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Abstract. In the present paper a complete procedure for solving
Multiple Objective Integer Linear Programming Problems is presented.
The algorithm can be regarded as a corrected form and an alternative
to the method that was proposed by Gupta and Malhotra. A numeri-
cal illustration is given to show that this latter can miss some efficient
solutions. Whereas, the algorithm stated bellow determines all efficient
solutions without missing any one.

Keywords. Multiple objective programming, integer linear
programming.

1. Introduction

Multiple Integer Linear Programming problems have diverse applications such
as agricultural planning, financial analysis of a firm, travelling salesman prob-
lems, Markovian replacement problems, the cutting stock problems, and portfolio
selection problems.

It has been studied by several authors (e.g. Gupta and Malhotra [10], Klein [13],
Bitran [7], Zionts [22], Abbas and Mouläı [1], etc.).

The main focus of this paper, is to find all the efficient points using the cutting
plane technique and simple pivoting procedures. In the following section some
theoretical tools are presented to prove the convergence of the proposed method
followed by the algorithm, then lasted by a numerical illustration, conclusions and
comments with short comparative indications to Gupta and Malhotra algorithm.
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2. Theoretical tools

The multiple objective integer linear programming problem (MOILP) can be
formulated as follows

(P )



Max Z1 = C1X

Max Z2 = C2X

· · ·
Max Zp = CpX

subject to: X ∈ F = {X ∈ R
n/AX = b, X positive integer}

A ∈ R
m×n; b′ ∈ R

m; Ci ∈ R
n for all i ∈ I ′ = {1, 2, ..., p}.

Definition 2.1. A point X0 ∈ F is an efficient solution if there is no X ∈ F
such that : Zi(X) ≥ Zi(X0) for all i ∈ I ′ and Zi(X) > Zi(X0) for at least one
i ∈ I ′. Otherwise, X0 is not efficient and (Z1(X0), Z2(X0), ..., Zp(X0)) is said to
be a dominated p-tuple.

The problem (P1) is defined as follows:

(P1)

{
Max Z1 = C1X

subject to: X ∈ F.

The relaxed problem is:

(PR)

{
Max Z1 = C1X

subject to: X ∈ F.

FR = {X ∈ R
n/AX = b, X is positive}·

Definition 2.2. An optimal solution X0 of the problem (P1) is said to be
unique if there does not exist X1 ∈ F such that X1 �= X0 with Z1(X0) = Z1(X1).
Otherwise, the problem (P1) has got at least one alternate solution over he
region F .
Notations

- X∗
1 : is the optimal solution of the problem (P1). This is obtained by

applying Gomory cuts over the problem (PR).
- Z1

1 = Z∗
1 : is the optimal solution obtained in (P1).

-
(
Z1

1 , Z1
2 , ..., Z1

p

)
: is the first non-dominated p-tuple, where: Z1

i = Zi(X∗
1 )

for i = 2, 3, ..., p.
For k ≥ 1:

- Xk: is the efficient solution underlying
(
Zk

1 , Zk
2 , ..., Zk

p

)
;

- Bk: basis associated with Xk;
- akj : activity vector of xkj with respect to the truncated region;
- ykj = (Bk)−1

akj ;
- Ik = {j/akj ∈ Bk};
- Nk = {j/akj /∈ Bk};
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- Γk =
{

j ∈ Nk / z1j − c1
j > 0 and zij − ci

j > 0 for at
least one i ∈ {2, 3, ..., p}

}
;

- Ej
k

=

(xi) ∈ R
n/

xi = x
ki
− θjk

y
k,ij

k

x
jk

= θj
k

xα = 0 for all α ∈ Nk\ {jk
}

· (∗)

Where θj
k

is the integer value between 0 and min
i∈Ik

{
x

ki

y
k,ij

k

; yk,ij
k

> 0

}
and θjk

, θj
k
× y

k,ij
k

are integers.

Theorem 2.1. All integer feasible solutions of problem (P1) alternate to X1 on
edge Ej1 , j1 ∈ Γ1 in the region F (or truncated region of F ) emanating from it lie
in the open half space

∑
j∈N1\{j1}

xj < 1.

Proof. We have AX1 = b (X1 is a feasible solution of (P1)). AX1 =
∑

i∈I1

a1ix1i = b.

For some j1 ∈ Γ1,
∑

i∈I1

a1ix1i − θj1
a1j1

+ θj1
a1j1

= b , where θj1
is a nonzero posi-

tive scalar.
∑

i∈I1

a1ix1i−θj1

(∑
i∈I1

a1iy1,ij1

)
+θj1

a1j1
= b;

∑
i∈I1

a1i(x1i−θj1
y1,ij1

)+

θj1
a1j1

= b.

For 0 ≤ θj1
≤ min

i∈I1

{
x1i

y1,ij
1

; y1,ij
1

> 0
}

, X2 is defined as follows:

X2 =


x2i = x1i − θj1

y1,ij1
i ∈ I1

x2j1
= θj1

x2α = 0 for all α ∈ N1\ {j1}

 ; which is a new

integer feasible solution of (P1) provided θj1
and θj1

× y1,ij1
are positive integers.

We show now that Z1(X2) = Z1(X1).

Z1(X2) =
∑
i∈I2

c1ix2i =
∑
i∈I1

(x1i − θj1
y1,ij1

)c1i + c1j1θj1

=
∑
i∈I1

c1ix1i −
∑
i∈I1

c1iθj1
y1,ij1

+ c1j1θj1

=
∑
i∈I1

c1ix1i − θj1

∑
i∈I1

c1iy1,ij1
+ c1j1θj1

=
∑
i∈I1

c1ix1i − θj1

(∑
i∈I1

c1iy1,ij1
− c1j1

)
=
∑
i∈I1

c1ix1i
= Z1(X1)

since
∑

i∈I1

c1iy1,ij1
− c1j1 = 0.
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Therefore, X2 is an integer feasible solution of (P1), alternate to X1 lying on
an edge

Ej1
=

(xi) ∈ R
(|I1|+|N1|)/

x2i = x1i − θj1
y1,ij1

i ∈ I1

x2j1
= θj1

x2α = 0 for all α ∈ N1\{j1}

 ·

We have,
∑

j∈N1\{j1}
x2j < 1; since x2j = 0 for all j ∈ N1\ {j1}. Thus, the point

X2 lies in the open half space
∑

j∈N1\{j1}
xj < 1.

Corollary 2.1. An integer feasible solution of problem (P1) not on edge Ej1
,

j1 ∈ Γ1 in the truncated region F throughout the best solution X1 of (P1) lies in∑
j∈N1\{j1}

xj ≥ 1.

Proof. Let X̃ = (x̃j)i∈I1∪N1
be an integer feasible solution of problem (P1) not

on an edge Ej1
such that:

∑
j∈N1\{j1}

x̃j < 1. Then x̃j = 0 for all j ∈ N1\ {j1}.

• x̃j1
> 0,

(
X̃ is alternate to X1

)
then, X̃ must lie in the direction of vector

a1j1
, j1 ∈ Γ1.

∗ x̃j1
> min

i∈I1

{
x1i

y1,ij1
; yk,ij1

> 0
}

= x1q

y1,ij1

(for example), then x̃q =

x̃1q
− x̃j1

y1,qj
1

< 0 which implies infeasibility of X̃1 contradicting to
the hypothesis.

∗ x̃j1
is a positive integer such that: x̃j1

≤ min
i∈I1

{
x1i

y1,ij1
; yk,ij1

> 0
}
,

this also implies that X̃ lies on the edge Ej1
,which is not true.

Hence, x̃j > 0 for at least one j ∈ N1\ {j1}.
• x̃j1

= 0,
(
X̃ is not alternate to X1

)
then, the index set of non-basic vari-

ables in the optimal table corresponding to X̃ is the same as N1 since
N1 = N1\ {j1} ∪ {j1} , therefore the index set of basic variables in the
optimal table corresponding to X̃ is the same as B. Thus X̃ = X1 which
is not the case.

Hence x̃j > 0 for at least one j ∈ N1\ {j1}. It is shown now, that x̃j > 0 for at
least one j ∈ N1\ {j1}. Therefore, X̃ lies in the closed half space

∑
j∈N1\{j1}

xj ≥ 1.

3. The algorithm

The purpose of the algorithm is to determine all efficient solutions of the prob-
lem (P ). Starting with an initial efficient solution derived from solving (P1),
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Dantzig cuts and Gomory cuts (if necessary) are used in sequence after having
scanned the edges Ek. The output of the algorithm gives all efficient solutions
existing in the bounded set F . without missing any one. This will be justified
later.

Step 1. Solve the problem (P1). Instead of (P1) one can constructs one of the
problems (Pi ; i = 2, 3, ..., p) and solve it.

• If the optimal solution is unique, then record the first non-dominated p-
tuples

(
Z1

1 , Z1
2 , ..., Z1

p

)
and put it in the set of non-dominated solutions

Opt0. Go to Step 2.
• If the optimal solution of the problem (P1) is not unique.

Find all alternate solutions to X∗
1 ; for each solution evaluate the criterions and

eliminate all dominated p-tuples to obtain Opt0. Consider the p-tuple (Z1, Z2,
...Zp) as the first non-dominated p-tuple such that Z2 is the best among all second
criterions in Opt0. If there exists a tie, the p-tuple considered will have the
best value of the third criterion with respect to all p-tuples in Opt0 and the
process continue whenever a tie appears. Rename the first efficient p-tuple found
as
(
Z1

1 , Z1
2 , ...Z1

p

)
. Then, go to Step 2.

Step 2. Let k = 1.

2.1. Construct the set Γk.
2.1.1. If Γk = ∅ then, choose any j

k
∈ Nk and go to (2.2).

2.1.2. Else, choose any j
k
∈ Γk. Go to (2.2).

2.2. Calculate θkj
k

= Min
i∈Ik

{
x

ki

y
k,ij

k

; y
k,ijk

> 0
}
.

Let θ0
kj

k
be the integer part of θkj

k
.

- If θ0
kj

k
< 1 then ignore it and go to (2.3).

- If not, for θ = 1, 2, ..., θ0
kj

k
; calculate all integer feasible solutions lying

on the edge Ej
k

using


xi = xki − θ × y

k,ijk

xj
k

= θ

xα = 0 for all α ∈ Nk\ {jk
} .

Evaluate all the criterions at each of these solutions and add only
non-dominated criterions in the set Optk−1 to obtain the new set
Optk. Go to (2.3).

2.3. Truncate the solution by
∑

j∈Nk\{j
k}

xj ≥ 1.

Apply the dual simplex method to obtain positive feasible solution Xk+1.
Evaluate all the criterions at this solution and add the p-tuple correspond-
ing into Optk to obtain the new set Optk+1 if it is not dominated, else
ignore it. Go to Step. 3.

Step 3. If Xk+1obtained in (2.3) is integer positive infeasible solution (lying
outside F ) then stop. Otherwise put k = k + 1 and return to (2.1).

Proposition 1. The algorithm above converges in a finite number of steps.



356 M. ABBAS AND D. CHAABANE

Figure 1.

Proof. The feasible region F is being truncated at each step by respected appli-
cation of the cuts

∑
j∈Nk\{j

k}
xj ≥ 1 and Gomory cut is used whenever needed.

The entire region F is scanned such that, an edge or a point once deleted can not
reappear again. Therefore, the algorithm converges in a finite number of steps.

4. Numerical illustration

Max Z1 = x1 − 3x2

Max Z2 = x1 + 3x2

Subject to
Consider the following example

x1 + 2x2 ≤ 8
2x1 + x2 ≤ 7
x1 − 2x2 ≤ 1
x1, x2 ≥ 0 and integers

The region F is shown in the figure above.
First (P1) is being solved.
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Table 1.

Basis value of x1 x2 x3 x4 x5

basic
variable

x3 7 0 4 1 0 −1
x4 5 0 5 0 1 −2
x1 1 1 −2 0 0 1

ZC1

j − C1
j 1 0 1 0 0 1

ZC2

j − C2
j 1 0 −5 0 0 1

The solution is unique and it is given in the table above: X1 = X∗
1 = (1, 0) and

the first non-dominated couple
(
Z1

1 , Z1
2

)
= (1, 1).

Opt0 =
{(

1
1

)}
.

k = 1,
We have: I1 = {1, 3, 4} , N1 = {2, 5}.
Γ1 =

{
j ∈ N1 / z1j − c1

j > 0 and zij − ci
j > 0 for at

least one i ∈ {2}
}

= {5}.
j1 = 5; θ15 = Min

{
1
1

}
= 1 ; θ0

15 = 1.

The solution on the edge E5 is:


x1

3 = 7 − (−1) = 8
x1

4 = 5 − (−2) = 7
x1

1 = 1 − (1) = 0
x1

5 = 1
x1

2 = 0.

Thus, Z1,1 =
(

0
0

)
which is dominated.

Truncate by x2 ≥ 1 (see Fig. 2 bellow) and −x2 + x6 = −1 is to be added at
the bottom of the previous table.

Table 2.

Basis value of x1 x2 x3 x4 x5 x6

basic
variable

x3 7 0 4 1 0 −1 0
x4 5 0 5 0 1 −2 0
x1 1 1 −2 0 0 1 0
x6 −1 0 −1 0 0 0 1

ZC1

j − C1
j 1 0 1 0 0 1 0

ZC2

j − C2
j 1 0 −5 0 0 1 0
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Figure 2.

Applying the dual simplex method we obtain:

Table 3.

Basis value of x1 x2 x3 x4 x5 x6

basic
variable

x3 3 0 0 1 0 −1 4
x4 0 0 0 0 1 −2 5
x1 3 1 0 0 0 1 −2
x2 1 0 1 0 0 0 −1

ZC1

j − C1
j 0 0 0 0 0 1 1

ZC2

j − C2
j 6 0 0 0 0 1 −5

The solution is X2 = (3, 1) yields to
(
Z2

1 , Z2
2

)
= (0, 6) which is non-dominated

with regards to the previous.

Thus Opt2 =Opt1 ∪
{(

0
6

)}
=
{(

1
1

)
,

(
0
6

)}
.

k = 2;
I2 = {1, 2, 3, 4} , N2 = {5, 6}.
Γ2 = {5} and θ0

25 = 3.
Calculate the solutions on the edge E5

θ2 = 1;
{
x1

3 = 4 , x1
4 = 2 , x1

1 = 2 , x1
2 = 1 , x1

5 = 1 , x1
6 = 0

}
⇒ Z2,1 =

( −1
5

)
which is dominated.

θ2 = 2;
{
x2

3 = 5 , x2
4 = 4 , x2

1 = 1 , x2
2 = 1 , x2

5 = 1 , x2
6 = 0

}
⇒ Z2,2 =

( −2
4

)
which is dominated.
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Figure 3.

θ2 = 3;
{
x3

3 = 6 , x3
4 = 6 , x3

1 = 0, x3
2 = 1 , x3

5 = 1 , x3
6 = 0

}
⇒ Z2,3 =

( −3
3

)
which is dominated.

The edge E5 is dominated for all j ∈ Γ2. Thus, according to Gupta and Malhotra
the procedure is terminated. But, the remaining efficient solutions are not yet
detected.

Within the algorithm proposed, the cut
∑

j∈N2\{5}
xj ≥ 1 is being performed.

Then, x6 ≥ 1 (equivalently x2 ≥ 2 – see Fig. 3) is added to the previous tableau
and Gomory cuts and dual simplex method are used to obtain the following table:

Table 4.

Basis value of x1 x2 x3 x4 x5 x6 x7 x8

basic
variable

x3 2 0 0 1 0 0 0 2 −1/2
x5 3 0 0 0 0 1 0 −2 −1/2
x1 2 1 0 0 0 0 0 0 1/2
x2 2 0 1 0 0 0 0 −1 0
x6 1 0 0 0 0 0 1 −1 0
x4 1 0 0 0 1 0 0 1 −1

ZC1

j − C1
j −4 0 0 0 0 0 0 3 1/2

ZC2

j − C2
j 8 0 0 0 0 0 0 −3 1/2
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The solution X3 = (2, 2) yields non dominated couple
(
Z3

1 , Z3
2

)
= (−4, 8).

Opt3 =
{(

1
1

)
,

(
0
6

)
,

( −4
8

)}
.

k = 3;
I3 = {1, 2, 3, 4, 5, 6} ; N3 = {7, 8}.
Γ3 = {8} ⇒ θ0

38 = 4.
θ3 = 1; the solution is infeasible.

θ3 = 2;
{

x3
3 = 3 , x3

5 = 4 , x3
1 = 1 , x3

2 = 2 , x3
6 = 1 , x3

4 = 3,
x3

8 = 2, x3
7 = 0

}

yielding to Z3,1 =
( −5

7

)
dominated.

θ3 = 3; the solution is infeasible.

θ3 = 4;
{

x3
3 = 4 , x3

5 = 5 , x3
1 = 0 , x3

2 = 2 , x3
6 = 1 , x3

4 = 5,
x3

8 = 4, x3
7 = 0

}
yielding to Z3,2 =

( −6
6

)
which is dominated.

Add the cut x7 ≥ 1 (x2 ≥ 3 as shown in Fig. 4) and apply the dual simplex to
obtain the following results.

Table 5.

Basis value of x1 x2 x3 x4 x5 x6 x7 x8 x9

basic
variable

x3 0 0 0 1 0 0 0 0 1/2 2
x5 5 0 0 0 0 1 0 0 −1/2 −2
x1 2 1 0 0 0 0 0 0 1/2 0
x2 3 0 1 0 0 0 0 0 0 −1
x6 2 0 0 0 0 0 1 0 0 −1
x4 0 0 0 0 1 0 0 0 −1 1
x7 1 0 0 0 0 0 0 1 0 −1

ZC1

j − C1
j −7 0 0 0 0 0 0 0 1/2 3

ZC2

j − C2
j 11 0 0 0 0 0 0 0 1/2 −3

The solution X4 = (2, 3) yields to
(
Z4

1 , Z4
2

)
= (−7, 11) which is non-dominated.

Opt4 =
{(

1
1

)
,

(
0
6

)
,

( −4
8

)
,

( −7
11

)}
.

k = 4;
I4 = {1, 2, 3, 4, 5, 6, 7} ; N4 = {8, 9}.
Γ4 = {8} ⇒ θ0

48 = 4.
θ4 = 1; the solution is infeasible.
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Figure 4.

θ4 = 2;
{

x4
3 = 1 , x4

5 = 6 , x4
1 = 1 , x4

2 = 3 , x4
6 = 2 , x4

4 = 2,
x4

7 = 1, x4
8 = 2, x4

9 = 0

}
yielding to Z4,1 =

( −8
11

)
dominated.

θ4 = 3; the solution is infeasible.

θ4 = 4;
{

x4
3 = 2 , x4

5 = 7 , x4
1 = 0 , x4

2 = 3 , x4
6 = 2 , x4

4 = 4,
x4

7 = 1, x4
8 = 4, x4

9 = 0

}
yielding to Z4,2 =

( −9
9

)
which is dominated.

Add the cut x9 ≥ 1 (x2 ≥ 4 as shown in Fig. 5) to the Table 5 and apply the dual
simplex method.

Table 6.

Basis value of x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

basic
variable

x8 4 0 0 −2 0 0 0 0 1 0 0
x5 9 0 0 −1 0 1 0 0 0 0 −2
x1 0 1 0 1 0 0 0 0 0 0 0
x2 4 0 1 0 0 0 0 0 0 0 −1
x6 3 0 0 0 0 0 1 0 0 0 −1
x4 1 0 0 −2 1 0 0 0 0 0 −1
x7 2 0 0 0 0 0 0 1 0 0 −1
x9 1 0 0 0 0 0 0 0 0 1 −1

ZC1

j − C1
j −12 0 0 1 0 0 0 0 0 0 3

ZC2

j − C2
j 12 0 0 1 0 0 0 0 0 0 −3
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Figure 5.

The solution X5 = (0, 4) yields to Z5 =
( −12

12

)
which is non-dominated.

Opt5 =
{(

1
1

)
,

(
0
6

)
,

( −4
8

)
,

( −7
11

)
,

( −12
12

)}
.

Γ5 = {3} ⇒ θ0
53 = 0 < 1. Ignore it.

Cut with x10 ≥ 1 (equivalently x2 ≥ 5) which lies outside the region F . If
we apply one iteration of the dual simplex technique we achieve to an infeasible
solution (see the table bellow) X6 = (0, 5) /∈ F .

The algorithm terminates with the set of all non-dominated Opt4 and the set
of the efficient solutions (square dots in Fig. 5) is given by: Eff = {(1, 0), (3, 1),
(2, 2) , (2, 3) , (0, 4)}.

Table 7.
Basis value of x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

basic
variable

x8 4 0 0 −2 0 0 0 0 1 0 0 0
x5 11 0 0 −1 0 1 0 0 0 0 0 −2
x1 0 1 0 1 0 0 0 0 0 0 0 0
x2 5 0 1 0 0 0 0 0 0 0 0 −1
x6 4 0 0 0 0 0 1 0 0 0 0 −1
x4 2 0 0 −2 1 0 0 0 0 0 0 −1
x7 3 0 0 0 0 0 0 1 0 0 0 −1
x9 2 0 0 0 0 0 0 0 0 1 0 −1
x10 1 0 0 0 0 0 0 0 0 0 1 −1

ZC1

j − C1
j −15 0 0 1 0 0 0 0 0 0 0 3

ZC2

j − C2
j 15 0 0 1 0 0 0 0 0 0 0 −3
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5. Conclusion and comments

In this paper, we have proposed an algorithm that can be regarded as a modified
and corrected version of Gupta and Malhotra’s procedure. The test that they
proposed in the terminal step (Γ = ∅ and z1j − c1

j > 0 or Γn �= ∅ and for all
j ∈ Γn yields dominated edge) can be held and not yet all the efficient solutions
are detected. As an alternative, the Γn set is modified and the cuts of type∑
j∈Nk\{jk}

Xj ≥ 1 are carried out until obtaining an infeasible solution outside the

feasible region F .
In addition, solving the problem (P ) is not an obvious extension from a con-

tinuous case (without integer constrained) and the fundamental principal the so
called Geoffrion’s theorem is no longer valid in presence of discrete variables, which
makes this class of problems very difficult as was stated by Teghem Jr. [17].

Thus, using metods introduced for continous variables, such Ecker’s and Kouada
can be missleading when applied to problems in the presence of discrete variables.

Acknowledgements. The authors would like to thank Professor J. Abadie for the many
helpful suggestions.
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