@article{RSA_1999__47_3_81_0, author = {Morgan, Robert C. and Nason, G. P.}, title = {Wavelet shrinkage of itch response data}, journal = {Revue de Statistique Appliqu\'ee}, pages = {81--98}, publisher = {Soci\'et\'e fran\c{c}aise de statistique}, volume = {47}, number = {3}, year = {1999}, language = {en}, url = {http://www.numdam.org/item/RSA_1999__47_3_81_0/} }
TY - JOUR AU - Morgan, Robert C. AU - Nason, G. P. TI - Wavelet shrinkage of itch response data JO - Revue de Statistique Appliquée PY - 1999 SP - 81 EP - 98 VL - 47 IS - 3 PB - Société française de statistique UR - http://www.numdam.org/item/RSA_1999__47_3_81_0/ LA - en ID - RSA_1999__47_3_81_0 ER -
Morgan, Robert C.; Nason, G. P. Wavelet shrinkage of itch response data. Revue de Statistique Appliquée, Tome 47 (1999) no. 3, pp. 81-98. http://www.numdam.org/item/RSA_1999__47_3_81_0/
[1] Wavelets: introduction to wavelets and wavelet transforms. Prentice Hall, Englewood Cliffs, NJ.
, (1997).[2] Translation-invariant de-noising. In A. Antoniadis and G. Oppenheim, editors, Wavelets and Statistics: Proceedings of the XVth Rencontres Franco-Belges des Statisticiens., volume 103 of Lecture Notes in Statistics. Springer-Verlag. | MR | Zbl
, (1995).[3] Ten Lectures on Wavelets. SIAM, Philadelphia. | MR | Zbl
(1992).[4] Ideal spatial adaptation by wavelet shrinkage. Biometrika, 81(3): 425-55. | MR | Zbl
, (1994).[5] Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Ass., 90: 1200- 1224. | MR | Zbl
, (1995).[6] Wavelet shrinkage: asymptopia? (with discussion. J. R. Statist. Soc. B, 57: 301-337. | MR | Zbl
, , , (1995).[7] Iontophoresis. In S. Licht, editor, Therapeutic Electricity and Ultraviolet Radiation, pages 156- 178. Elizabeth Licht, New Haven.
(1967).[8] Wavelet threshold estimators for data with correlated noise. J. R. Statist. Soc. B, 59: 319-351. | MR | Zbl
, (1997).[9] Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds. (submitted for publication). | MR | Zbl
(1998).[10] Wavelet thresholding for unequally spaced data. PhD thesis, Department of Mathematics, University of Bristol, Bristol, UK.
(1998).[11] A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and MAchine Intelligence, 11(7): 674- 693. | Zbl
(1989).[12] Wavelets and Operators. Cambridge University Press, Cambridge. | MR | Zbl
(1992).[13] The discrete wavelet transform in s. Journal of Computational and Graphical Statistics, 3: 163-91.
, (1994).[14] Image denoising: pointwise adaptive approach. Technical report, Weierstrass Institute for Applied Analysis and Stochastics.
(1998).