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Abstract. Retrial queueing systems are characterized by the require-
ment that customers finding the service area busy must join the retrial
group and reapply for service at random intervals. This paper deals
with the M/G/1 retrial queue subjected to breakdowns. We use its sto-
chastic decomposition property to approximate the model performance
in the case of general retrial times.
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1. Introduction: model description

Retrial queueing systems are characterized by the requirement that customers
finding the service area busy must join the retrial group and reapply for service at
random intervals. These models arize in the analysis of different communication
systems. For surveys on retrial queues see Falin [7], Artalejo [5], Templeton [14]
and also monograph by Falin and Templeton [8].

Retrial queues subjected to breakdowns are of great importance because they
occur in many practical situations. General issues related to servers with break-
downs are discussed in Gelenbe [9]. The author considered a transaction process-
ing computer system subjected to failures, where the checkpoint-rollback-recovery
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technique is used to ensure reliability of the data. Assuming the instants of fail-
ure to be a Poisson process with constant failure rate, and using the means of
a theoretical analysis of a queueing system representing system behavior, he de-
rived the optimum checkpoint interval, which maximizes system availability, as
a deterministic quantity and as a function of the system load. In Gelenbe and
Hernandez [10], this result was extended to the case where the failure process is a
time dependent Poisson process. Furthermore, the authors considered the Weibull
failure rate model, and derived a method for obtaining the optimum checkpoint in-
terval. A single server retrial queue with server subject to breakdowns and repairs
was studied by Kulkarni and Choi [13]. With the help of the theory of regenera-
tive processes they obtained the generating functions of the limiting distribution
and other characteristics of the queue length process for two different models. In
Aissani [1], a version of the unreliable M/G/1/1 retrial queue with variable service
was considered. This approach permitted to consider the redundancy problem.
Artalejo [4] obtained sufficient conditions for ergodicity of Markovian multiserver
queues with retrials and breakdowns. He also presented a recursive algorithm to
compute the steady-state probabilities for the M/G/1 retrial queue with break-
downs. Recent contributions on this topic include the papers of Artalejo and
Gomez–Corral [6], Anisimov [3], Krishnamoorthy and Ushakumari [12].

This paper presents the analysis of the M/G/1 retrial queue subjected to break-
downs. We consider a single server queueing system at which primary customers
arrive according to a Poisson stream with rate λ > 0. An arriving customer re-
ceives immediate service if the server is idle and functional, otherwise he leaves the
service area temporarily to join the retrial group (orbit). Any orbiting customer
will repeatedly retry until the time at which he finds the server idle-up and starts
his service. The retrial times are arbitrarily distributed with distribution function
T (x) having finite mean 1/θ.

The service times follow a general distribution with distribution function B (x)
having finite mean 1/γ and Laplace–Stieltjes transform B̃ (s). We assume that the
server is subject to Poisson active (when he is busy) and passive (when he is idle)
breakdowns with rates µ and η, respectively. The time duration of active and pas-
sive interruptions follows random variables Db and Di with distribution functions
H (x) and G (x) and Laplace–Stieltjes transforms H̃ (s) and G̃ (s), respectively.
We assume that it follows the same type of distribution as the corresponding ser-
vice time. No breakdowns may occur when the server is down. The customers
whose service is interrupted by an active breakdown are obliged either to leave the
system with probability (1 − c), or to join the orbit with probability c.

Finally, we admit the hypothesis of mutual independence between all random
variables defined above.

The state of the system at time t can be described by means of the process
{C (t) , N0 (t) , t ≥ 0} where N0 (t) is the number of customers in the orbit, C (t)
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is the state of the server as defined below:

C (t) =




0 server is idle and functional
1 server is busy and functional
2 server is down due to a breakdown.

One approach to study this model is a stochastic decomposition. Aissani and
Artalejo [2] obtained some stochastic decomposition results for exponential retrial
times, in particular the stochastic decomposition for the embedded Markov chain
at idle-up epochs. Assuming this result as valid for general retrial times, we
apply an approximation method for the computation of the steady-state queue
size distribution. We study the effects of the retrial intensity and those of the
breakdowns on the model performance. The paper is organized as follows. The
next section contains some notations. We review the stochastic decomposition
in Section 3. Section 4 deals with the approximation method. In Section 5, we
present some numerical results.

The proofs and some results that are available in the literature are omitted,
and interested readers are referred back to the original papers.

2. Notation

Let ξn be the time when the server enters the idle-up state for the n-th time;
�n be the time at which the n-th fresh customer arrives at the server. We further
consider the random process {C (t) , N0 (t) , t ≥ 0} as t → ∞.

Let

πk = lim
n→∞P

(
N0

(
ξ+
n

)
= k

)
k = 0, 1, 2, . . . ;

pi,j = lim
t→∞P (C(t) = i; N0(t) = j); ri,j = lim

n→∞P (C(�−n ) = i; N0(�−n ) = j)

j = 0, 1, 2, . . . ; i = 0, 1, 2.

Define Φ (z) =
∞∑

k=0

πkzk; Pi (z) =
∞∑

j=0

pi,jz
j i = 0, 1, 2.

Let qn be the number of customers in the orbit at instant ξ+
n ; Xn

i be the
time elapsed since the last attempt made by the i-th customer in the orbit until
instant ξ+

n . Define q = lim
n→∞ qn; Xi = lim

n→∞Xn
i . When q > 0, we have a vector

X = (X1, X2, . . . , Xq) of expended retrial times of the q orbiting customers present
at an arbitrary time when the server enters the idle-up state. We denote by
fq (x1,x2, . . . , xq) the joint density function of q and X .

3. Stochastic decomposition

Stochastic decomposition property of classical M/G/1 retrial queues with ex-
ponential and general retrial times states that the number of customers in the
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system is equal to the sum of two independent random variables: the number of
customers in the ordinary M/G/1 queue with infinite waiting space and the num-
ber of customers in the M/G/1 retrial queue given that the server is idle [15, 16].
Aissani and Artalejo [2] introduced an auxiliary queue without retrials to establish
the stochastic decomposition property of M/G/1 retrial queues with breakdowns
and exponential retrial times. The decomposition result for queues with vacations,
which obviously related to breakdowns, was first proved in a more general man-
ner in Gelenbe and Iasnogorodski [11]. Assuming general interarrival times, the
authors obtained an operational formula (together with sufficient conditions for
ergodicity) relating the waiting time in stationary state of a queue with vacations
to the waiting time of an equivalent GI/G/1 queue.

Consider a random process {C (t) , N0 (t) , t ≥ 0} as defined in Section 1. This
is not a Markov process, but it has an embedded Markov chain at idle-up epochs
{N0 (ξ+

n )}. As in classical retrial queues, the ergodicity condition is independent
of the retrial parameter θ. From [13], we have that the system is stable if

ρ = λ
1 − B̃(µ)

µ

(
1 + µ

(
E [Db] +

c

λ

))
< 1. (1)

In [2], the auxiliary queue is the M/G/1 queue with waiting line, breakdowns of
the server and option for leaving the system after an interruption. The rules that
govern this system are as follows. Customers queue up according to FCFS disci-
pline. When an active breakdown occurs, the interrupted customer can leave the
system or stay at the service facility until the repair is completed and then restart
his service according to preemptive repeat different policy. In fact, this model is
the main model given in Section 1 and simplified by neglecting the repeated at-
tempts. The generating function Φ̄ (z) of the steady-state distribution {ak, k ≥ 0}
of the embedded Markov chain at idle-up epochs is defined in terms of the gen-
erating function Ω (z) for the number of customers that join the orbit during a
fundamental server period (time from the epoch at which customer commences
service until the epoch at which the server is able to start a new service time):

Φ̄ (z) = K
ηzG̃ (λ − λz) − (λ − λz + η) Ω (z)

z − Ω (z)
, (2)

where

Ω (z) = B̃ (λ − λz + µ) + (1 − c + cz)µH̃ (λ − λz)
1 − B̃ (λ − λz + µ)

λ − λz + µ

and
K =

1 − ρ

λ (1 + ηE [Di]) + η (1 − ρ)
·

We have the following result about stochastic decomposition for {N0 (ξ+
n )} as

n → ∞:

Φ (z) = Φ̄ (z)
P0 (z)
P0 (1)

, (3)
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where

P0 (z) = K

[
K (1 + ηE [Di]) +

(
1 − B̃ (µ)

)
(1 − ηK)

(
E [Db] +

1
µ

)]−1

× exp

{
λ

θ

∫ z

1

1 − Ω (u)
Ω (u) − u

du +
η

θ

∫ z

1

1 − G̃ (λ − λu)
Ω (u) − u

du

}

and
P0 (z)
P0 (1)

is the generating function for the number of customers in the orbit

given that the server is idle and functional.
We assume that the decomposition result (3) for exponential retrial times is

also valid for general retrial times, in the same way as the result for M/G/1 retrial
queues without breakdowns established in [15, 16].

4. Approximation method

From the decomposition result (3), we can see that the steady-state distribution
{πk, k ≥ 0} of the embedded Markov chain at idle-up epochs is a convolution of
two distributions: the steady-state queue size distribution {ak, k ≥ 0}) for the
auxiliary queue without retrials and {p0,k, k ≥ 0}.

Obviously πk = P (q = k) for k ≥ 0. Since Poisson arrivals see time averages,
we have p0,k = r0,k for k ≥ 0. Suppose that there are k > 0 customers in the orbit
at an arbitrary time when the server enters the idle-up state. In such a case, we
have

πk =

∞∫
0

∞∫
0

. . .

∞∫
0

fk (x1, x2, . . . , xk) dx1dx2 . . .dxk;

r0,k =

∞∫
0

∞∫
0

. . .

∞∫
0

P (δ (k; x1, x2, . . . , xk) = 0) fk (x1, x2, . . . , xk) dx1dx2 . . . dxk,

where δ (k; x1, x2, . . . , xk) = 0 if the next served customer is not one of the k
orbiting customers (otherwise δ (k; x1, x2, . . . , xk) = 1). Expended retrial times
X1, X2, . . . , Xk of the k orbiting customers depend on each other in a very com-
plicated way. This dependence implies that a derivation of an explicit formula for
the joint density function fk (x1, x2, . . . , xk) is difficult, if not impossible.

An approximation to fk (x1, x2, . . . , xk) was proposed in [15]. By using this
approximation and applying the decomposition property, the authors developed a
method for the computation of the steady-state queue size distribution for classical
retrial queues with general retrial times. We adapte this approximation method
for the M/G/1 retrial queue with breakdowns. The approximation is based on
the intuitive consideration (justified in many applications) that the average retrial
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time is very small relative to the average service time. Thus during a funda-
mental server period, orbiting customers make many retrials. Consequently the
dependency among X1, X2, . . . , Xk is weak. Further, the more retrials an orbiting
customer makes, the less the distribution of the expended retrial time depends
on the time of the observation. According to renewal theory, the expended re-
trial time distribution observed at a time point sufficiently far from the origin is
m (x) =

∫ x

0 θ (1 − T (u)) du. Therefore the joint density function fk (x1, x2, . . . , xk)
can be approximated by

fk (x1, x2, . . . , xk) ≈ πkθk
k∏

i=1

(1 − T (xi)) .

Using the above approximation and following the renewal arguments given in [15],
we can write that r0k ≈ πkbk where bk =

∫ ∞
0 (1 − m (t))k

λe−λtdt. Since 1 −
m (t) < 1, it follows that 1 > bk > bk+1 for k = 1, 2, . . . and lim

k→∞
bk = 0.

Assume that the steady-state distribution {ak, k ≥ 0} is known (it is obtained
by inversion of the generating function Φ̄ (z) given by (2)). Under this assumption,
the result (3) can be expressed in the following form:

πk =
1

1 − ρ

k∑
i=0

air0,k−i (4)

with
r0,k ≈ πkbk (5)

and
∞∑

k=0

πk = 1. (6)

The set of equations (4–6) gives an approximate solution to {πk, k ≥ 0} . Let
{π̂k, k ≥ 0} be the approximation to {πk, k ≥ 0}. With the help of (5), from (4)
one can obtain

π̂k = ckπ̂0 k = 0, 1, 2, . . . (7)

where

c0 = 1; ck =
1

(1 − ρ) (1 − bk)

k∑
i=1

aibk−ick−i k = 1, 2, . . .

Using (7), from normalizing equation (6) one can find that the approximation to π0

is

π̂0 =
1

∞∑
k=0

ck

· (8)
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The computational procedure (7, 8) gives the unique positive solution if the series
∞∑

k=0

ck converges. Since 1 > bk > bk+1 for k = 1, 2, . . . , the above condition is

satisfied [15].
Suppose that the approximate solution {π̂k, k ≥ 0} is evaluated. Let N be the

number of customers in the system at an arbitrary time when the server enters
the idle-up state. Then, we can calculate

E [N ] ≈
∞∑

k=0

kπ̂k; Var [N ] ≈
∞∑

k=0

k2π̂k − (E [N ])2 .

5. Numerical results

This section deals with numerical results made available by the computational
procedure (7, 8). We consider the following service time distributions:

exponential (E) F (x) = 1 − e−γx x ≥ 0;
two-stage Erlang (E2) F (x) = 1−e−2γx−2γxe−2γx x ≥ 0;
two-stage hyperexponential (H2) F (x) = 1 − ζ1e−γ1x − ζ2e−γ2x;

ζ1 + ζ2 = 1;
ζ1

γ1
+

ζ2

γ2
=

1
γ

; x ≥ 0.

For retrial times, we choose
exponential (E) T (x) = 1 − e−θx x ≥ 0;
two-stage Erlang (E2) T (x) = 1− e−2θx − 2θxe−2θx x ≥ 0;
two-stage hyperexponential (H2) T (x) = 1− ς1e−θ1x − ς2e−θ2x x ≥ 0;

ς1
θ1

+
ς2
θ2

=
1
θ
; ς1 + ς2 = 1; θ1 = 2ς1θ; θ2 = 2ς2θ.

These distributions are the most representative. Furthermore from [15], we have
that the approximation discussed in Section 4 works well as long as the retrial time
distribution is relatively close to the exponential distribution in the sense that its
coefficient of variation, cv, is close to that of the latter (cv < 4). Throughout this
section, we let the mean service time, 1/γ, be a unit time and the probability c
be 0.9.

In the first time, we examine the performance of the approximation.
Tables 1a–c, 2a, b and 3a, b present the approximate numerical results against
those from a simulation study for the M/M/1, M/E2/1 and M/H2/1 retrial queues
with breakdowns, respectively. The coefficients of variation of retrial times are
cvE2 ≈ 0.7, cvE = 1 and cvH2 = 1.5. In these tables we observe a good agree-
ment between the approximate and simulation results when there are M/M/1 and
M/E2/1 retrial queues with breakdowns for which the coefficient of variation of
service times cs ≤ 1. In the case of M/H2/1 retrial queue with cs = 2, the approx-
imation performs well, when the traffic intensity ρ is relatively low (see λ = 0.3).
On the other hand, it fails when ρ is high (see λ = 0.6): the difference between
the two solutions is highly significant.
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Table 1a. The M/M/1 retrial queue with breakdowns.

λ = 0.3
θ µ η E[Db] E[Di] ρ Retrial times

E2 E H2

appr E [N ] appr E [N ] appr E [N ]
sim E [N ] sim E [N ] sim E [N ]

1 0.02 0.02 0.2 0.2 0.3129 0.5410 0.5684 0.6126*
0.5501 0.5710 0.6771

0.02 0.02 1 1 0.3176 0.5743 0.6031 0.6492*
0.5839 0.6107 0.7175

0.02 0.02 2 1 0.3235 0.6020 0.6313 0.6780*
0.6138 0.6406 0.7493

3.3 0.02 0.02 0.2 0.2 0.3129 0.4677 0.4765 0.4943
0.4656 0.4761 0.5004

0.02 0.02 1 1 0.3176 0.4967 0.5060 0.5246
0.4878 0.4999 0.5336

0.02 0.02 2 1 0.3235 0.5222 0.5316 0.5504
0.5110 0.5237 0.5630

Table 1b. The M/M/1 retrial queue with breakdowns.
λ = 0.6

θ µ η E[Db] E[Di] ρ Retrial times
E2 E H2

appr E [N ] appr E [N ] appr E [N ]
sim E [N ] sim E [N ] sim E [N ]

1 0.02 0.02 0.2 0.2 0.6082 2.3006 2.4414 2.5707*
2.3493 2.4725 3.2444

0.04 0.02 0.2 0.2 0.6161 2.3550 2.4999 2.6311*
2.4179 2.5437 3.3228

0.02 0.02 1 1 0.6176 2.4367 2.5823 2.7093*
2.5115 2.6510 3.4378

0.02 0.02 2 1 0.6294 2.6287 2.7786 2.8965*
2.7036 2.8479 3.6875

0.02 0.02 2 2 2.6678 2.8187 2.9351*
2.7547 2.8944 3.7680

0.2 0.2 1 1 0.75 4.3763* 4.6014* 4.6060*
4.6301 4.8944 6.6056

3.3 0.02 0.02 0.2 0.2 0.6082 1.7492 1.7988 1.8710*
1.7376 1.7947 2.0144

0.04 0.02 0.2 0.2 0.6161 1.7842 1.8354 1.9095*
1.7685 1.8251 2.0584

0.02 0.02 1 1 0.6176 1.8556 1.9070 1.9801*
1.8367 1.8933 2.1457

0.02 0.02 2 1 0.6294 2.0158 2.0687 2.1406*
1.9915 2.0453 2.3135

0.02 0.02 2 2 2.0476 2.1009 2.1726*
2.0114 2.0674 2.3835

0.2 0.2 1 1 0.75 3.2816 3.3632 3.4351*
3.3347 3.4161 3.8533
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Table 1c. The M/M/1 retrial queue with breakdowns.
λ = 0.6

θ µ η E[Db] E[Di] ρ Retrial times
E2 E H2

appr E [N ] appr E [N ] appr E [N ]
sim E [N ] sim E [N ] sim E [N ]

10 0.02 0.02 0.2 0.2 0.6082 1.5945 1.6117 1.6414
1.5843 1.6082 1.6587

0.04 0.02 0.2 0.2 0.6161 1.6241 1.6419 1.6725
1.6120 1.6352 1.6901

0.02 0.02 1 1 0.6176 1.6925 1.7103 1.7405
1.6792 1.7034 1.7595

0.02 0.02 2 1 0.6294 1.8436 1.8619 1.8920
1.8284 1.8515 1.9185

0.02 0.02 2 2 1.8733 1.8918 1.9218
1.8519 1.8754 1.9698

0.2 0.2 1 1 0.75 2.9740 3.0025 3.0374
2.9398 2.9767 3.1195

From numerical results shown in Tables 1a–c, 2a, b and 3a, b, we can see that
increasing the rate of active (passive) breadowns µ (η) as well as increasing the
mean time duration of active (passive) interruption E [Db] (E [Di]) deteriorates the
accuracy of the approximation. We also observe that the approximation fails when
the mean retrial time 1/θ is not sufficiently small relative to the mean service time
1/γ (the failure is denoted by *). On the other hand, as is expected, increasing
the retrial rate θ results in a sensitive improvement of its performance.

Another observation is that the accuracy of the approximation deteriorates as
the retrial time distribution departs from the exponential one in the sense that its
coefficient of variation cv > 1.

Finally, one can see that the mean number of customers in the system at an
arbitrary idle-up epoch E [N ] shares a similar property with that of the mean num-
ber of customers in the system observed in [15] for classical retrial queues: E [N ]
is an increasing function of the second moment of the retrial time distribution.
In Section 1, it was assumed that no breakdown occurs during interruption. The
mean time between two consecutive active (passive) breakdowns is 1/µ (1/η). If
we choose the values of E [Db] > 1/µ and (or) E [Di] > 1/η, the above property
does not hold (see Tab. 4).

Now we study the effects of the retrial rate and those of the breakdowns on
the mean number of customers in the system at an arbitrary idle-up epoch E [N ].
From numerical results shown in Tables 1a–c, 2a, b and 3a, b, we can see that
E [N ] seems not to be affected very much when the rate of passive breakdowns η
increases while, on the other hand, E [N ] is significantly affected by the increase
of the mean time duration of passive interruption E [Di]. The traffic intensity
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Table 2a. The M/E2/1 retrial queue with breakdowns.
λ = 0.3

θ µ η E[Db] E[Di] ρ Retrial times
E2 E H2

appr E [N ] appr E [N ] appr E [N ]
sim E [N ] sim E [N ] sim E [N ]

1 0.02 0.02 0.2 0.2 0.31 0.5118 0.5399 0.5859*
0.5211 0.5480 0.6528

0.02 0.02 1 1 0.3192 0.5428 0.5724 0.6203*
0.5540 0.5820 0.6967

0.02 0.02 2 1 0.3251 0.5679 0.5980 0.6465*
0.5801 0.6086 0.7288

3.3 0.02 0.02 0.2 0.2 0.31 0.4383 0.4474 0.4659
0.4344 0.4454 0.4740

0.02 0.02 1 1 0.3192 0.4651 0.4766 0.4940
0.4568 0.4703 0.5023

0.02 0.02 2 1 0.3251 0.4879 0.4976 0.5172
0.4786 0.4900 0.5266

Table 2b. The M/E2/1 retrial queue with breakdowns.
λ = 0.6

θ µ η E[Db] E[Di] ρ Retrial times
E2 E H2

appr E [N ] appr E [N ] appr E [N ]
sim E [N ] sim E [N ] sim E [N ]

1 0.02 0.02 0.2 0.2 0.61 2.0957* 2.2434* 2.3925*
2.1656 2.3065 3.1457

3.3 0.02 0.02 0.2 0.2 0.61 1.5401 1.5927 1.6733*
1.5303 1.5872 1.8225

0.04 0.02 0.2 0.2 0.6220 1.5930 1.6477 1.7310*
1.5731 1.6369 1.8958

0.02 0.02 1 1 0.6206 1.6328 1.6873 1.7695*
1.6162 1.6761 1.9283

0.02 0.02 2 1 0.6324 1.7688 1.8250 1.9074*
1.7449 1.8136 2.0799

0.02 0.02 2 2 1.7939 1.8504 1.9329*
1.7612 1.8275 2.1170

0.2 0.2 1 1 0.7809 3.3719 3.4688 3.5553*
3.4612 3.5399 4.0358

10 0.02 0.02 0.2 0.2 0.61 1.3849 1.4031 1.4364
1.3781 1.3976 1.4475

0.04 0.02 0.2 0.2 0.6220 1.4302 1.4492 1.4837
1.4123 1.4382 1.5025

0.02 0.02 1 1 0.6206 1.4691 1.4880 1.5220
1.4548 1.4776 1.5379

0.02 0.02 2 1 0.6324 1.5960 1.6155 1.6497
1.5752 1.6044 1.6744

0.02 0.02 2 2 1.6189 1.6386 1.6729
1.5933 1.6220 1.7159

0.2 0.2 1 1 0.7809 3.0060 3.0402 3.0833
2.9702 3.0138 3.1588
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Table 3a. The M/H2/1 retrial queue with breakdowns.
λ = 0.3

θ µ η E[Db] E[Di] ρ Retrial times
E2 E H2

appr E [N ] appr E [N ] appr E [N ]
sim E [N ] sim E [N ] sim E [N ]

1 0.02 0.02 0.2 0.2 ≈0.30 0.6574 0.6782 0.7178*
0.6724 0.6929 0.7971

0.02 0.02 1 1 0.3016 0.7087 0.7337 0.7716*
0.6914 0.7210 0.8331

0.02 0.02 2 1 0.3072 0.7466 0.7721 0.8100*
0.7248 0.7566 0.8554

3.3 0.02 0.02 0.2 0.2 ≈0.30 0.5884 0.5960 0.6106
0.5938 0.5998 0.6227

0.02 0.02 1 1 0.3016 0.6384 0.6434 0.6586
0.6254 0.6361 0.6727

0.02 0.02 2 1 0.3072 0.6713 0.6795 0.6946
0.6573 0.6713 0.7112

Table 3b. The M/H2/1 retrial queue with breakdowns.
λ = 0.6

θ µ η E[Db] E[Di] ρ Retrial times
E2 E H2

appr E [N ] appr E [N ] appr E [N ]
sim E [N ] sim E [N ] sim E [N ]

1 0.02 0.02 0.2 0.2 ≈0.60 3.0530 3.1686 3.1990
3.3042 3.4969 3.7919

3.3 0.02 0.02 0.2 0.2 2.5635 2.6031 2.6379
2.8139 2.8536 2.9054

10 0.02 0.02 0.2 0.2 2.4248 2.4384 2.4542
2.7035 2.7224 2.8039

50 0.02 0.02 0.2 0.2 2.3708 2.3735 2.3771
2.6234 2.6733 2.7232

Table 4. The M/M/1 retrial queue with breakdowns.
µ = η = 1; E [Db] = E [Di] = 2.

λ ρ θ Retrial times
E2 E H2

cv ≈ 0.7 cv = 1 cv = 1.5
appr E[N ] appr E[N ] appr E[N ]

0.3 0.9 1 8.8876 9.2112 8.6167
10 6.8784 6.9141 6.8948
100 6.6792 6.6828 6.6815
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ρ (given by (1)) as well as E [N ] are very sensitive in changes of the rate of active
breakdowns µ and above all of the mean time duration of active interruption
E [Db]. These changes can increase drastically the value of ρ as well as of E [N ].
Finally, the performance of the system deteriorates as the mean retrial time 1/θ
approachs the mean service time 1/γ.

We conclude that the performance of the approximation discussed in Section 4
is affected very much by the type of service time distribution as well as by the type
of retrial time distribution. In other words, increasing the coefficient of variation
of service times and that of retrial times has significant adverse influence on the
accuracy of this approximation. The approximation method works well as long as
the mean retrial time is sufficiently inferior to the mean service time. Ultimately,
the breakdowns have an adverse effect on the accuracy of the approximation.
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