let z,, y, be two traces; then by a quasi-veclor with
support (z,, y,) We shall understand any function” / (p, ¢)
with values taken from J” and defined for all neighborhoods
p of the trace z,, [§ 3; Detf. 10], and for all neighborhoods
q of y,. We shall Wmte f, yy,5 OF (@, Yo).

1.1. - Def. We shall consider sets of quasi-vectors 7;,,,,
where z varies in a measurable set E of traces, and y varies
in a measurable set F of traces. We shall call the couple
(E, F) the support of the set of quasi-vectors.

1.2 We have some modifications of these notion:

If z, is a trace and q a brick. we can consider the vector
valned function f (z,, q) Which attaches to every neighborhood
p of z, a vector of ¥. We can vary z, over a set of traces
and q over a set of bricks, getting a kind of sets of quasi-
vectors.
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13. - Given a quasi-vector flzo, y,), We shall write
it_f;o(é),_f:,o(zf), 7, ¢ according to wWhether we like to em-
phasize the variable neighborhood q of y, the variable neigh-
horhood p of z,, or both variable neighborhoods respectively.

2. - Def. The following notion of summation will be
important: We say that the sef of quasi-vectors f:o, y With
support (z,, E), (Where z,, y are traces, and y varies in E)
i8 summable on E with respect to y Whenever for every neigh-
borhood p of z,, the set of quasi-vectors—f;(p) is summable

on E with respect to y, i.e., When S'-f:,(p) exists for every
y= B
neighborhood p of z,.

In the case of summability, we get a quasi-vector

Gz, 37 90) 7 S D)
y=E
with support z,.

3. - Def. We are introducing the number-valued function
A (p, q) of variable non null bricks p, q, defining it by:

1 whenever p-q 30,

A 2 P

This function generates the following ones:

If © is a trace, then A(t, q) is the quasi number A(p, q)
whit support t, defined for all neighborhoods p of 7, by (1).
It depends on the parameter q. Similarly A(p, q) will be
denoted by A (p, £) whenever q varies over all neighborhoods
of £. By A(r, £), where T, £ are two traces, we shall understand
the function A (p, ¢) defined for all neighborhoods p of =
and for all neighborhoods q of E.

4. - We shall take over the topic of [§ 6] to have a
system of coordinates in the H.H. — space H. Thus G is
supposed to be a saturated tribe of spaces.

4.1. - Lemma. For any vector X € H and any spaces
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a, b € G we have
|' Proj, X — Proj,X i* =" Proj,_,X | 4 1 Proj,— WX B
‘see [(14), p 21)).

4.2, - Lemma. If ¢, €6, n=1,2,..., X€ H and p(a)— 0,
then Projan:’f’“-:b* in the H — topology.

Proof. The number valued function | Proj,X||* of the
variable ¢ € G is denumerably addmve and continuous in
the p,-topolo«ry in G. Hence |Proj,, hd .*—0 which gives
Proj,, X—0 in the H-topology.

43. - Lemma. If ¢,,, a € G, Xe€ H, a,—"a in the p-to-
pology in G, then Proj, X — Proj,X in the H-topology.

Proof. Since a, —a, we have pa, —a) + p(a—~a,,)—‘0
Hence, by [1.2], | Proj,, o X ] iif—0 and ' Proj,_g, X"-———O

Hence, by [4.1], we get | Pro_],,”X Proj X |*— 0: hence
Projanf— Proj,X — 0, Which gives the thesis.

5. - Def. Let Q, =1{qQu, Quz,e-}, (n=1, 2,..), be a
completely distinguished sequence of complexes for I. Given
a brick p3=0, let pn, Puz,... be all those bricks ¢, for
Which ¢, <<p. We get a complex | p,,, Pnz, ... }. Which
may be empty or not. Now, if for every p0 We
have lim p(Sp,;j=p(p), We shall eall {Q,} a special sequence

1—-2C %

for 1.

5.1. - Remark. We do not know whether from all admit-
ted hypotheses it follows that there exists at least one
completely distinguished and special sequence { @, ! for I.

5.2. - Hyp. We shall admit the following hypothesis :
There exists at least one completely distingnished special
sequence of complexes for I.

8.3. - In the case where the base B is composed of
spaces Which correspond to half — open rectangles or
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half — open segments, (see [§ D; 2.1-2.9]). the hypothesis
[56.2] is satisfied.

5.4. - We shall consider summations of total quasi-vector-
set defined by means of special sequences. This means that,
given a total set of quasi-vectors f., We say that f. is
“specially,. summable over W Whenever for every completely

distinguished and speeial sequence { @, ! =1{4q.1, quns, -},
the limit lim X, f(q, ) exists and has the same value. The

f?n—-0C

limit will be denoted by S._f: and called “special,, sum.
w

5.5. - If Hyp. 5.2 holds true and f. is (DRAS)-summable,
then S® j- exists too. The converse does not seem to be true.
w

5.6. - Lemma. If 1. { @, { is a completely distingnished
and special sequence of complexes for I,

2. f is a figure, (fEF), fF0,
3. fu1, fne, .. are all bricks of @, with f,, < f,
then we have lim p(Z, f,x) = n(f).

n—>=-2C

Proof. First we shall prove the lemma under hypothesis
that f is a finite sum of disjoint bricks. Let

f=a+4..4+4a, s=2).

Denote by q(,,"l), qf,';), .. all different bricks of @, , which are
contained in a,, (=1, ..., s). We have lim p(3; qﬁ,';)) = p(an)-
n—--00
Since a,, ..., a, are disjoint, and consequently also the
bricks of @, which are inside of them, we get

M Jim WS, 3 6l) = wie, an) = p(-

The bricks ¢ for fixed = are certainly bricks which
are inside of f. If there are some other supplementary bricks
of @, Which are inside f, We have Zji_, 3 qﬁ.';-) <Ipfu<T,
where f.. are all bricks of @, which are inside f; hence
lim mu(f‘ak frn) = p(f)-
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Having that, let us go over to the general figure f. By
[§ 1; 3.0] we have f=a, 4 a:+ ... Where g; are disjoint
bricks.

Take ¢ > 0, and find s such that 0 << p(f) — Ij_. p(e) <e...(1)

Put f, 2@t et g For such a figure the theorem has
been proved. Let ¢, = | q,1, Qu2,...{ be a special sequence
for 1. Denote by gu:, Qhs,... all those bricks g, of Q, which
are inside f,. We have lim X; p(g) =p f, -

There exists M such’ t_h»'rt for all n =M we have
O wf)—p'f.i<<e We get O<sp(f) — Zip(gni)<<2e for n>M... (2)

Now, if there are bricks in @, differing from g,; which
are inside f, their addition will not spoil the inequality (1,

80 We get
0 < p(f) — Sapulfun) < 2¢ 3

where f,, are all bricks of @, which are inside f. The
inequality (3; is valid for all »> M. This completes the
proof of the lemma.

8.7. - Lemma. If 1. {Q,! is a completely distinguished
and special sequence of complexes for 1, 2. f is a figure.
3. €n1, €n2,... are all bricks of @, for which

e,,.,-f:l:O, e,,,,-cof:i:O,

then we have lim (S, e,,)=0.

=20

Proof. Let a,,, a,.,.. be all bricks of ¢, for which
@ox <p, and let by, by,,... be all bricks of , for which
bax < cop. By [Lemma 5.6] we have

lim pSya.)=pp), lim pSxba) = pcop).
n—20 n—c
Since lim P'(Sk Qnk + Ek buk + SI-' enk) = “"(1), it fO“OWS
n—-20
that p(p) + p(cop) + lim (S, e,n) = /1), which completes
the proof.

6. - Theor. If 1. Hypothesis [5.2] is admited, 2. p =0 is
a brick-space. 3. X € H,
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then considering special summations, [5.4], we have
1) Proj,f’=sS'A (v, 8) 75, [Def. 3],

W

(where TV is the set of all traces and z3 is the 3-component
of X, [§ 6; 2]).

6a. - Proof. We shall schedule our argument so as to
put in evidence the reason of admitting [Hyp. 5.2].

To simplify print, we shall use the alternative symbol
Proj(p)f for Projp—f. Let @, = { @n1, qnz, ...} be a comple-
tely distinguished and special sequence of complexes for 1.
Take the partial complex R, of @, with |R,, p|, — 0. By
[§1; 21.9] R, is a completely distinguished sequence for p.

Consider the complex S, 7 Q.co R, i.e. the complex
complementary to R, in @,. We have |som @,, —som R, ,
I—pl.—0,[§1; 514}, i.e. |S,, cop|,— 0. Hence, by
[§1:21.9]). 8, is a completely distinguished sequence for co p.

Denote by a, b/, e those bricks of R, for which a/'<<p;
bi/-p=0; e -p=F0, ¢ -cop}0 respectively, and denote
by a, b, e” those bricks of 8, for Wwhich a"<p;
bi’-p=20; ¢’ -p+0, ¢ -cop3 0 respectively.

We have, by [§ 13 21.14],

2 |Sa/ 4+ Je'p, p' — 0, p(Z e cop)— 0,
3) 120" 4+ 3¢ cop, cop,—0, n(Se”"p)—0

for n— oc.

6b. - We also have
4 rZ0)—0, pEa")—0.
Indeed, from (2) we get, by the help of
1Se/cop; 0',—0, iSa/+3Se/p+Se’cop; pi—0, i.e.,
Saf+3Ze¢’; pi—0.
Since, on the other hand we have

|Rn, pi—0, i.e., [Sa/+3Sb/+Ze'; p|—0,
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we get, by subtraction, relying on [§ 1; 5.14],

|Sb/, 0] —0, i.e., p(Sb{)—D0.

Similarly we prove the second relation in (4).

6c. - We shall build sums which approximate the expres-
sion (1) in [6]. Put

®) 4,5 2kA @, gu) Proj(gm) X.

The bricks aj, bi, e;, ai, bi, e constituite the whole
complex @, , and they are disjoint. In (5) all terms, where

gnk - p = 0, disappear, and for the other we have A = 1.
Thus

4, = Z; Proj(a)) X + Z, Proj(a!) X + 3, Proj(e;) X + Z; Proj(e; ) X.

Since the brick-spaces are orthogonal to one another,
we get

(6) A=Proj(Z; a;+ Z; ei p) X + Proj(Z; a}) X+ Proj(Zi e} cop) X+
+ Proj(S; e p) X + Proj(z; )X — Proj(Z;b) X .

In (6) the first term tends to Proj,,-f because of (2) and
by virtue of [Lemma 4.3], the second therm tends to 0,
because of (4) and [Lemma 4.2]; the third term tends to 0
because of (2). Concerning the last three terms in (6) their
sum can be Wwritten as

Proj(=Z; b7 + = e}'p)Y— Proj(2; bé’)i’.

Here the first term tends to Proj (cop) X, by (3) and
[Lemme 4.3]. Hence a necessary and sufficient condition
that 4, tends to a limit is that Proj(Z; b;) X tends to a limit.

6d. - Till now we did not use at all the condition that
the sequence {@,} is special. We used only the fact that
it is completely distinguished. From [6c] we get
lim 4, =X — lim Proj(Z; b7) X,

N =—s 00 27— Q00

whenever at least one of these limits exists.
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This shows the role of [Hyp. 5.2] which we have
admitted in the wording of our theorem. Since, by [Lem. 5.6]
Sibi'; cop| — O for n — oc, it follows, by [Lemma 4.3]:
Proj(S; b/) X — Proj(cop) X.

Hence we get

lim4,, = X — Projcop) X = Proj, X, Q.E.D.

6.1. - Theor. If 1. Hypothesis [56.2] is admitted, 2. X€ H,
then considering special summations, [5.4], we have

z, = SOA (a, ,3);‘; s
BeW
where z, is the a-component of X, [§ 6; 2].
Proof. Follows from [6].

6.2. - Remark. We do not know whether the formula of
[Theor. 6.1] is true if we do not use special summations,
(see [Rem. 9.1)).

7. - Theor. If 1. Hypothesis [5.2] is admitted, 2. p4=0
is a brick-space, 3. ‘0 is a generating vector of the space H
with respect to the saturated tribe G, [§ 5], [§ 6], 4. X € H,
then, considering special sums, We have

(Projp—u_).. Y) = Se) (p, B)zs,
8:WwW
where zg is the f-coordinate of X, [§ 6; 2].

Proof. The theorem can be proved just by the method
used in the proof of [Theor. 6]. We shall give a simpler proof.

Let @, =1{4n1, Qnz,...} be a special completely distin-
guished sequence of complexes for 1. Let a;, b;, ¢; be those
bricks of @, for which ¢;<p; a;+p=0; ¢;-p30, e;ecopz=0
respectively. Put

Ay 37 Sk A(p, qur) - (Proj(gue) ©, X).
We have
4, = S; (Projs, 0, X) + Z;(Proj.,», X).
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Since the bricks are orthogonal spaces and since pro-
jections are hermitian operators, we get

4, = (o, Proj(Zia) X) + (o, Proj (S e) X).
Now, since by [Lemma 5.7}, p(Z;e;) — O for n — oo, We

get by {Lemma 4.2], Proj (3, )X — 0.
Hence

(v, Proj(Sie;) X) — (v, 0) = 0.
Consequently
lim 4, = (o; Proj, X),
because | I;a;; p!, — 0, which gives
Proj (Z;a) X — Projp—f.
The theorem is established.

7.1. - Theor. If 1. Hypothesis [5.2] is admitted, 2. X € H,
then, for special sum we get

T, = Sex, (e, B)zg,
REW

where z, is the a—coordinate of Y.

Proof. This follows from [7].

8. - Def. We define the number-valued function A’(p, q)
of the variable bricks p, g, both 3=0, as follows:

0 whenever p-q =0,
A, 95 1
max (p(p), p(g)
8.1. - Theorem. If
1. Hypothesis [5.2] is admitted,

whenever p-g=0.

2. pF=0 is a brick space,

3. X€H,
then, using special summation, we have
Proj, X Q —
1 —dp= — S8y
( ) p'(p) B W (p’ p)zﬂ)

Wwhere zg is the 3-component of X.
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Proof. Consider a completely distinguished, special
sequence Q,,fff dniy Qnz, ..} for 1. Denote by a;, b;, e; the
bricks of @, for which we have ¢;<p; b;-p=20; e;pF 0,
e;co p3=0 respectively. For the sum 2’,,32,‘ A(p, q,,k)Proj(q,.k)f
which approximates (1), We have:

A, = Z;A(p, a;) Proj (@)X + ZiA'(p, €;) Proj(e) X .

Since a;<p, we have A'(p, ;) = ﬁ Since pZe;) — O,
(by [Lemma 5.7]) we have for sufficiently great n: p(e;) < p(p)

for all i; hence A'(p, ¢;) = — . Thus we get

©(p)
4, - pp) = Proj(Zia) X + ProjSie) X .

Now | Z;a:, p|—0 and p(Z;e;)—0. Hence p(p)-lim Z:.:Proj,,;_f,
so the theorem is proved.

8.2. - Theorem. If

1. Hypothesis [5.2] is admitted, 2. X € H, then for
special summation We have

T2 =8%'(, B)z;, [Det. 8],
Bz=W
Where 71:} is the a-component-density of X, and g the
B-component of X, [§ 6;2].

Proof. Relying on [8.1].

9. - Theor. If
1. Hypothesis [5.2) is admitted,
2. p3=0 is a space brick,
3. X€H,
then for special summation we have
(Proj,u, X)

{ IV .
e = S (v, ez, [Det. 8}

Proof. Similar to that of [Theor. 8.1].



STMMATION OF QUASI - VECTORS ON BOOLEAN TRIBES, ETC. 177

9.1. - Theor. If
1. Hypothesis [5.2] is admitted,
2. X € H.
then for special summation we have

x; = S.A’(a, p)n’l)g,
BEW

Where z; is the a-coordinate-density of X, [§ 6; 2].
Proof. Follows from [9].
9.2. - The formulas in [8.2] and [9.1] can be written

zi = SO (@, )zt -, af = SO (q, Bz -ps,
FE BeW

wWhich have the same shape as Dirac’s formula.

Proof. This follows from the equalities;

xﬁzx;'pﬁ’ xB:x;'P‘B: [§ 6; 3]

10. - Lemma. If E€ G, E does not contain any atom,
P, is a (DR)-distinguished sequence for E, then &U(P,)— 0.

Proof. Suppose that the thesis is not true. Then there
exists a partial sequence Py, and >0 such that OU(Psm)>7.

Put @, ar Pyny; Q) is also a (DR)-distinguished se-
quence for E.

Put @, =1{9u1, Quo, ... . Since

9UQr = max { W(@na)y M(Qn2); e}y

there exists k(n) With p(qu, xm) => 7. Now, since {Qn} is a
(DR)-distinguished sequence for E, it follows that

Or(@n)—0 i.e. maxgpqgm —B)}—0,

where § = 4, + 4, + ..., the sum of all atoms of G. Hence

1(@n. k) — B)—0. Since u, k) = (@n, kmy — B) + qn,x(w)B, there
exists m, such that for all n>n,,

1) (B - anxom) Z?g .
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Let m, be such that

(@) 2 pa, <]
n>m,

We have from (1):

[(LIRC

(J-[anm) Ensmo A, -+ Ank(n) zn)m,, An] 2

Since the two terms are disjoint, we have
1 @nren) * Zu<m, An] 4 1[aukin)* En>m, An] > g '

Here the second term is < Z Hence we have

P-[an(n) . zngmq An] 2 2

for all n>an,.

Hence at least one atom among A4, ... 4,,, must be con-
tained in gk, for all n > n,.

Consequently there exists a partial sequence I(zn) and an
atom 4;, (1 <m), such that 4; < qyu), xamy) for n =1, 2, ....

Since | E, Qyn)|— 0, we have |E.Ai, Quu 4i|— O,
|E.A;i, 4;|— 0, i.e. | 0, A;|— O which is impossible.

11. - Def. We define the function

0 whenever p-.q =0,

Alp, @) = ? 1
k@ + p9
This function generates the functions A”(x, g), A”(p, B),

A"(a, B) where a, B are traces, (see [3]). We shall see that
A", B) also has some properties of the &-function.

whenever p.-q==0. -

12. - Theorem. If
1. Hypothesis [5.2] is admitted,
2. G does not contain any atom,
3. p$=0 is a brick-space,
4. X€H,
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then, using special summations, We have

Proj, X —
1 Proj,X _ e yr(p,
1) e (@, B) zs

Proof. Let Q. = {9u, Quz,...} be a completely distin-
guished and special sequence of complexes for I. Denote
by ai, bi, e; the bricks of @, with a;<p; bisp=10; ¢;-p3F0,
e; co p 3= 0 respectively. Consider the sum yielding (1):

Z; af 2y A"(p, Qur) Projqn,f

We have
—_ 1 —_
2) 4, =%, —~Projs.. X Z,—P e
© pp) st <) rojo X + % [p(p)+u(a,)

— _1_] Proj aiY—l— Z; 1 ProjeiY

1
1(p) le@) + we) @]

The sum of two first terms in (2) is

-}?1{)—) Pl'Oj (E, a; + Z,' e.—)Y

and tends to —— Projp X, if n— oo. This follows from that

( )
| Zsai, p|p———0 and pZ;¢,— 0, [5.7]. Concerning the two

last terms in (2), they are composed of expressions having
the form :

@)

[}

——1—~—~ 1 ] TO0 X,
wp) + we)  pp) Je X,

where ¢ is a brick. We have

1 2 P'( 2
! {m p.(p)]Po']’ "< oy | Projc X ||2.

Hence the square of the norm of the sum of the last
terms in (2) does not exceed the number

, 1 ” Jr—
4) T )42 i @) ) PrQ]a X 2+ p.(p,‘ — e || ProJ,iX K
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Take ¢ > 0. By Lemma [10], we have for sufficiently
great n the inequality 9U(Q,) <e; hence p(a) <e, ple)<e.
Thus the expression (4) does not exceed, (for those n),
the number
e? —_— —_
—— {1 Z; || Proj.. X |I? i|| Proj.. X ||*} =
oyt 511 Projo X |+ 24 Proj X |
e* .

e — -
=——||P ‘2.' § Z,-; z<——4' X |5
I ProjE et B X< S [

Consequently the sum of two last terms in (2) tends to 0, 8o

1

Proj _f,
p

what completes the proof.

12.1. - If
1. Hypothesis [5.2] is admitted,
2. G does not contain atoms,

3. X€H,

then for special summation We have:
zs = SO (a, Byzg = SOA"(a, B) g pa-
Be W Be W
Proof. The theorem follows from [12].

13, - Theorem. If
1. Hypothesis [5.2] is admitted,
2. G does not contain atoms,
3. p¥0 is a brick,
4. X€H,
then, using special summation, we have, [§ 6],
(Proj, v, X)
(269)
Proof. Similar to that of [Theor. 12].

= 80a” (p, p)'xﬁ .
BeW

>3
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13.1. - Theor. If
1. Hypothesis [5.2] is admitted,
2. G does not contain atoms,
3. X€H,

then, using special summation, we have

(1) oy = SON" (2, B) x5 = S®A" (=, B) g ps.
3z W 3: W

(Which resembles the knewn Dirac’s formula).

Proof. This follows from [13].

13.2. Remark. The formula (1) in [Theor. 13.1] may be
not true if G has an atom. E.g. Take the one-dimensional
H.H.-space. The corresponding G is composed of two somata
only, viz. 0 and 1. There exists only one trace Which is
heavy. In the right hand side expression in (1), we get

" s — 1
A", 1)_2Tm’

so the formula (1) is not true.

14. - Consider the mapping §—* of the H.H..space H
onto the space H' of p-square summable functions of the
variable trace, as explained in [§ 5;4] and (14).

Let the §—' — image of the vector X be the function
_f’ﬁ f(a). The system of coordinates in H goes over to an
analogous system of coordinates in the space H'. The ge-
nerating vector ® goes over into the characteristic function
Q2) of Wie Qa)=1 for all 2. Then

(ProjpB: T’} :pr(a)f(a)dp = [f(oc) dp.,
P

where P is such a set of traces, that the set of p-square
summable functions vanishing outside P is just the §—* —
image of the space-brick p. It follows that, for the §—* —



182 OTTON MARTIN NIKODYM

corresponding system of coordinates in H' we have:

o) d

f,:fi)f( ) " = val,f, (see [§ 4 ; Def 10].
w(P)

Thus the .formula (1) in [13.1] will become

val, f :-; b::-_\" (@, B) valgf pa,

and a similar formula will be obtained from [9.2], by using
the A'-function.

15. - Lemma. Under circumstances of [§ 3;1] we have the
following: If

1. {p,} is a representative of the trace =,
2. q is a brick,
3. ppegq¥F0 for n=1. 2, ..,

then ¢ is a neighborhood of <. [§ 3; Def 10].

Proof. Suppose that the thesis is not true; hence g does
not cover the trace t. Hence, whatever the representative
a, >a; > .. of T may be, we always have a,-co g=4=0. Since
Dk > Pr41>> ... i8 a representative of <, (k =1, 2...), it follows:

1) precopF0 for k=1, 2, ..
‘We have
&) PLg>P29> ..., all 0.

Since p, > p,> ... is a minimal sequence and
{D1g,s D2q,s e} <{D1s P2y}, (se€ [§ 31 2.1]),
it follows that either
{ 219, P2q, .-} {0, 0,...} or
{219, P2q, oo} O { Dy P2y}

The first alternative is impossible, becaumse it would
imply p.g =0 for sufficiently great =, [§ 3; 10.2], so it
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would lead to contradiction with (2). Hence {p,q}co{p,}.
Consequently, for every n wWe can find m such that p, <p.g;
hence p,, < g which contradicts (1. The contradiction thus
obtained proves that g is a neighborhood of <.

15.1. - Lemma. Under circumstances of [§ 3; 1] if ¢ is not
a neighborhood of the trace 7, then there exists a neigh-
borhood p of © with p.q = 0.

Proof. Suppose the thesis is not true. Then for every
neighborhood p of © we have p-g== 0. Hence, if we take a
representative { p, > p, > ...} of 1, We get prg=+0, (k=1. 2,...).
Hence, by the forgoing lemma [15], we see that ¢ is a
neighborhood of t, which is a contradiction.

16. - In this §, number [5], we have defined ¢ special
completely distinguished sequences of complexes for 17,
and have used them in some theorems. To have useful
consequences of them in the form of their modifications, we
admit the following general definition, which however, will
be later used only in the case where G is a tribe of spaces
in H.H.

Def. Let {Q.} be a completely distinguished and special se-
quence for I and s a figure §=0. Consider all bricks au,
enc of Q, such that g, <<s; enc- 530, e -cosF0. We
shall consider the two partial complexes {ay,, @y.,...} and

{@u1, Guzyeery €nis sy oee} Of Q,,‘. The firstt will be termed
inner Q.-coat of s and denoted by int(Q,)s, the second will
be termed outer Q,.-coat of s, and denoted by ext (@,)s. Now
take any partial complex T, of Q,, such that int(Q,)s &
C T, < ext(@,)s. If we do that for all n, we get a sequence
{Ts} of complexes. Any sequence { T, } obtained in the above
way Wwill be termed « special sequence for s, induced by { Qu} ».
Of course We have som int (@,)s < s < som ext(Q,)s, and

p[s — som int(Q,)s] — O p[som ext(Q,)s — s] — 0 for n — oco.

Hence we get |s, Ty|, — O for n— oo, so {T4} is a com-
pletely distinguished sequence for s, [§ 1; 21.14].
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16.1. - Def. Continuing the topic [16], let us consider a
regular and total set of quasi-vectors f, in the vector-
space F. If the sum

F(To) = Z f (tax), Where Ty = itui, tug, ... !

is a special sequence for s induced by { (.}, tends to a
limit which does not depend neither on the choice of iT,!
for a given {Q,!, nor on the choice of {Q,!, we shall say
that f- is «specially summable on the figure s>, and the limit
mentioned above will be termed «special sum of }T: on the
figure s », and denoted by

NPT,
16.2. - The following theorem is valid. Consider circum-
stances of [§ 4; 1, 2] and admit [Hyp. 5.2].
Theorem. If the special sum SP7. exists, and s is a
ficure, then
1) S®7,  also exists.

Proof. Suppose that (1) does not exist. This means that
there exists a completely distinguished and special sequence
of complexes ;Q,! for I, such that if we consider

int{Q,)s and ext(Q,),
we can find T,, as in [16], sach that
2) int (Qu)s & Ty & ext (Qn) s,
and where _f?I',,) does not tend to any limit. Having that,
we can find indices n,/ < n,” <m,’ < n” <... such that
3) HfTwg) —f(Twg) | za for E=1, 2, ...,

and for some positive number a.

Put P int(@a)s, P 5 Tuy,

P = Imic> PP = extiQ,)s, P’ = int’'Q,)ico P}Y).
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We shall see that the complexes
’ (2) ’ 2o ) 2 ' V2
) PPUPY, PFTUPY, PITUPY, PY”UPY, ..

make up a completely distinguished and special sequence
for 1. To prove that notice that, since €, is completely
distinguished and special for 1. we have

(1

u som [P — P, — 0 and psom[co P,)) — P)}'] — 0,
5.6] and '5.7).
Since
@ som P, - w eo som P, = p 1),

it follows that the sum of ail bricks ¢f Q,, which neither
belong to P} nor to P,). has the measure tending to O for

) 3 — oC,

Let g be a brick4=9. We need to prove that

2

p(som int{P; UP,)q]— nq
and
w{som int (P U P))q] — wq.
Since
PruPYC 0, and P"UPYCO

t vity

it follows that
int(P;" UP )19 int'Q, g+ q. andint’P,> UP,! ;< int/Qg->q.

Now the bricks of int(Q,)qg which do not belong to
PEU P are not contained in P, because P C P2
hence, by (9). the measure of the sum of hricks which do not
belong to P, UPY, has the measure tending to (). Conse-
quently

w som P U q— 0.
Similarly we have
p som (P U P q— 0.

This proves that {4) is a completely distingnished and spe-
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cial sequence for 1. By hypothesis both sequences
@YU, TR UPY

tend to the same limit. Hence
TP 7P tends to 0,

which contradicts (3). The theorem is proved.

16.3. - Theorem. We admit the [Hyp. 5.2] and circum-
stances [§ 4; 1, 2]. Then if
1)7: is a regular total set of F-quasi-vectors,
2) a, b, ¢c are bricks, c=a -+ b, a-b =0,
3) the special sum S®7 exists,

then for special sums we have
ST + 8P = 827

Proof. By [16.2] all these sums exists. Let {Q,} be a
completely distinguished and special sequence of complexes
for 1. Consider the complexes int(Q,)a, int(Q,)b and int(Q,)c.
We have int(Q,)a U int(Q,)b < int(Q,)c. We have

p som int(Q,)a — p(a), p som int(Q,)db— ud),
p som int(Qn)c — p(c;.
Hence if we put

p, ff int (Qn) c— [int (Qn)a U int (Qn) b]
we get
lim pP, = p(c), P, < int(Q,;c.

Consider the sequence
1) R, @ int(Qn) ¢ — P, = int(Q,)a U int(Q,)d.

This is a sequence induced for ¢ by the sequence Q,, — P,,
which is a completely distinguished and special sequence
for 1. The last can be proved by using a method given in
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the forgoing proof. We have

lim ﬁ@n‘) = Sc.?:, lim 7—[int(Q”)a] = Sa._f:
and

lim Fint(Qa)b] = S®7-..
Thus, by (1), we get the thesis.

16.4. - Remark. We do not know whether the special
sum S®7 can exist without existence of the sum Sa (DARS) [ -
Our conjecture is “Yes”

16.5. - If
{ Qs is a completely distingunished and speeial se-
quence for 1.
2. s is a brick #0,
3. T,.——a—fint @u)s, n=1, 2...,,
then {7,} is a completely distinguished and special sequence
for the tribe s 1 G, (restriction to s) in the sense of [Def. 3].

17. - Having that, wWe are going to get some useful
modifications of various forgoing theorems which involve
A-functions. To simplify wording we shall use the same
letter for a measurable set of traces and for its coat.

17.1. - Theorem. If
1. [Hyp. 5.2] is admitted.
2. p is a brick,
3. s is a fignre whith p <s.
4. X € H, then

jPrijz::: Ey.A(p, ﬁ)xé,[l)eﬁ 3]'
Becs
Proof. Since S®A(p, §)z; exists, [6]. therefore, by [16.3],
bz W

1) S PA(p, )z = S'+8'

Bzcos

To evaluate S. take a completely distinguished and
Bzcos
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special sequence { @, } for 71 and consider int{Q@,) cos. We
have for its bricks b,k

(2) e A®@, Uuk) Proj(bu) X = 0.

Since int(@,)cos is a special sequence, induced by {@,!}
[Def. 16], the sum (2) tends to S®. Now, S..\(p, Blzs =0,

‘(03 "COS

because A(p, bux) = 0 for all k. Consequently, by [6] and (1):

Px-oj,,?f: S? so the theorem is proved.
Bzss

17.2. - In a similar way considering int (Q,) co s, We can
prove similar variants of the theorems (6.1], [7], [7.1].
i8.1], [8.2], [91, [9.17. [9.2]. [12], [12.1], [13], [13.1], [14]. In
the changed theorems we have the additional hypothesis
» <s, where sis a figure, or in theorems involving the trace
2 We have the hypothesis a€s, and take account of [Lemma
[15] and [15.1]]. b. is replaced by b.

We shall lefer to these theorems b) giving the number
e.g. [7.1] and adding [17.2].

18. - Te following remark considers the influence exerci-
sed on various summation formulas, by the change of measure.

If S®7 = S®7. where s is a figure, we see that the
Tz W T8
change of the measure p outsile s will not influence the

summation-formula.

19. - A similar remark can be made on functions which
vanish outside a given brick: this in relation to topics
§ 4:15 ete.].

20. - Theorem. If
1. G has no atoms,
2. Hyp. [5.2] is admitted.
3.1, g- are total sets of regular and normal quasi-
vectors,
4. f-=<g. in the sense of - § 4:7),
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5. pF0 is a brick,
6. SA"(p, 7). exists, [11]
w
then SA”(p, t)g- exists too and equals (6).
W

Proof. Hypothesis 3 means that for every measurable set
E of traces we have in the (DARS)-summation [Def. § 4;5],

0) Sef- =Sz

Consider a completely distinguished and specxal sequence
@n={dn1s Qnz, ...} of complexes for 1. Put . dff_—— . Con-
sider the sum

A5 Tk A" (D, que) - h(gue)-

Denoting by cix the bricks of int(Q.)p, [16], we get

— 1

A, =2 —M .
* o) + plcr)

1
BD) + p(ox) p(p)) H(e)-

—}_l(ck) ’

—_ 1 —
(1) A..—Exg@n(ck)—l- ke (———

We have

Il Zk ( ! ) Thier) 2 < Ll

o) + pler) lp) = ( ))‘

Since G has no atoms‘ we have 97 (Q,)— 0. Hence for
sufficiently great index n we get p(ck) <e, Where ¢ is any
positive number given in advance. We get

I.h( K) |I*-

1 2 ¢’
v~ i) "o S
Asf. and g. are summable, it follows that k. = f. — g-

is summable.
Hence, [§ 5; .1}, || k. ||* is summable. Since

(2) l‘ Ek( ” Zk u(ck) 0.

lim || Zeh{en) [P — S, |7 |1,

it follows that || Zk@k) | is bounded. Thus there exists
M > O such that || Zx h(cx) ||* < M. It follows that the expres-
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2

(nip))

sion on the left in (2) does not exceed ——-M, so it tends

to O for e — 0. The first term in (1) is

Zk h (cx),

P()

and tends to

1 —_— —
— S, & = 0, by (0).
) P y )

Consequently "4, — 0, Which proves the theorem.

21. - Def. Denote by c, the quasi-number defined by
f(p) 77 ¢ = constant for all neighborhoods offa. We can write
¢, = c/p) Where p is a neighborhood of a.

21.1. - Theorem. If G does not admit atoms, we have
(1) 1, =S%A"(a, 3)
BeW
Proof. We have for every X € H, [13.1],
zy = S®A"(a, 3)z§ -
e W
Applying this formula to the generating vector w, We get

= SO (@, B) o ps.
=W

Now
or — Prop 0, ©) _ || Projwl® _
* () w(p) *
Since

A"(a, B)+1g=A"(p, @)-1 = A"(p, ¢) = A"(q, B),
we get the formula (1).

22. - We have defined three functions A, A, A” which
have some properties of the Dirac’s-delta function under
very general conditions. We shall terminate this paper with
the study of the genuine 3-function in relation
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to ordinary functions of a real variable and Lebesguean
measure.

22.1. - To do this we shall consider the space H of all
complex-valued Lebesgue-square-summable functions f(z)
defined almost everywhere in the half open interval (4, B,
which, for simplicity we admit (0, 1). The governing equa-
lity, =, will be that which is induced by the ideal of sets
of measure 0. We shall have the alternative notation f for
f(z). The scalar product (7: 3} is defined as

[Fz_)g(x)dx,

so H is a separable and complete, infinite dimensional
H.H.-space.

Consider the Lebesgue-measurable subsets of (0, 1, con-
gsidered modulo sets of measure 0, so we have E — F when-
ever meas (E — F) 4 meas (F — E)=0. The collection of
these sets, with ordering defined by

E_<'_F-3—T-meas(E'—F)=O,

is organized into a Boolean denumerably additive tribe ¢
with effective measure. Consider the collection & of all
subsets

(% Bz tzla<z<B} of (O, 1),

where 0<<a, <1, and denote by f the set of all finite unions
of sets of 5. We see that f is a finitely additive tribe and b
its base [§ 1]. The tribe g is a finitely genunine extension
of 7 through the isomorphism from f into g, which attaches
to every set (a, ) the sets (a«, 8)+ E, — E, Where
meas E;, — meas E, =0. The hypothesis (Hyp. 4,) is satisfied ;
hence, a fortiori, (Hyp A4), ¢ constitutes the borelian exten-
sion of f within g. The tribe ¢ is also the Lebesgue-cove-
ring extension [§ 1;9] of f within g, Where the measure
on f is euclidian (hence Lebesguean). Thus [§ 1; Hyp. 12]
is satisfied. The hypothesis [§ 1; Hyp 8] of measure-sepa-
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rability of ¢ [§ 1: 21.1] is satisfied. Consequently there
exists a completely distinguished sequence of complexes for
the soma 75:(0, 1), [§ 1; Def. 21.3].

If we consider the partitions of (0, 1) into n equal half-
open-segments, (n =1, 2,...), We get a completely distin-
guished and special sequence for 1, [Def. 5]; thus [Hyp. 5.2]
is satisfied. Since ¢ has no atoms, the distinguished sequences
of type (D), (DA), (DR), (DAR) for a measurable set E coin-
cide, [§ 2].

The base b in f gives rise to traces, [§ 3], (see also
[§ 5; 2.8]). To every point z Where 0 <z <1 there correspond
two different traces, ome z+ With representative
(x, 14-¢,) where ¢, >0, €,—0, e, >¢,y,. (n =1, 2,...),

(£, 2+ en) S (O, 1),

and another one z— With representative (z —e¢, z. At =0
we have only one trace 0+ and at x=1 only onetrace 1-.
The point z will be termed vertex of z+ and of z—. We
shall write z = vert z+ = vert z—.

The hypotheses (Hyp. I) and (Hyp II), [§ 3; 6], are satis-
fied, so the whole theory of measurability of sets of traces,
[§ 3], is valid. One can prove that if « is a measurable
set of traces in g, them « is measure-equivalent
to some set of traces Which always contaings with z+ also
z—, and with z— also z+, and Whose measure equals the
measure of the set of all its vertices.

22.2. - Let us define the correspondence 9T as follows.
If E is a measurable subset of (0,1), consider all square -
summable functions f(z) defined a.e. on {0,1) such that
f(z)=0 on a set E' where E'— co E. Denote by e the collec-
tion of all those functions. Now the correspondence 9IU is
defined as that which attaches ¢ to E. The correspondence
9N is invariant in its domain with respect to the equality
= of sets. The set ¢ is a closed subspace of the Hilbert-
Hermite space H. The correspondence OIU is an ordering-
and operation-isomorphism from ¢ into a denumerably addi-
tive tribe G of subspaces. U transforms sets into spaces.
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Put F O f, B3 OILb, and define on G the measure by
pe 7z meas E. Thus we see that all circumstances in g
have their image in G. The brick-spaces are the 9{-images
of half-open intervals (a, §).

22.8. - The tribe G is saturated. The function

—(E’d:fw(&:)j;f const. = 1

is a generating vector of H With respect to G, so We can
use the whole theory of quasi-vectors as developped in
[§5] and the system of coordinates, as defined in [§6 ]
The generating vector w and the saturated tribe generate
an isomorphic correspondence S—*[§5; 4] which transforms
the vectors_f*(é) of the space of H into square-summable
functions F(t) of the variable trace. Now, We can prove that
Fz+) = F(z~) = f(z) for almost all z, so we may for fune-
tions use the symbol f instead of F. We can also always
suppose that f(x)= f(z+) = f(z~) for every z, since null sets
will not matter

23. - The set B of bricks, the saturated tribe G of spaces
and the generating vector w constitute a system of coordi-
nates in H, [§6]. Let_i’g——f f(a';) be a vector, ® a space-trace,
P its variable neighborhood. Put ¢ =29 ~'® and p =9N~'P.
The representatives of ® are descending sequences of
spaces P and the representatives of 3 a descending
sequences of half-open segments p, [§ 3]. Instead of dealing
with spaces we prefer to describe space circumstances by
the 9L~ - corresponding items in relation to the real axis.
Indeed, the space H and its $—* image [§D, 4] are isomor-
phic and isometric, so We may «identify» - the corresponding
items - just for the sake of simplicity.

23.1. - The @ - component of F is, [§6; Def. 2], the
quasi-vector

Fo :‘E.Proj pF.

We may represent it as the function f(z) depending on p

13
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and defined by

0 for z€cop

f(z) for ()€ p’

It can be denofed by_f;, and it looks like an infinitesimal
piece of the function taken on p at the trace ¢, and com

pleted a.e. oustide of p by the values 0. The ® - component
density of F is, [§ 6, Def. 2], the quasi-vector

fo(x) ar

_ Proj pF
T wP)

ell

Where ((P) = meas p.

It may be represented by «infinitesimal» function-pieces:

0 for z€co p,

5@ %:7)) for z € p. It can be denoted by ff,

The ® - component of F is, [§ 6; Def. 2], the quasi-number
F¢§@f; F), (scalar product).

Since to the vector w there corresponds the a.e. constant
function 2(z) = 1, and since to the vector wp there corre-
ponds the characteristic function Qp(z) of the interval p, we
have

(op, F) = [ 2, @) fz) dz = j f@) dz,
] p

s0 Fgp can be represented by the quasi-number

13 7 [ foas,
j »
defined for all half-open segments p, Which cover the trace ¢.
The ® - component-density of F is, [§6; Def. 2], the
quasi-number
(s, P)

w(P)

Fs a5
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Hence it can be represented by the quasi-number

1
meas p

fs o fHp) = j fiz) dz = val,f, [§4; Def. 10, i.e.

P

by the locally taken mean-value of f(z).

23.2. - If f(z) is continuous at the point z, and We consider
the two traces z7,z, (With vertex z,), [22.1], and if (a, b) is
a variable segment which covers one, or another of this
traces, with lim (b —a) =0, we get lim f¥( ¢, b)) = f(z,).

23.3. - The theorem [6; 13.b] gives
f:, ::_(:); - Fg,
which can be Written as

fo=2Q, . val,f = Q (p) _fafjdi
. ' ' meas p

The quasi-vector -Q—; may be called characteristic «functions
of the trace . If the function f(z) is continuous at z,, (com-
pare [23.2)), f, can be intuitively conceived as f(z,) 2 (p).

24. - We shall need operations on sets. In general, if
E, F are segments, and I'(x, y) is a real-valued function of
the real variables z, y, we define

T'(E, F) as the set {[(z, y)|2€E, yeF|.
Thus e.g. We have E —F ={z—y ' z€E, yE€F|,
a.E ={ax|z € E{ for any number a,

E*={z*{z€E}
We define:

E—ajr{z—a|z€El, —Ez|{—z[z€E}.

Similarly we define f'E)3F if(x) |z € E|.
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24.1. - Concerning the «difference » E — F of two sets
E, F, the following are equivalent:

L OCE—F, ILENF+ Q.

Indeed, let I. There exist z€E, y€F with O =z —y.
Taking such z and y, we get £ = y; hence ENF 0.

Let II. There exists £ € ENF. Since z —z =0, we get
O€CE—F.

24.2. - The <difference» (a, b)) — (¢, d) is always an open
segment. The difference of any two intervals is an interval.

24.3. - We have for the Lebesgue’s measure
meas E = meas [E + a] for any number a.

24.4 - For intervals E, F of any kind we have meas
(E — F) = meas E -+ meas F.

Proof. Let us close the intervals. This will not affect
the measure. Let ¢ < b, ¢ < d be the extremities of E and
F respectively.

fe<z<b c<=ysd, weget a—d<z—y<b—ec.
Hence meas (E—F)=b—c¢)—(@—d)=(b—a)+(d—c)=
= meas E | meas F.

24.6. - If k > O, then (a, bk = (ka, kb) and (a, b} (— K} =
= (— kb, — ka).

24.6. - If 0<a < b, then (a, b = (a*, b*).
If a <b <0, then (g, b = (b*, a*).

If a <0 <D, then (g, b)* is an interval with left
extremity O, its length is max (a*, b*).

24.7. - The notion of the number-valued function f(E),
or g(E, F), where E, F are intervals half closed to the right
induces the notion of symbols f(a), g(z, F), g(E, B), g(«, B),
where a, B are traces. Thus f(«) means the quasi-number f{p)
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Where p varies over all neighborhoods of «. Similarly g(, )
is the function g(p, g) Where p varies over all neighborhoods
of « and g over all neighborhoods of §.

25. - Def. We define the function &E, F) for any
intervals E, F as follows
SE, F)dzf.O whenever ENF = 0,

. _ I _ I
o(E, F) i meas (B — F)—meas Bt meas thenever ENF4D.

This function will be proved to be a good
version of Dirac’s 60— function. Notice that we
consider our 3 — function as a function of two variables.
The function generates the functions &(a, F), 3E, f), &<, )
where o, 8 are traces. (see [1.2]).

E. g. 3(— ¢, p) will mean, by definition, the quasi-
number 3 — g, p) Where g varies over all neighborhoods of
the trace ¢. Thus if ¢ = (a, b) then we take 3(— b,—a), p)
where (g, b) is the variable neighborhood of ¢.

25.0. - Remark. Concerning — ¢, We do not need to
define it. Its use, as given above, will be meaningful only.

25.1. - We have ¢(E, F) = (F, E), hence %(a, B) = 8§, «).
25.1.1. 5(E, F) =5 (— E, — F).

25.2. - Remark. The function & (E. F) of variable inter-
vals can be considered as depending only on E—F. Indeed,
let E—F=E,—F,. If ENF=Q, then, [24.1], 0€CE — F;
hence 0 € E, — F and then, [24.1], E;NF,#0. Conversely, if
E,NF,4=Q, then ENF 4=0. Consequently 5, F) = &E,, F,).

25.3. - 3(E, F) has the translation property, i.e. if a is
a number, then 3 (E 4 a, F +4 a) = ¢ (E, F).

Proof. If ENF 3= O, then 0 €E — F, [24.1], hence there
exists z with z€E, z€F. Hence z-}+a€E+ a, = + a € F+a.
Consequently z + a € (E + a)N\(F + @), Which gives (E+4a) N
(F + a)#= 8. Similarly we prove that if (E 4+ a)N(F+a)§ 0,
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we get ENF = Q. Thus 3E, F) =0 is equivalent to 8E(4-a,
F 4+ a) = 0. On the other hand we have, the measure being
Lebesguean, measE = meas(a | E), meas F = meas (a4 F).

I X I

Hence meas E 4 measF = Tneas (E 4+ a) + meas (F 4 a)°

25.4. - We have b+ —a= (b —a)t,

b——a=(b—a)".

25.6. We have for any two traces a*, b*
8 (a*, b*) =8 (a* —a, b* —a) = & (0%, (b — a)*) and

3(a*, b¥) = &(a* — a, b+ — a) = 8(0%, (b — a)7).

26. - Theor. If f(z) is a square-summable function on
O, 1), then

val.f(@) = 8% #(e, B vals f(2)] 8]

where |8| denotes the quasi-number of the measure (denoted
in [§ 4; 8] as pg).

The theorem follows from [14]. Indeed A”(a, B) = &(«, f)
and we can take [24.4] into account.

26.0. - Remark. The theorem [26] can be considered as
a corrolary of the proof of [Theor. 12], which is wmore
general. Now if we consider the proof, we can notice that,
in our case with the function 3, in the expressions 3(gix, p)
the interval p can be replaced by the interval with the
same extremities, but closed on the left. There will be only
at most two intervals g¢;; Which have a single point in
common With the changed p, and their presence or absence
will not influence the limit.

Another remark is that considering the above sums, we
can drop those gix Which have no common point with p, so
the summation may be carried out even even on suitable
subsets of W instead on W itself. Later we shall apply
this remark in proofs. We shall consider functions defined
in a sufficiently great interval (— 2, 4 A).



SUMMATION OF QUASI - VECTORS ON BOOLEAN TRIBES, ETC. 199

26.1. - Remark. The theor. [26] constitutes the main
theorem on the Dirac’s 3-function. It is the main source of
other ones. The theorem can be put into another form:

vala= f(2) =Bs; 50%F; B — a) valgf(2)|B| =

= S®33 —a; 0%) valgf(2)| .
BeW

26.2. - Remark. We have many theorems having the
shape of [26.1], e.g. From [12.1] we get by [23.3] and [20]:

7% =892, 75181 =536 HT vals |-

27. - To give precise statement of some theorem on
S-function we need the following notion, (see [27.1] Def.),
of Dirac-equivalence for quasi-numbers. First we define:

Def. Let 7;, 5; be two quasi-vectors (quasi-numbers)
with support «.

We say that [, ==, (they are equal in “limit”’) whenever
lim f(p) =1lim g(p) for. meas p — O and p covering the
trace a.

27.1. - Def. Letj(:p-a@, T?ch,an) be two functions Where
¢ is a variable trace and «, a constant trace. We say that
ﬂc},a@?—.ﬁfcp, o), <A is Dirac-equal to B» Whenever for every
continuous function h(z) in (— X 4 1) We have

SO w Ay, «,) val,h(z) | ¢ [*= S, w Blg, a,) val, k() | 9|,

Both sides are quasi-vectors with support a,.
Having these notions we are going to prove some Dirac’s
formulas on & - function.

28. — Theor. For traces ¢ we have

¥— ¢, 00) 2 5, o), 8(— g, 0-)2 3(g, O).



200 OTTON MARTIN NIKODY)
Proof. The sum
S{s.e wd(—g, 0F) val, h| |
is understood as quasi-number with support O0+:
Alp)7 S®. ., 5(— ¢, p) val, k| ¢’, which in turn, for a given
p, is the limit of, [28.1.1],

Zxé(—aur, D) va'la,,,‘ h'l Cur s

where Q, 7 {@n1, @, } i8 a completely distingunished and
special sequence for 1. 1t equals, [25.1.1],

(1) Sp3(— D, Gnx) val aup b - |ank .
Let p =(«, f). Then — p =(— B, — ). Now among a,,

there exists one and at most only one, say (a’,.x, a"na) such
that a”,, = —p and at most one only such that o',y = — .

If we drop these two intervals from every complex @,,
We get another sequence {@',} which is also completely
distinguished and special for 1. The dropped terms yield
a contribution tending to 0. By remark [26.0] if we replace
in (1) — p by (— B, —a) and drop the interval mentioned, we
get a sum Wwhich tends to

S?, w (e, 07) valyh| | = val,_h.
Thus S?.G wo(—e, 0%) val, h!9|=val _h
On the other hand
S8, 3z, 0%) val, h|g| = valg.h.

Sinee h is continuos, we have, [23.2], val ;— R valg+ h.
Thus we have proved that

&— o, 0%) 2 3, 0+), Q.E.D.
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Similarly we can prove the second thesis.
29. - Theor. ¢(z, 0=) - val, z2 0,.

Proof. Let h(z) be a continuous function in /— A, 4 A).
Consider

J =895, 0=) val, z - val,hz)  « . Since by [§ 4; 16]
val, z - val, h'z) | « | 2= val,(zh(z)) | « |, We get, by [20],
J = S®x 0=) val, ‘ak(z)). Hence, by [26],
1) = valy. (zh(z)).

On the other hand S'O,L val, h(ai) |2’ = 0,. By continuity
of h(z) we get

/'p zh(x)dz

lim -~ -— =0 and lim 0’p) =0, ‘see [21]). Hence the
meas p — o IMEAS P

theorem is proved.

30. - Theorem. If % > 0, then

1
8(k3, 0=) 2 7 3. 0=),

Proof. Let p be a neighborhood of 0= The sum
Sg'. w &(kp), p) valpfiz) « |B| is the limit of the expression

”~

(1) A 57 S8k us p) [ fla)z,

ang

Where Q, = {Qn1, Qusy,---} i8 & completely distinguished and
special sequence for 1.
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Put kz = y; We have
[fae =3 [ 1(Y)a
J z - k k y?
[ Y DPan¢

where p,; =k * @i

Hence A, = % 2:;%(Pni, D) / f (%) dy, which tends to
Pn¢
1 ® . Y
@) 7 S® 38, p) valgg(y), Where g(y) =f(;).

(2) is the quasi-number:

;c S® 3@, 0=) valgg(y)| B | = valp= g(y) = valos f (%)

For continuous functions f wWe have

lim valg-f (;) = lim valgs f(ﬂ;) = f(0). Hence we can Write

5(k8, 0=) 2 ;ca(p, 0=), Q. E.D.

82. - Theorem. If « is a trace, ¢, b numbers, then

SO . (e — a, b=) val, f(z)|a] =

= val g™ f(z) = valgt f(z4a) = vals+ flz+b).

Proof. We have by [25.5] and [25.4]:
3a — a, b=) = ¥, b= + a) = &, (b + a)=). Hence our theo-
rem is equivalent to
S® . 5(a, (b + 6)=) val, f(z) | & | = val,4s+ f(z). This however
follows from [26]. Let (', b”) be the variable neighborhood
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of b= ; then (a 4 b, a 4 b”) is the variable neighborhood of
(@ 4 b)x=. The quasi-number valgis=f is defined by

1 4"
1) - [ flz)dz.
a+4-b’

b

Put z = y + a. Then (1) equals [ fly + o) dy which defines
v

valy= f(z + a).
38. - Theorem. If a > 0 and < is a variable trace, then

1
5 — a?, 0=x) 2 g [8(x — a, 0%) 4 8(x + @, 0=)].

Proof. The expression 3(t* — a?, 0=) is defined, [24 and
1.2], as a number-valued function of two intervals p and q
Where p is a variable neighborhood of 0= and g a variable
neighborhood of t. Consider the sum

(1) S®w 8(x* — a?, 0=) val. fz) - | 7|,

where f(z) is a continuous function. (1) is defined as the
quasi-number A(p) with support 0=:

A(p) = S."WB(":z —a’, p)val . f- I T I'

Now A(p) is the limit of the following sum

@ Sxd(g,3 — a*, p) valy, [ | quk|,

Where Qu = {Qu1, Qnz ...} i8 a completely distinguished and
special sequence of complexes for 1.

The intervals g.« are disjoint, so there exists at most
one interval, — denote it by (22"}, — such that 2 <0 < 2.
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All other intervals g.x can be devided into two classes;
the first will contain all those (z'x, 2"x) for which

0<a%x < 2'k;

to the second all those (y'x, y”x) for which ¢ <y"x =0.
The sum (2) can be written as

Sk8((@'k, 2'k) — a%, p)e Val@r, w1, [ @'— o +
+ 3(2, 2")* — a?, p) - valiy, guy fo(2"— 2)) +
2.1) 4 S8k v — 0% p) - Valy, yrpF @ — Y).
Hence, by [24.6], the expression equals

x”h

3) S8z — a?, 7 —a®) p) f flx)dz +
x'x

-

+ 50, maxts), ), 9)- [ flaz +

Y%
k
+ S\(By2 —a?, y2—a®) p)- j f(z)dz.
Y

‘We shall transform the first term of (3) by changing the

variable = as follows.
Put 7T — a®. We have z* = a® 4 u and 2zdz = du. Put
u'y T a®, u'y 7 7,2 — a*. We have, since all 2/, ", are

non positive,

gk = —Vui + &, i =—Vui +a*.
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Hence

du
— 2fu + a*

x"k u''y
) ff(x)dx = —ff(— la* + u) -

The formula (4) holds true, even if uy = 0. Consequently
the first term in (3) can be Wwritten:

"

"k

(5) — 2 5({1&%, u;c)r ) tj’%__l_i—uu) dua =
Uk

= X o((uk, ux), p)- Val(u",‘, wy 9—(4),

where

T2 4
(6) g_(u) F f(———'m for u > —ad®.

2Va* + u
Concerning (9) let us remark that the transformation
z=—fu+a*, 2*—d*=u,

is one to one and monotonic non increasing, transforming
the interval

) —oo < <0 into —oc<u<—a’.

If we take meas p < (—1, the interval p will belong to

the set (7).

In the sum (5) only those terms may not disappear for
which (ux ux)-p4+Q.

Hence we can confine the sum (5) only to terms for which

—aa ” ’ a2
<uk <‘u]¢ <§.

2

-
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In the interval

e
N2’ 2/

the function g_(u) is continuous.
If we take account of remark [26.0], we can change in (5)

& wk, uk), p) into d((u¥, ux), p).

Hence, by [26], the limit of the sum (5) is the quasi-
-number valy- g_(u).
Thus we have proved, that the first term in (2.1) tends to

(8) valge g_(u),

where g_(u) is defined in (6).

Now, consider the third term in (2.1), hence in (3). We
shall use the transformation v = z* —a?, z=Vv + a?, ...(9)
since all y'x, y"x are non negative. The transformation (9)
is 1—1 and monotone non decreasing. It transforms the
interval 0 <z <oointo —a* =v <oco. We put v’y 57y} —a’,
Y'x 3 Y’ — o® and We have y'y = v’y + &, y"x =Vv"x+ o'

Hence
[ eEw
e+ v
, f(:c)dxzj W dv,
Y's vy

Hence the third term in (3) equals

e+ v)

(10) Zx¥((V'x, v'a) D) 2Ya + v dv.
V'
"2 1 a0
48)) If we put g, (v)3 IM

af 2Va* + v ’
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We get, by argunment similar to the above omnes, that (10)
tends to

(12) valgs g4 (u).
Since the functions g, and g_ are both continuous at 0,

f )

the limit value of valy. g, equal to g, (0) ='3—, because a>0.

Similarly we have the limit value of valODrg_ equal to

g-(0) = i(-—a) .

2a

There remains the second term in {3) and (2.1) to be
considered :

2

¢(0, max (¢ 2")) — a?, p). [ fixydz where 7 <0 < 2.

ry

/@ a*\

For p chosen in N and sufficiently small intervals

Qnk, the intervals p and (0, max (2'2")) do not overlap, so the
term considered vanishes. Thus this term does not contri-
bute anything to the limit. We have proved that

S8, w izt — a2, 0=) val.fz) ||
fla)+ f(—a)
2a

has the limit value
Now We have from [32] that
S®35(: — a, 0=) val.fz) | t| = valy= f(z + @) = f(a) and
S®5(z + a, 0=) val. f(z) | = | = valy- fiz — a) 22 fi— a).

Consequently

S. [a(t_av 05:);;5(1 + a, Ot)] valf(:;:)it | 1;!11 f(a) +2f(—a)’

which completes the proof.
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34. Theor. If £ is a variable trace and «, a fixed trace,
then for every continuous function f(z) we have

val,, f « &(a, )2 valsf- &z, 8
Proof. Take a continuous function hi(z). We have
S, - val; h-val,, f5aB) |B| = val,, - S® 1 val, he&(@e3) |8 =)
1) by [26], = val., f - val,, .
S®w valak - val.f-8(z,8) | B| =,
by [§4; 16),
=S% wvala (hf) - 3(2eB) 18] =,  [26],
= val, (#f).

Since f, h are continuous, We have for a variable neigh-
borhood p of a, with meas p— 0: the limit value of val,f
is f(vert «), that of val, h is h(vert ay) and that of val,(fh) is
f(vert ay) « h(verta,), so the theorem is proved.

311 - Remark. We can state the theorem as follows:
val, f- &, — vert B, 0=)2 val; f - &(ay — vert 3, 0=)
which looks like the Dirac’s formula:
fla)é(a — b) = [(b)e(a — ;.

33. - Theorem. If 7, is a fixed trace and « a variable
trace, then

S wd(@, B) 3B, 1) Bl =8, Yo)-

Proof. We shall confine ourselves to a sketch of the
proof. Let h(z) be a continuos function. We shall compare
the expression

¢) S w S w 32, B) 2@, 1o |B] valsh.|a]
2) with S®, v 3=, yo) val, k|a]|.

Since Sp.;_; w 5(“, ﬁ) E(ﬁs i)) l p : ’
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where p is a neighborhood of y,, is a function F{a, ¥,), the
expression (1) has the form:

Sa‘.a w F(a, v,) val he|a .

Hence, by [§ 4], it is a quasi-number with support y,, so
we evaluate the sum by taking a neighborhood I' of y, and
consider the sum

3) S® yw P, T) val, |al,

which in turn is the limit of

4 F,[T) af Zk Flaur, I) valank h. | [ P [ ,

where A"E{ Oniy Omzy ...} i8 a completely distinguished and
special sequence of complexes for 1. (4) is a function of T.

®) Now Flaur, I) = S 1w 8(an 8) 38, I)|B];

?

hence (4) can be written:

6) Ful) = Z [SE. 1 (oue B) 33, I')+ [B]] val, h+|am]|.
0 The sum Sg.awa(lnk, B) a3, I)-|Bi

is just the sum of a total set of quasi-numbers, so it is a
limit of the sum:

®) Gy, m(l) ffzf &k Bmj) OBms L)« Bmils

where Bm 57 {Bmi, Pmsz, ...} is a completely distinguished and
special sequence of complexes for 7. We recall that G has
no atoms, hence for any special sequence of complexes,
the net number tends to 0. It follows that if the intervals
I' and «.x after closure are disjoint, then for sufficiently
great m, all terms in (8) will vanish and hence the sum (7)
will be equal O.

Hence the sum (6) can be restricted to only those nk
for which TN a,x = ®. Hence it can be restricted to ext

14
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(Aw) T. (see [Def. 16]). If T Nau 3= O, the corresponding
term in (8) will be

1 1

9 - . - il
) A sk

and the summation in (8) can be taken over all B,; Where
Bui NC =8 and at the same time Bu; Nam = Q.
The sum of these terms in (9) can be written:

1 1 1
T Bl e —— o X - .
Jlﬂ 1] Iankl IP!+ 1'?’#' |“nk|+l3mi|

_r o1

[Bms| + 1T [ame] « [T]V
To the given n the factor in braces is small for suffi-
ciently great m, and X;| ;| Will exceed meas (I'Na,x) by a
small quantity for sufficiently great m, so the last term

will be small.
Hence (7), i.e. the limit of the expression (8) will be

[ au | 4 €

[ [« where ¢,—0.
nk !

It follows that the expression (6), i.e.

F..(I‘): IlaI:TII—'-e" vala“h|a,.k[,

where the summation is extended over all a,x With ﬁf‘:i:@,
It differs but a little from

(10) [ #, hence from f L — val, k.

n k

II‘I

Concerning (3, yv,) We have

11 Sacw 3@, vo) valh|a|=val,h,
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From (10) and (11) the theorem follows.

36. - Remark. We have proved several theorems concerning
the function 3(«, f), where a, § are traces. We believe that
the Dirac’s delta function should be defined as a fanction
of two variables, since it is like an integral-equation—
kernel. We believe that our &-function should replace the
genuine & - function introduced by Dirac, (33), p. 58 and 60:

1. [a(x)dz= 1 1. S, B)|B|=1,.

2. flx) = [ & —vy) fly)dy. 2. val, f(:;:) =
= SP5(«, B) vale fiz) | B |-

3. 35— 2) = 8(x). 3. 85—, 0=)2 5, 0=).
4. z5(z) = 0. 4. ¥a, 0=x)val,z 20,.
1 1
5. ¥az) = p &), (@ > 0). 5. 3k, 0=) 2 7 38, 0=)%>0).

1 1
6. 3" —d) =5 [Bz—a)+ 6.5 —d, 0=)25 [5(c —

+ 8z + a)], (@ > 0). — g, 0=) 4+ 5 (x + q, 0=)],
{a >0)
7. / Sa—z)dede —b) = 7. SPa)|B| 3B, Yo) 2 &a,Yo)-
= 8@ — D).

8. f(z)8(z — a) = f(@)3(z — a). 8. val,f(z)8(aof)2valef(z)5(aoP).

In addition to that, 5(x, §) behaves like a fanction of the
difference of variables, since 3(«, §) has the translation pro-
perty [25.3].

Concerning the equality 2, it seems to be in agreement
with Dirac’s remark (33) p. 60: <« The meaning of any of
these equation is that its two sides give equivalent results
as factors of an integral-.
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Concerning val,f(z) — this is an «<ideal» average value
which physicist approach by taking the average values
from measurment made with more and more precise
istruments,

8%. - We like to remark that various statements on the
modified, genunine function 3«, ) can be generalized to the
case wWhere bricks are half open rectangles-or even half
open hypercubes in n-dimensional space with Lebesgue’an
measure admitted.

1)

2)

3)

(4)
(%)

(6)

)
(8)

9)

(10)

(11)
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