The problem is to modify the capacities of the arcs from a network so that a given feasible flow becomes a maximum flow and the maximum change of the capacities on arcs is minimum. A very fast
Mots-clés : inverse combinatorial optimization, maximum flow, strongly polynomial time complexity
@article{RO_2008__42_3_401_0, author = {Deaconu, Adrian}, title = {The inverse maximum flow problem considering $l_{\infty }$ norm}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {401--414}, publisher = {EDP-Sciences}, volume = {42}, number = {3}, year = {2008}, doi = {10.1051/ro:2008017}, mrnumber = {2444495}, language = {en}, url = {https://www.numdam.org/articles/10.1051/ro:2008017/} }
TY - JOUR AU - Deaconu, Adrian TI - The inverse maximum flow problem considering $l_{\infty }$ norm JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2008 SP - 401 EP - 414 VL - 42 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro:2008017/ DO - 10.1051/ro:2008017 LA - en ID - RO_2008__42_3_401_0 ER -
%0 Journal Article %A Deaconu, Adrian %T The inverse maximum flow problem considering $l_{\infty }$ norm %J RAIRO - Operations Research - Recherche Opérationnelle %D 2008 %P 401-414 %V 42 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ro:2008017/ %R 10.1051/ro:2008017 %G en %F RO_2008__42_3_401_0
Deaconu, Adrian. The inverse maximum flow problem considering $l_{\infty }$ norm. RAIRO - Operations Research - Recherche Opérationnelle, Tome 42 (2008) no. 3, pp. 401-414. doi : 10.1051/ro:2008017. https://www.numdam.org/articles/10.1051/ro:2008017/
[1] Network Flows. Theory, Algorithms and Applications, Prentice Hall, Englewood Cliffs, NJ (1993). | MR | Zbl
, and ,[2] Combinatorial Algorithms for Inverse Network Flow Problems, Networks (2002). | MR | Zbl
and ,[3] Inverse Optimization, Working Paper, Sloan School of Management, MIT, Cambridge, MA (1998).
and ,[4] Sequential and Parallel Algorithms for Minimum Flows, J. Appl. Math. Comput. 15 (2004) 53-75. | MR | Zbl
and ,[5] Inverse Minimum Flow Problem, J. Appl. Math. Comp., Korea 23 (2007) 193-203. | MR | Zbl
and ,[6] The Inverse Maximum Flow Problem with Lower and Upper Bounds for the Flow, to appear in YUJOR 18 (2008). | MR | Zbl
,[7] A Cardinality Inverse Maximum Flow Problem, Scientific Annals of Computer Science XVI (2006) 51-62. | Zbl
,[8] Inverse Combinatorial Optimization: A Survey on Problems, Methods, and Results, J. Combin. Optim. 8 (2004) 329-361. | MR | Zbl
,[9] Inverse Maximum Flow Problems under Weighted Hamming Distance, J. Combin. Optim. 12 (2006) 395-408. | MR | Zbl
and ,[10] Solving Inverse Spanning Tree Problems through Network Flow Techniques, Oper. Res. 47 (1999) 291-298. | MR | Zbl
, and ,[11] An Inverse Maximum Capacity Path Problem with Lower Bound Constraints, Acta Math. Sci., Ser. B 22 (2002) 207-212. | MR | Zbl
and ,[12] Inverse Maximum Flow and Minimum Cut Problems, Optimization 40 (1997) 147-170. | MR | Zbl
, and ,[13] Inverse Problems of Minimum Cuts, ZOR-Math. Methods Oper. Res. 47 (1998) 51-58. | MR | Zbl
and ,Cité par Sources :