De la régression logistique vers un modèle additif généralisé : un exemple d'application
Revue de Statistique Appliquée, Tome 43 (1995) no. 2, pp. 77-90.
@article{RSA_1995__43_2_77_0,
     author = {Cans, C. and Lavergne, C.},
     title = {De la r\'egression logistique vers un mod\`ele additif g\'en\'eralis\'e : un exemple d'application},
     journal = {Revue de Statistique Appliqu\'ee},
     pages = {77--90},
     publisher = {Soci\'et\'e de Statistique de France},
     volume = {43},
     number = {2},
     year = {1995},
     language = {fr},
     url = {http://www.numdam.org/item/RSA_1995__43_2_77_0/}
}
TY  - JOUR
AU  - Cans, C.
AU  - Lavergne, C.
TI  - De la régression logistique vers un modèle additif généralisé : un exemple d'application
JO  - Revue de Statistique Appliquée
PY  - 1995
SP  - 77
EP  - 90
VL  - 43
IS  - 2
PB  - Société de Statistique de France
UR  - http://www.numdam.org/item/RSA_1995__43_2_77_0/
LA  - fr
ID  - RSA_1995__43_2_77_0
ER  - 
%0 Journal Article
%A Cans, C.
%A Lavergne, C.
%T De la régression logistique vers un modèle additif généralisé : un exemple d'application
%J Revue de Statistique Appliquée
%D 1995
%P 77-90
%V 43
%N 2
%I Société de Statistique de France
%U http://www.numdam.org/item/RSA_1995__43_2_77_0/
%G fr
%F RSA_1995__43_2_77_0
Cans, C.; Lavergne, C. De la régression logistique vers un modèle additif généralisé : un exemple d'application. Revue de Statistique Appliquée, Tome 43 (1995) no. 2, pp. 77-90. http://www.numdam.org/item/RSA_1995__43_2_77_0/

[1] Antoniadis, A., Berruyer, J. et Carmona, R. (1992) Régression non linéaire et applications. Economica, Paris.

[2] Bonneu, M. et Lavergne, C. (1992) Bootstrap and Asymptotic prediction criterion estimate for binomial proportions in insemination data. Biometrical Journal 34 -1, p. 69-79

[3] Breiman, L. and Friedman, J.H. (1985) Estimating optimal transformations for multiple regression and correlation (with discussion. J. Am. Statist. Assoc. 80, p. 580-619. | MR | Zbl

[4] Bunke, O. and Droge, B. (1984) Bootstrap and cross validation estimates of the prediction error for linear regression models. Ann. Statistics 13, p. 1400-1424. | MR | Zbl

[5] Cans, C., Cohen, O. et coll. (1993) Human reciprocal translocations : is the unbalanced mode at birth predictable? Human Genetic 91, p. 228-232.

[6] Cans, C. et coll. (1993) Logistic regression model to estimate the risk of viable unbalanced offspring in reciprocal translocations. Human Genetic 92, p. 598-604.

[7] Cans, C. et coll. (1994) Application of G.A.M. in modelisation adverse outcome in reciprocal translocations. Soumis à Genetic Epidemiology.

[8] Chambers, J. and Hastie, T. (1991) Statistical models in S. Chapman & Hall, New York.

[9] Cohen, O. et coll. (1992) Human reciprocal translocations : a new computer system for genetic counseling. Ann. Génét. 35, p. 193-201.

[10] Cohen, O. et coll. (1994) Viability thresholds for partial trisomies and monosomies. A study of 1159 viable unbalanced translocations. Human Genetic 93, p. 188-194.

[11] Flack, M. and Chang, S. (1987) Frequency of selecting noise variable in subset regression analysis : a similation study. Am Statistician 41, p. 84-86.

[12] Greenland, S. (1989) Modeling and variable selection in epidemiologic analysis. Am. J. Public Health 79, p. 340-349.

[13] Hastie, T. and Tibshirani, R. (1986) Generalized additive models (with discussion Statist. Sci. 1, p. 297-318. | MR | Zbl

[14] Hastie, T. and Tibshirani, R. (1990) Generalized additive models. Chapman & Hall, New York. | MR | Zbl

[15] Hosmer, D.W. and Lemeshow, S. (1989) Applied logistic regression. John Wiley & sons, New York. | Zbl

[16] Jennings, D.E., (1986) Outliers and residual distributions in logistic regression. J. Am. Statist. Assoc. 81, p. 987-990. | MR | Zbl

[17] Landwehr, J., Pregibon, D. and Shoemaker, A.C. (1984) Graphical methods for assessing logistic regression models. J. Am. Statist. Assoc. 79, p. 61-71. | Zbl

[18] Mac Cullagh, P. and Nelder, J.A. (1989) Generalized linear models. Chapman & Hall, London. | Zbl

[19] Pregibon, D., (1981) Logistic Regression Diagnostics. Ann. Statistics 9, p. 705-724. | MR | Zbl

[20] Whittaker, J. (1989) Graphical Models in Applied Multivariate Statistics. John Wiley & sons, New York. | MR | Zbl