This paper presents a feasible primal algorithm for linear semidefinite programming. The algorithm starts with a strictly feasible solution, but in case where no such a solution is known, an application of the algorithm to an associate problem allows to obtain one. Finally, we present some numerical experiments which show that the algorithm works properly.
Mots clés : linear programming, semidefinite programming, interior point methods
@article{RO_2007__41_1_49_0, author = {Benterki, Djamel and Crouzeix, Jean-Pierre and Merikhi, Bachir}, title = {A numerical feasible interior point method for linear semidefinite programs}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {49--59}, publisher = {EDP-Sciences}, volume = {41}, number = {1}, year = {2007}, doi = {10.1051/ro:2007006}, mrnumber = {2310539}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro:2007006/} }
TY - JOUR AU - Benterki, Djamel AU - Crouzeix, Jean-Pierre AU - Merikhi, Bachir TI - A numerical feasible interior point method for linear semidefinite programs JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2007 SP - 49 EP - 59 VL - 41 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro:2007006/ DO - 10.1051/ro:2007006 LA - en ID - RO_2007__41_1_49_0 ER -
%0 Journal Article %A Benterki, Djamel %A Crouzeix, Jean-Pierre %A Merikhi, Bachir %T A numerical feasible interior point method for linear semidefinite programs %J RAIRO - Operations Research - Recherche Opérationnelle %D 2007 %P 49-59 %V 41 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro:2007006/ %R 10.1051/ro:2007006 %G en %F RO_2007__41_1_49_0
Benterki, Djamel; Crouzeix, Jean-Pierre; Merikhi, Bachir. A numerical feasible interior point method for linear semidefinite programs. RAIRO - Operations Research - Recherche Opérationnelle, Tome 41 (2007) no. 1, pp. 49-59. doi : 10.1051/ro:2007006. http://www.numdam.org/articles/10.1051/ro:2007006/
[1] Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5 (1995) 13-51. | Zbl
,[2] Primal-dual interior point methods for semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim. 8 (1998) 746-768. | Zbl
, and ,[3] Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10 (2000) 443-461. | Zbl
, and ,[4] The projective method for solving linear matrix inequalities. Math. Program. 77 (1997) 163-190. | Zbl
, ,[5] An interior point method for semidefinite programming. SIAM J. Optim. 6 (1996) 342-361. | Zbl
, , and ,[6] Interior point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7 (1997) 86-125. | Zbl
, and ,[7] Interior point polynomial algorithms in convex programming. SIAM Stud. Appl. Math. 13, Society for Industrial and applied Mathematics (SIAM), Philadelphia, PA (1994). | MR | Zbl
and ,[8] Extension of Karmarkar's algorithm onto convex quadratically constrained quadratic problems. Math. Program. 72 (1996) 273-289. | Zbl
and ,[9] Semidefinite programming. Math. Program. 77 (1997) 105-109. | Zbl
and ,[10] Strong duality for semidefinite programming. SIAM J. Optim. 7 (1997) 641-662. | Zbl
, and ,[11] Positive definite programming. SIAM Rev. 38 (1996) 49-95. | Zbl
and ,[12] G.-P.-H. Styan, Bounds for eigenvalues using traces. Linear Algebra Appl. 29 (1980) 471-506. | Zbl
,[13] http://infohost.nmt.edu/ sdplib/
Cité par Sources :