@article{RSMUP_1949__18__311_0,
author = {Bagchi, Haridas},
title = {Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$},
journal = {Rendiconti del Seminario Matematico della Universit\`a di Padova},
pages = {311--315},
publisher = {Seminario Matematico of the University of Padua},
volume = {18},
year = {1949},
zbl = {0033.01202},
language = {en},
url = {http://www.numdam.org/item/RSMUP_1949__18__311_0/}
}
TY - JOUR
AU - Bagchi, Haridas
TI - Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1949
SP - 311
EP - 315
VL - 18
PB - Seminario Matematico of the University of Padua
UR - http://www.numdam.org/item/RSMUP_1949__18__311_0/
LA - en
ID - RSMUP_1949__18__311_0
ER -
%0 Journal Article
%A Bagchi, Haridas
%T Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$
%J Rendiconti del Seminario Matematico della Università di Padova
%D 1949
%P 311-315
%V 18
%I Seminario Matematico of the University of Padua
%U http://www.numdam.org/item/RSMUP_1949__18__311_0/
%G en
%F RSMUP_1949__18__311_0
Bagchi, Haridas. Note on the two congruences $ax^2 + by^2 + e \equiv 0$, $ax^2 + by^2 + cz^2 + dw^2 \equiv 0 \: (\text{mod. } p)$, where $p$ is an odd prime and $a \lnot \equiv 0$, $b \lnot \equiv 0$, $c \lnot \equiv 0$, $d \lnot \equiv 0 \: (\text{mod. } p)$. Rendiconti del Seminario Matematico della Università di Padova, Tome 18 (1949), pp. 311-315. http://www.numdam.org/item/RSMUP_1949__18__311_0/