@article{RSA_1993__41_2_43_0, author = {Dorkenoo, K. M. M. and Mathieu, J.-R.}, title = {\'Etude d'un mod\`ele factoriel d'analyse de la variance comme mod\`ele lin\'eaire g\'en\'eralis\'e}, journal = {Revue de Statistique Appliqu\'ee}, pages = {43--57}, publisher = {Soci\'et\'e de Statistique de France}, volume = {41}, number = {2}, year = {1993}, mrnumber = {1253515}, zbl = {0972.62534}, language = {fr}, url = {http://www.numdam.org/item/RSA_1993__41_2_43_0/} }
TY - JOUR AU - Dorkenoo, K. M. M. AU - Mathieu, J.-R. TI - Étude d'un modèle factoriel d'analyse de la variance comme modèle linéaire généralisé JO - Revue de Statistique Appliquée PY - 1993 SP - 43 EP - 57 VL - 41 IS - 2 PB - Société de Statistique de France UR - http://www.numdam.org/item/RSA_1993__41_2_43_0/ LA - fr ID - RSA_1993__41_2_43_0 ER -
%0 Journal Article %A Dorkenoo, K. M. M. %A Mathieu, J.-R. %T Étude d'un modèle factoriel d'analyse de la variance comme modèle linéaire généralisé %J Revue de Statistique Appliquée %D 1993 %P 43-57 %V 41 %N 2 %I Société de Statistique de France %U http://www.numdam.org/item/RSA_1993__41_2_43_0/ %G fr %F RSA_1993__41_2_43_0
Dorkenoo, K. M. M.; Mathieu, J.-R. Étude d'un modèle factoriel d'analyse de la variance comme modèle linéaire généralisé. Revue de Statistique Appliquée, Tome 41 (1993) no. 2, pp. 43-57. http://www.numdam.org/item/RSA_1993__41_2_43_0/
[1] Maximum likelihood estimation of parameters subject to restrictions. Annals of Math. Stat. 29, pp. 813 | MR | Zbl
, (1958).[2] Mean square error of prediction as criterion selecting variables. Technometrics 13, pp. 469 | Zbl
(1971).[3] The relationship between variable selection and data augmentation and method of prediction. Technometrics 16, pp. 125 | MR | Zbl
(1974).[4] Testing the rank of a matrix with applications to the analysis of interaction in ANOVA. J.A.S.A. 81, pp. 243 | MR | Zbl
(1986).[5] Reduced-rank models for interaction in unequally replicated two-way classifications. Journal of Multivariate Analysis 28, pp. 69 | MR | Zbl
(1989).[6] Simultaneous statistical inference on interactions in two-way analysis of variance. J.A.S.A. 68, pp. 428 | MR | Zbl
, (1974).[7] Asymptotic variances for the multiplicative interaction model. Journal of Applied Statistics, Vol. 18, N° 3, pp. 331
, (1991).[8] Multiplicative effects in two-way analysis of variance. Statistica Neerlandica 26, pp. 61 | MR | Zbl
, (1972).[9] Ajustements de modèles linéaires et bilinéaires sous contraintes linéaires avec données manquantes. R.S.A. Vol. 39 N° 2, pp. 5- 24 | Numdam
(1991).[10] Etude de modèles avec interaction multiplicative en analyse de la variance. Thèse N.R. Toulouse-France
(1992).[11] Algorithmic Approaches for Fitting Bilinear Models Computational Statistics, Physica-Verlag, pp. 77- 82
, (1992).[121 Least squares approximation of matrices by additive and multiplicative models. J.R.S.S. série B, 40, pp. 186 | MR | Zbl
(1978).[13] A statistical model wich combines features of factor analysis and anova techniques. Psychometrika 33, pp. 73 | MR | Zbl
(1968)[14] The analysis of non-additivity in two-way analysis of variance. J.A.S.A. 85, pp. 139 | MR | Zbl
, (1990).[15] On analyzing two-way analysis of variance data with interaction. Technometrics 18, pp. 273 | Zbl
, (1976)[16] On analysis of a two-may model with interaction and no replication. J.A.S.A. 67, pp. 862 | MR | Zbl
, (1972).[17] Some new multiple comparison procedures for two-way anova model with interaction. Biometrics 32, pp. 929 | MR | Zbl
(1976).[18] Inference of interaction in two-way classification model. Handbook of Statistics, Vol. 1, pp. 973 | Zbl
, (1980).[19] Some comments on Cp. Technometrics 15, pp. 661 | Zbl
(1973).[20] The partitioning of interaction in analysis of variance. Journal of Research - National Bureau of Standard, B.73 | MR | Zbl
(1969).[21] Distribution of eigenvalues of covariance matrices of residuals in analysis of variance. Journal of Research - National Bureau of Standard, B.74, pp. 149 | MR | Zbl
(1970).[22] A new analysis of variance model for non-additive data. Technometrics 13, pp. 1 | Zbl
(1971).[23] Tests of χ2 in the generalized linear model. Statistics Vol. 12, 4, pp. 509 | Zbl
(1981).[24] Generalized linear models. J.R.S.S. série A, 135, pp. 370
, (1972).[25] Propriétés optimales de certains estimateurs d'interaction en analyse de la variance. Thèse 3e cycle Grenoble, France
(1982).[26] On the distributions of the ratios of the extreme roots to the trace of the Wishart matrix. Journal of Multivariate Analysis 3, pp. 445 | MR | Zbl
, , (1973).[27] One degree of freedom for non-additivity. Biometrics Vol. 5, pp. 232
(1949).[28] The interpretation of interactions in factorials experiments. Biometrika 39, pp. 65 | MR | Zbl
(1952).