Aspects méthodologiques du modèle INDSCAL
Revue de Statistique Appliquée, Tome 54 (2006) no. 2, pp. 83-100.
@article{RSA_2006__54_2_83_0,
     author = {Husson, F. and Pag\`es, J.},
     title = {Aspects m\'ethodologiques du mod\`ele {INDSCAL}},
     journal = {Revue de Statistique Appliqu\'ee},
     pages = {83--100},
     publisher = {Soci\'et\'e fran\c{c}aise de statistique},
     volume = {54},
     number = {2},
     year = {2006},
     language = {fr},
     url = {http://www.numdam.org/item/RSA_2006__54_2_83_0/}
}
TY  - JOUR
AU  - Husson, F.
AU  - Pagès, J.
TI  - Aspects méthodologiques du modèle INDSCAL
JO  - Revue de Statistique Appliquée
PY  - 2006
SP  - 83
EP  - 100
VL  - 54
IS  - 2
PB  - Société française de statistique
UR  - http://www.numdam.org/item/RSA_2006__54_2_83_0/
LA  - fr
ID  - RSA_2006__54_2_83_0
ER  - 
%0 Journal Article
%A Husson, F.
%A Pagès, J.
%T Aspects méthodologiques du modèle INDSCAL
%J Revue de Statistique Appliquée
%D 2006
%P 83-100
%V 54
%N 2
%I Société française de statistique
%U http://www.numdam.org/item/RSA_2006__54_2_83_0/
%G fr
%F RSA_2006__54_2_83_0
Husson, F.; Pagès, J. Aspects méthodologiques du modèle INDSCAL. Revue de Statistique Appliquée, Tome 54 (2006) no. 2, pp. 83-100. http://www.numdam.org/item/RSA_2006__54_2_83_0/

Borg I., & Groenen P. ( 1997), Modem Multidimensional Scaling : theory and applications, Berlin : Springer-Verlag. | MR

Carroll J.D. & Chang J.J. ( 1970), Analysis of individual differences in multidimensional scaling via an N-way generalization of «Eckart-Young» decomposition, Psychometrika, 35 : 283-319. | Zbl

D'Aubigny G. ( 1998), Vers un renouveau des méthodes de positionnement multi-dimensionnel, 4e journées MODULAD organisées par le CISIA.

Gower J.C. ( 1966), Some distance properties of latent root and vector methods in multivariate analysis, Biometrika, 53, 325-338. | MR | Zbl

Husson F. & Pagès J. ( 2005, SOUS PRESSE), Indscal Model : geometrical interpretation and methodology, Computational Statistics and Data Analysis.

Kiers H.A.L. ( 1989), A Computational Short-Cut for INDSCAL with Orthonormality Constraints on Positive Semi-Definite Matrices of Low Rank, Computational Statistics Quartely, 5, 119-135. | Zbl

Kiers H.A.L. ( 1997), A modification of the SINDCLUS algorithm for fitting the ADCLUS and INDCLUS models, Journal of classification, 14, 297-310. | Zbl

Kroonenberg P.M. ( 1983), Three mode principal component analysis : Theory and applications, Leiden : DSWO press.

Robert P. et Escoufier Y. ( 1976), A Unifying Tool for Linear Multivariate Statistical Methods : the RV-Coefficient, Applied Statistics, 29 (3), 257-265. | MR

Schiffman S.S., Reynolds M.L. & Young F.W. ( 1981), Introduction to Multidimensional Scaling, Academic Press.

Takane Y., Young F.W. & De Leeuw J. ( 1977), Nonmetric individual differences multidimensional scaling : an alternating least square method with optimal scaling features, Psychometrika, 42, 7-67. | Zbl

Ten Berge J.M.F. & Kiers H.A.L. ( 1991), Some clarification of the CANDE-COMP algorithm applied to INDSCAL, Psychometrika, 56 : 317-326. | MR | Zbl

Ten Berge J.M.F., Kiers H.A.L. & Krijnen W.P. ( 1993), Computational Solutions for the problem of Negative Saliences and Nonsymmetry in INDSCAL, Journal of classification, 10 : 115-124. | Zbl

Torgerson W. S. ( 1958), Theory and Methods of Scaling, Wiley, New York.

Trendafilov N. ( 2004), Orthonormality-constrained INDSCAL with Nonnegative Saliences. Full and Off-diagonal Fitting, Computational Science and Its Applications, 3044 / 2004 pp 952-960, Springer-Verlag Heidelberg. | MR | Zbl