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Abstract. In this paper, we focus on some specific optimization prob-

lems from graph theory, those for which all feasible solutions have an

equal size that depends on the instance size. Once having provided a

formal definition of this class of problems, we try to extract some of its

basic properties; most of these are deduced from the equivalence, under

differential approximation, between two versions of a problem π which

only differ on a linear transformation of their objective functions. This

is notably the case of maximization and minimization versions of π,

as well as general minimization and minimization with triangular in-

equality versions of π. Then, we prove that some well known problems

do belong to this class, such as special cases of both spanning tree and

vehicles routing problems. In particular, we study the strict rural post-

man problem (called SRPP ) and show that both the maximization and

the minimization versions can be approximately solved, in polynomial

time, within a differential ratio bounded above by 1/2. From these

results, we derive new bounds for standard ratio when restricting edge

weights to the interval [a, ta] (the SRPP [t] problem): we respectively

provide a 2/(t + 1)- and a (t + 1)/2t-standard approximation for the

minimization and the maximization versions.

Keywords. Approximate algorithms, differential ratio, performance

ratio, analysis of algorithms.

Received October, 2002.
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1. Introduction

Routing design problems are of major importance in combinatorial optimiza-
tion, and related works have been numerous during the last twenty years (see
Christofides [7], Fisher et al. [18], Kosaraju et al. [35], Engebretsen and Karpin-
ski [17]). The purpose of this paper is to study a class of graph-theoretic problems,
called FGNPO 2, including Depth-constrained Spanning Tree and Traveling Sales-
man problems. The feasible solutions of each problem of FGNPO are subsets of
edges having an equal size (depending on the instance), and the cost of a solution
is the sum of the weights on its edges. For example, the minimum spanning tree
problem is typically an FGNPO problem: each tree has exactly n−1 edges and the
cost of a solution is the sum of the weights on the tree’s edges. On the other hand,
the minimum Steiner tree problem is not in FGNPO since the number of edges in
a Steiner tree is not uniquely determined by the input size. Other close problem
families (sharing the fixed solution size property) have been widely studied over
the past ten years; for instance, the problems of finding minimum-cost subsets of
a combinatorial structure and a given size are the most common (see Aggarwal
et al. [1], Ravi et al. [46]). In particular, concerning the problem Min k − MST ,
the performance ratio has been recently improved to the best possible for general
graphs and Euclidean graphs (see Garg [21] and Mitchell [38]). Also problems of
finding subsets maximizing minimum structures such as Remote k − MST and
Remote k − TSP have been studied by Halldorsson et al. [26].

We observe an important fact on these problems: the fixed-size property of solu-
tions induces an homogeneous complexity between maximization and minimization
versions since both versions of each problem are equivalent from an optimization
point of view (i.e., they are Karp-reducible [32]).

We focus on the design of approximation algorithms with guaranteed perfor-
mance ratios. Usually, one compares the worst-case ratio (here called standard
ratio) of the cost of the solution generated by the algorithm to the optimal cost.
However, we mainly refer in this article to another ratio called differential ratio
which measures the worst ratio of, on the one hand, the difference between the
cost of the solution generated by the algorithm and the worst cost, and on the
other hand, the difference between the optimal cost and the worst cost. This mea-
sure, studied by Aiello et al. [2], Ausiello et al. [6], Fisher et al. [18], Vavasis [48]
(in the context of non-linear programming), Zemel [49] and more recently by De-
mange and Paschos [15] and Hassin and Khuller [27], leads to new algorithms
taking into account the extreme solutions of the instance, and provides the oppor-
tunity to better understand these problems. In this paper, we show that there are
tight links between both measures for the studied problems. Most of the positive

2Fixed-size-solution Graph NPO.
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approximation results are obtained by getting, for each problem, several feasible
solutions x1, ..., xq and by choosing the best one among them; each of these indi-
vidual solutions has a differential approximation ratio tending towards zero when
the instance size increases. In other words, for each solution xi, there exists a sub-
set of instances Si (called Family of critical instances in Monnot [39]) illustrating
this worst-case behavior. Our approximate algorithms have the property that, for
each instance in Si, there is another solution xj which has a good approximation
ratio. These notions of families of critical and strongly critical instances are well
known in the polynomial approximation community, but they have never been
finalized until now. However in Monnot [39], they have been largely studied and
commented.

We now give some standard definitions in the field of optimization and approx-
imation theory. For a more detailed statement of this theory, we refer the reader
to Ausiello et al. [4, 5], Hochbaum [29].

Definition 1.1. An NP -optimization problem (NPO-problem) π is a five-tuple
(D, sol, m, T riv, goal) such that:

(i) D is the set of instances and is recognizable in polynomial-time;
(ii) given an instance I ∈ D, sol[I] is the set of feasible solutions of I; moreover,

there exists a polynomial P such that, for any x ∈ sol[I], |x| ≤ P (|I|);
furthermore, it is decidable in polynomial time whether x ∈ sol[I] for
any I and for any x such that |x| ≤ P (|I|). Finally, there is a feasible
solution Triv(I)3 computable in polynomial-time for any I;

(iii) given an instance I and a solution x of I, m[I, x] denotes the positive
integer value of x. The function m is computable in polynomial time and
is also called the objective function;

(iv) goal ∈ {Max, Min}.
We call goal4 the complementary notion of goal and π the NPO-problem (D, sol, m,

T riv, goal). The goal of an NPO-problem with respect to an instance I is to find
an optimum solution x∗ such that OPT (I) = m[I, x∗] = goal{m[I, x] : x ∈ sol[I]}.
Another important solution of π is a worst solution x∗ defined by: WOR(I) =
m[I, x∗] = goal{m[I, x] : x ∈ sol[I]}. A worst solution for π is an optimal solution
for π and vice versa. In Ausiello et al. [6], the term trivial solution referred to
as worst solution and all the exposed examples have the property that a worst
solution can be trivially computed in polynomial-time. For example, this is the
case of the maximum cut problem where, given a graph, the worst solution is the
empty edge-set, and the bin-packing problem where we can trivially put the items
using a distinct bin per item. It is not the case however in this paper, where the
computation of a worst solution is far from being trivial.

3The common definition of class NPO does not require the existence of a trivial solution.
4If goal = Max, then goal = Min and goal = Max.
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1.1. Approximate algorithms and reductions

In order to study algorithm performances, there are two known measures: stan-
dard ratio, see Garey and Johnson [20], Ausiello et al. [5], Crescenzi and Kann [9]
and differential ratio, see Demange and Paschos [15], Ausiello et al. [6], Cornuejols
et al. [8], Zemel [49].

Definition 1.2. Let π be an NPO problem and x be a feasible solution of an
instance I. We define the performance ratios of x with respect to the instance I

as

• (standard ratio) ρ[π](I, x) = Min
{

m[I, x]
OPT (I)

,
OPT (I)
m[I, x]

}

• (differential ratio) δ[π](I, x) =
WOR(I) − m[I, x]
WOR(I) − OPT (I)

·

The performance ratio is a number less than or equal to 1, and is equal to 1 if
and only if m[I, x] = OPT (I). Remark that we have inverted the usual standard
performance ratio in the case of minimization problems so that the ratio value is
always between 0 and 1. Let π be an NPO problem. For any instance I of π, a
polynomial time algorithm A returns a feasible solution xA. The performance of A

with respect to R ∈ {δ, ρ} on the instance I is the quantity RA[π](I) = R[π](I, xA).
We say that A is an r-approximation algorithm with respect to R if for any instance
I, we have RA[π](I) ≥ r.

Definition 1.3. For any performance ratio R ∈ {δ, ρ},
• an NPO problem belongs to the class APX(R) if there exists an r-

approximation algorithm with respect to R for some constant r ∈]0; 1];
• an NPO problem belongs to the class PTAS(R) if there exists an r-

approximation algorithm Ar for any constant r ∈]0; 1[. The family
{Ar}0<r<1 is said to be an approximation scheme;

• an NPO problem belongs to the class FPTAS(R) where R ∈ {δ, ρ} if there
exists a r-approximation algorithm with respect to R, for any constant
r ∈]0; 1[ and the time-complexity of this algorithm is O[P (|I|; 1

1−r )] where
P is a polynomial of two variables.

Clearly, the following inclusions hold for any performance ratio R ∈ {δ, ρ}:
FPTAS(R) ⊆ PTAS(R) ⊆ APX(R). As it is usually done, we will denote
by APX , PTAS and FPTAS, respectively, the classes APX(ρ), PTAS(ρ) and
FPTAS(ρ). As shown in Demange et al. [12], many problems such as the Vertex
Covering or the Dominating Set problems can have different behavior patterns de-
pending on whether the differential or standard ratio is chosen. On the other hand,
for several problems we may establish some connections between the differential
and the standard ratios, like Bin Packing (see Demange et al. [13]) or Steiner Tree
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problem with distance one and two (see Demange et al. [14]) and see Zemel [49]
for motivations and complementarity links between the two measures. Besides for
the problems that we consider here, we show that there are tight links between
the two measures when the ratio dmax/dmin is upper bounded (where dmax and
dmin denote respectively the maximum and the minimum cost of the edges).

Consider the following approximation preserving reductions between pairs (π, R):

Definition 1.4. For πi ∈ NPO and Ri ∈ {δ, ρ}, i = 1, 2,

• an A-reduction from the pair (π1, R1) to the pair (π2, R2), denoted by
(π1, R1) ≤A (π2, R2), is a triplet (∝, f, c) such that:
(i) ∝: Dπ1 �−→ Dπ2 , transforms an instance of π1 into an instance of π2

in polynomial time;
(ii) f : solπ2 [∝ (I)] �−→ solπ1 [I], transforms solutions for π2 into solutions

for π1 in polynomial time;
(iii) c : [0; 1] �−→ [0; 1] (called expansion of the A-reduction) is a function

verifying c−1(0) ⊆ {0}, and ∀ε ∈ [0; 1], ∀I ∈ Dπ1 , ∀x ∈ solπ2 [∝ (I)]:
R2[π2](∝ (I), x) ≥ ε =⇒ R1[π1](I, f(x)) ≥ c(ε);

• an A ∗ P -reduction from the pair (π1, R1) to the pair (π2, R2), denoted
by (π1, R1) ≤A∗P (π2, R2), is an A-reduction from (π1, R1) to (π2, R2)
such that the restriction of function c to an interval [a; 1] is bijective and
c(1) = 1 (note that c does not necessarily verify c−1(0) ⊆ {0}).

Definition 1.5. If (π1, R1) ≤A∗P (π2, R2) and (π2, R2) ≤A∗P (π1, R1) with c(ε) =
ε, we say that (π1, R1) is equivalent to (π2, R2).

The A-reduction preserves constant ratio approximation while the A∗P -reduc-
tion preserves approximation schemes. They are natural generalizations of reduc-
tions described by Orponen and Mannila [45], Ausiello et al. [5], Crescenzi and
Panconesi [10].

The differential ratio measures how the value of an approximate solution is
located in the interval between WOR(I) and OPT (I) whereas for a maximization
problem, the standard ratio measures how the value of an approximate solution
is placed in the interval between 0 and OPT (I). Hence in this case, we have an
A ∗ P -reduction from the standard ratio to the differential ratio:

Lemma 1.6. If π = (D, sol, m, T riv, Max) ∈ NPO, then (π, ρ) ≤A∗P (π, δ) with
c(ε) = ε.

Proof. Let I be an instance of π and x be a feasible solution. If m[I, x] ≥
εOPT (I) + (1 − ε)WOR(I) then m[I, x] ≥ εOPT (I) since WOR(I) ≥ 0. �

Remark that, in general, there is no evident transfer of a positive or negative
result from one framework to the other for a minimization problem. For instance,
we have proved in Demange et al. [11] that the best achievable standard ratio is
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7/8 for a version of weighted minimum coloring in bipartite graphs whereas we
have built a differential approximation scheme; in this coloring version, the cost
of a stable set is given by the maximum of the vertex weights in this stable set.

The rest of this paper is organized as follows. In Section 2, we give a general
definition of the FGNPO class and some elementary properties are presented. In
Section 3, we study the approximation of depth-constrained Spanning Tree prob-
lems. In Section 4, we give approximation results of strict rural postman problems
and some results are given for derived problems, namely the traveling salesman,
Hamiltonian path with specified endpoints and clustered traveling salesman. Fi-
nally, in Section 5, we conclude by some prospects in order to obtain negative
differential results on the FGNPO class.

2. The FGNPO problems

We study a class of graph NPO-problems having the property that for any
couple (x, y) of feasible solutions, the size of x and y are the same (i.e. |x| = |y|);
the feasible solutions are subsets of edges of equal cardinality and the cost of
a solution is the sum of the weights on its edges. Many well-known NP -hard
problems are in this class as the Traveling Salesman problem or tree-problems with
additional constraints (see Magnanti and Wolsey [36]) but also all the problems of
partitioning into a given sub-graph (an approximation algorithm is given in Hassin
and Rubinstein [28] when the sub-graph is 3-edge path). The latter problems
called H-partition in Kirkpatrick and Hell [33], can be formulated as follows: a
H-partition of a complete graph Kn with edges valued by a function d is a set of
sub-graphs (G1, ..., Gk) where Gi = (Vi, Ei) such that each Gi is isomorphic to H

and the set(s) V1, ..., Vk partition V ; the goal is to optimize
∑

d(Ei).
Formally, we can define these problems in the following way:

Definition 2.1. Let π be an NPO problem; π is called FGNPO 5 if it satisfies
the following properties:

(i) an instance I is a complete graph Kn = (V, E), edge-valued by a function
d : E → N;

(ii) a feasible solution is a subset E′ ⊆ E of edges such that pred(E′) is true,
where pred is a suitable polynomial-time decidable predicate. Moreover,
there exists an integer function g such that |E′| = g(|V |);

(iii) the objective function verifies m[I, E′] =
∑

e∈E′ d(e).

If goal = Max, the problem is called Max π, else Min π. We use notation π with no
prefix when we consider without distinction the case goal = Max or goal = Min.
Finally, π[t] for some t > 1 indicates the sub-problem verifying dmax ≤ tdmin where

5Fixed-size-solution Graph NPO.



FGNPO 285

dmax = maxe∈E d(e) and dmin = mine∈E d(e). For sake of simplicity, we identify π

with π[∞].

The FGNPO-problems verify the following properties:
For any t > 1, π[t] ∈ FGNPO is NP − hard if and only if so is π[t] where

we remember that π̄ = (D, S, m, T riv, Min) when π = (D, S, m, T riv, Max) and
¯̄π = π; in other words, computing a worst solution of π[t] is as hard as computing
an optimal one. When π[t] is NP -hard for some constant t > 1, Max π[t] and
Min π[t] are trivially in APX since any solution is at least a 1/t-standard approx-
imation; in this case, the standard ratio may not be very meaningful since even
a worst solution yields a constant standard approximation. On the other hand,
when t tends towards infinity (in other words, we are interested in the general
problem), the standard approximation results are very different for the two ver-
sions (maximization and minimization); Max π seems to be usually in APX (we
do not know a problem π ∈ FGNPO such that Max π /∈ APX) whereas generally,
the problems Min π are not in APX . This last assertion is a natural generalization
which comes from the well-known result established by Sahni and Gonzalez [47]
for TSP : if Min π ∈ APX , then the following decision problem is polynomial.
Given a simple graph G = (V, E), does E′ ⊆ E exist such that |E′| = g(|V |) and
pred(E′)? (we call it the decision problem associated to π).

Proposition 2.2. Let π be an FGNPO problem. If the decision problem associ-
ated to π is NP -Complete then Min π is not in APX unless P = NP .

Proof. The proof of this claim is similar to the one in Sahni and Gonzalez [47].
Suppose that the algorithm A yields a ε-standard approximation for Min π. We
could decide if a graph G verifies the property P by the following way: from
G = (V, E), we build the instance I = (Kn, d) of π by taking d(e) = 1 if e ∈ E else
d(e) = � g(|V |)

ε 
 and we evaluate the quantity A(I); we affirm that G verifies P if
and only if A(I) ≤ g(|V |)

ε . Indeed, if the graph G verifies P then by construction
OPT (I) = g(|V |) and A(I) ≤ OPT (I)

ε = g(|V |)
ε . Conversely, if the graph G does

not verify P , then A(I) ≥ OPT (I) > g(|V |)
ε since we can easily suppose that

g(n) ≥ 2. �

We deduce that Min TSP , Min HPPs,p
6, Min H-Partitioning are not in APX

unless P = NP , because the associated decision problems are NP -Complete. The
reverse is not true since the decision problem associated to Min k-depthSTPr

7 is
polynomial and Min k-depthSTPr /∈ APX .

This asymmetry in the approximability of both versions can be considered as
somewhat strange given the structural symmetry existing between them. Since

6Hamiltonian Path with specified endpoints s and p.
7k-depthSTPr consists in finding a Tree T where the length of any path in T from r is at

most k.
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differential approximation is stable under affine transformation of the objective
function, Max π and Min π are differential-equivalent8. Besides, another difference
with the standard ratio is that π is not more difficult than the same problem with
triangular inequality (called metric π). Finally, for the restriction where the weight
function is bivalued (called π(a, b)), we can always boil down to the case a = 1
and b = 2.

Proposition 2.3. For a problem π ∈ FGNPO, the following assertions hold:

(i) for any t ∈]1;∞], Min π[t] is differential-equivalent to Max π[t];
(ii) π is differential-equivalent to metric π;
(iii) π(a, b)9 is differential-equivalent to π(1, 2).

Proof. • For (i): Let I = (G, d) be an instance of π[t], we transform I into
instance ∝ (I) = (G, d′) of π̄ defined by: ∀e ∈ E, d′(e) = dmax + dmin −
d(e). We observe that ∝ (I) is also an instance of π[t]. We obtain for any
feasible solution E′: m[∝ (I), E′] = g(|V |)(dmax + dmin) − m[I, E′]. Since
g(|V |)(dmax + dmin) is constant, the differential ratio is the same for π[t]
and π[t] (which also holds for the proofs of (ii) and (iii).

• For (ii), the proof is similar, except that function d′ is now defined by
d′(e) = dmax + d(e). We remark that d′ satisfies the triangle inequality
and we have for any solution E′: m[∝ (I), E′] = g(|V |)dmax − m[I, E′].

• Finally, for (iii), we consider ∝ (I) of π(1, 2) defined by: ∝ (I) = (G, d′)
with d′(e) = 1 iff d(e) = a. We obtain for any solution E′: m[∝ (I), E′] =
m[I, E′] − (2a − b)g(|V |)

b − a
·

�

All the conditions defining the FGNPO class are important for establishing the
previous properties, not only the fixed-size conditions. Some problems with fixed-
size solutions are not in FGNPO and do not verify the differential-equivalence
properties of Proposition 2.3. For example, Min k − MST (see Ravi et al. [46])
consisting in computing a minimum spanning tree among those having k−1 edges,
is a polynomial problem when the edge weights are bi-valued (called Min k −
MST (a, b)) whereas its maximization version Max k − MST (a, b), also called
Remote k − MST (a, b) in Halldorsson et al. [26] has been proved NP -hard.

There are some tight links for these problems between differential and standard
ratios. For example, most of these problems are strongly NP -hard and cannot
have a fully polynomial time differential or standard approximation scheme unless
P = NP . Moreover, when we deal with the case dmax ≤ tdmin (a case that seems
to be very common in practical applications) we can establish a bridge between

8See Definition 1.5.
9Restriction where all edge weights are a or b.
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differential and standard ratios:

Theorem 2.4. If π ∈ FGNPO, then for any t ∈]1;∞], (goal π[t], ρ) ≤A∗P

(goal π[t], δ) with the expansion verifying:

c(ε) =
(t − 1)ε + 1

t
if goal = Max c(ε) =

1
t − (t − 1)ε

if goal = Min.

Proof. We only demonstrate the Max π[t] case. Let I be an instance and x

be a feasible solution. If m[I, x] ≥ εOPT (I) + (1 − ε)WOR(I) then m[I, x]
≥ c(ε)OPT (I) since WOR(I) ≥ 1

t OPT (I). �

Observe that if t tends towards infinity, we find again the Lemma 1.6 for goal =
Max and problems of FGNPO, whereas for goal = Min, the expansion is c(ε) = 0
(in other words, we can not transfer a positive differential result to a standard
result by this way). When π[t] is APX-complete for some t ∈]1;∞[, we can
deduce from the previous theorem that the hardness thresholds for standard and
differential framework are identical.

Corollary 2.5. If π[t] ∈ FGNPO and is APX-complete for some t ∈]1;∞[, then
π /∈ PTAS(δ) unless P = NP .

3. The depth-constrained minimum spanning tree

In this section we consider the f -depth constrained spanning tree problem also
called the Hop tree problem in Gouveia [23], Gouveia and Janssen [24] or the
Shallow-Light spanning tree problem in Naor and Schieber [43], Kortsarz and Peleg
[34], formally defined as follows. Let f be an integer function, we suppose w.l.o.g.
that f(n) is always an integer between 2 and n where n = |V |.
Definition 3.1. Consider a complete graph Kn and r ∈ V with non-negative cost
d(e) for each edge e ∈ E. The problem of finding an optimal-cost spanning tree T

with root r such that the depth 10 of T is at most f(|V |) is called f -depthSTPr.
The restriction of f -depthSTPr when f is constant (i.e., f(n) = k ∀n), is called
k-depthSTPr.

The Min k-depthSTPr problem has been extensively studied by Gouveia [22–24]
and arises in many applications such as telecommunication network design and
facility location. It is NP -hard for any f(n) = k ≥ 2, even if the distances are
one and two (see Alfandari and Paschos [3], Manyem and Stallmann [37]) and it is
generally not in APX . For k = 2, this problem is O(1/ lnn)-approximable under
the standard ratio and is equivalent to a version of the single-source uncapacitated
facility location problem whereas its restriction with distances one and two is

10The depth of a tree T with root r is the maximum number of edges of a path in T with

endpoint r.
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4/5-standard approximable and APX-complete (see Alfandari and Paschos [3]).
Moreover, it has been proved by Kortsarz and Peleg [34] that Min k-depthSTPr is
O(1/ lnn)-standard approximable for every constant k ≥ 2 and Min f -depthSTPr

is O(1/nε)-standard approximable for any fixed 0 < ε < 1.
To our knowledge, no standard approximation result has been established for

Max f -depthSTPr , even when the depth does not depend on the graph order.
Nevertheless, when the graph is directed, the bound (lim inf f − 1)/ lim inf f has
been proved in Monnot [40]. So, the following result is presented for the sake of
illustration.

We show that Max f -depthSTPr is (lim inf f −1)/ lim inf f -approximable in the
differential framework. Then, we deduce the same results for standard ratio.

3.1. The algorithm

For a spanning tree T with root r of G = (V, E), let p be the “father” function
(i.e., p(v) is the vertex adjacent to v in the unique path connecting v to r in T )
of the tree and let (V0, V1, ..., Vq) be the partition of V where Vi = {v : r = pi(v)}
is the i-th level vertices subset and q is the depth of T . So, we have in particular
V0 = {r} and all vertices of Vq are leaves of T . In order to keep it simple, we
suppose that q is a multiple of f(n) (we could always add some Vi = ∅). Finally,
let T0 be the tree defined by T0 = ∪v∈V \{r}{(r, v)}, which has a depth equal to
1. The main idea of the following algorithm consists in discarding some edges of
T and connecting each resulting tree to the root r in order to obtain a tree with
depth f(n).

[shorteningtreef ]
input : A complete graph Kn = (V, E) with r ∈ V , edge-valued by d

output : A tree sol1 of depth at most f(n) and root r;
Compute a maximum weight spanning tree T ∗;
Build (V0, V1, ..., Vq) the partition associated with T ∗;
For i = 1 to f(n) do

V i = ∪j≤q/f(n)−1Vjf(n)+i;
build Ti = T ∗ ∪ {(v, r) : v ∈ V i} \ {(v, p(v)) : v ∈ V i};

End for i
sol1 = argmax{d(Ti), i = 1, ..., f(n)}.

It is easy to see that for any i ≤ f(n), the tree Ti is a feasible solution and that
the time-complexity of this algorithm is polynomial with respect to the encoding
of the input since f(n) ≤ n.

Theorem 3.2. The algorithm [shorteningtreef ] is a
lim inf f − 1

lim inf f
-differential ap-

proximation for Max f -depthSTPr and this ratio is tight.
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Proof. Let I = (Kn, d) be an instance of Max f -depthSTPr. We just have to
consider the following equality:

∑
i≤f(n)

d(Ti) = (f(n) − 1)d(T ∗) + d(T0) (3.1)

and observe that solution sol1 satisfies

f(n)d(sol1) ≥
∑

i≤f(n)

d(Ti). (3.2)

On the other hand, regarding an optimal solution, we have:

OPT (I) ≤ d(T ∗) (3.3)

and for a worst solution
WOR(I) ≤ d(T0). (3.4)

Thus, using (3.1–3.3) and (3.4), we obtain the expected result since we are inter-
ested here only in asymptotic bounds.

Let us show that this ratio is tight: consider the following instance In =
(Kn, r, d) such that the sub-graph induced by V \ {r} is a complete graph of
n lim inf f vertices and the edges-weights are two. Moreover, d(r, v) = 1, ∀v ∈
V \{r}. So, T ∗ is a Hamiltonian path from r to an arbitrary vertex v and: d(sol1) =
d(T1) = 2n lim inf f − n, WOR(In) = n lim inf f, OPT (In) = 2n lim inf f − 1.

Hence, we obtain δshorteningtreef
(In) −→ lim inf f−1

lim inf f . �

For the standard ratio, we deduce new improved results from Theorem 3.2 and
Theorem 2.4.

Corollary 3.3. We have the following results:

• Max f -depthSTPr [t] is t(lim inf f−1)+1
t lim inf f -standard approximable;

• Min f -depthSTPr [t] is lim inf f
lim inf f+(t−1) -standard approximable.

Notice that, if lim inf f is infinite, then f -depthSTPr ∈ PTAS(δ), Max
f -depthSTPr ∈ PTAS and Min f -depthSTPr [t] ∈ PTAS for any t ∈]1;∞[. In
the paper Monnot [40], we improved the differential ratio to 3/4 for the sub-
problem 2-depthSTPr(1, 2) (the edge-weights are one or two and f(n) = 2, ∀n)
and we have derived a 4/5-standard approximation for Min 2-depthSTPr(1, 2)
and a 7/8-standard approximation for Max 2-depthSTPr(1, 2).

4. The strict rural postman problem

In this section we study routing problems with additional constraints on edges.
Usually the traveling salesman problem is defined as finding a tour
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(i.e., Hamiltonian cycle) of minimal length, that a salesman can take to visit
n cities, each exactly once and returning to his starting city whereas the rural
postman problem requires that some specified edges are traversed at least once
in a solution. Hence, in the latter case the feasible solutions are not necessarily
Hamiltonian cycles; it depends on the structure of the specified edges. In our
version any solution must be a tour and then, we can assume that the predefined
edges belong to vertex disjoint paths; indeed without loss of generality, we can
suppose that the paths are shrunk to a matching. This problem called Strict Ru-
ral Postman problem and shortly noted SRPP , is a sub-case of the one described
by Orloff [44] and models the problem of mail-carrier where each edge corresponds
to a street along which the mail must be delivered. More generally, the rural post-
man problem underlies applications in contexts where roads have to be traversed
for maintenance, garbage collection, school bus transportation, electrical lines and
gas mains inspection, etc. like indicated in Eiselt et al. [16]. From a standard
measure point of view, the metric Min SRPP is 2/3-standard approximable and
the approximation algorithm is obtainable by using an algorithm similar to the
Christofides’s one [19]. To our knowledge, no standard approximation result exists
for Max SRPP .

When using the differential measure, the expected results will be less optimistic,
this problem containing several other particular problems which are difficult to
approximate. Among those, we mention the Hamiltonian path with specified end-
points problem (denoted by HPPs,p), the traveling salesman problem (in short
TSP ) and the clustered traveling salesman problem11 (called CTSPsi,pi); hence
from this point of view, the problem seems to be a central routing problem. We
show that this problem can be approximated with a differential ratio bounded
above by 1/2 and like previously, we improve the standard bounds for the case
where all the edge weights are within an interval [a, ta]. Hence, we will deduce
that Min CTSPsi,pi [t], Min HPPs,p[t] are 2/(t + 1)-standard approximable, and
Max CTSPsi,pi [t], Max HPPs,p[t] are (t + 1)/2t-standard approximable.

The problem is formally defined as follows:

Definition 4.1. Consider a complete graph Kn = (V, E) with non-negative cost
d(e) for each edge e ∈ E and a matching E′ ⊂ E. The problem is to compute an
optimal-cost Hamiltonian cycle of Kn containing E′. This problem is called Strict
Rural postman and noted SRPP .

We exploit the structural properties of solutions to approximate this problem.
The principle of our algorithm is to generate two feasible solutions following the
method consisting in finding a maximum weight 2-matching among those contain-
ing E′, then discarding some edges (not belonging to E′) and arbitrarily connecting

11This problem consists in computing a tour of Kn in which the vertices of each cluster Vi

are visited consecutively from si to pi where V is split into V1,...Vk.
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the resulting paths to form a Hamiltonian cycle. In order to build an optimal 2-
matching M containing E′, we substitute |V |dmax + 1 for the cost of each edge
of E′ and we compute a maximum 2-matching M in this new graph. We sup-
pose that M contains cycles Γi, i = 1, ..., p and each cycle Γi has at least an
edge ei ∈ E′(otherwise we take arbitrarily an edge and consider like belonging
to E′). Formally, for each cycle Γi, we always consider four consecutive vertices
xi

1,xi
2,xi

3,xi
4, such that (xi

2, x
i
3) ∈ E′. Indeed, if |Γi| = 3 then xi

4 = xi
1 and we must

have in any case (xi
1, x

i
2) /∈ E′ and (xi

3, x
i
4) /∈ E′.

[Patching.SRP ]
input: A complete graph Kn edge valued by d and a matching E′;
output : A Hamiltonian cycle SOL of G containing E′;

Change the cost of e ∈ E′ by | V | dmax + 1. Call d′ this new weight
function;

Compute a maximum weight 2-matching M = {Γi , i = 1, ..., p}
of (G, d′);

if p = 1 then SOL = M and exit;
build S1 = ∪p

j=1{(xj
1, x

j
2);

build S2 = ∪p
j=1{(xj

3, x
j
4);

if p is even then
sol1 = [M \ S1] ∪ {(xp−1

2 , xp
2), (x

p
1, x

1
1)} ∪(p−2)/2

j=1 {(x2j−1
2 , x2j

2 ),
(x2j

1 , x2j+1
1 )};

sol2 = [M \ S2] ∪ {(x1
4, x

p
3), (x

2
4, x

p−1
3 )} ∪p−2

j=1 {(xj
3, x

j+2
4 )};

End if;
if p is odd then

sol1 = [M \ S1] ∪ {(xp
2, x

1
1)} ∪(p−1)/2

j=1 {(x2j−1
2 , x2j

2 ), (x2j
1 , x2j+1

1 )};

sol2 = [M \ S2] ∪ {(x1
4, x

p−1
3 ), (x2

4, x
p
3)} ∪p−2

j=1 {(xj
3, x

j+2
4 )};

End if;
SOL = argmax{d(sol1), d(sol2)}.

This algorithm is polynomial and we can easily observe that the solutions sol1 and
sol2 are Hamiltonian cycles containing E′.

Theorem 4.2. The algorithm [Patching.SRP ] is a 1
2 -differential approximation

for Max SRPP and this ratio is tight.

Proof. Let I = (Kn, E′, d) be an instance and let SOL∗ be an optimal Hamiltonian
cycle containing E′. We denote lossi, i = 1, 2, the quantity d(soli) − d(M).
Obviously, lossi ≤ 0 and we have

d(SOL) ≥ d(M) +
1
2
(loss1 + loss2). (4.1)
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Moreover, the following structural property holds:

SOL∗ = ∪j=1,2(solj \ M) ∪ M \ (S1 ∪ S2) is a Hamiltonian cycle containing E′.
(4.2)

Hence, SOL∗ is a feasible solution of our problem and approximates well the value
of a worst solution. Indeed, when soli is better than sol3−i then from sol3−i

we can build a tour (the solution SOL∗) which is relatively worst. The cost of
this solution is d(M) + loss1 + loss2 since we have d(solj) = lossj + d(M) and
d(M \ (S1 ∪ S2)) = d(Mr∗) − d(S1) − d(S2). Thus, we deduce

WOR(I) ≤ d(M) + loss1 + loss2. (4.3)

Since SOL∗ is a particular 2-matching containing E′, we have:

OPT (I) ≤ d(M). (4.4)

Finally, combining (4.1, 4.3) and (4.4) we obtain:

d(SOL) ≥ 1
2
WOR(I) +

1
2
OPT (I).

To show that the bound is tight, consider the following instances In = (Kn, E′, d)
with V = {xj

i , 1 ≤ j ≤ 2n, 1 ≤ i ≤ 4}, E′ = {(xj
2, x

j
3), (x

j
4, x

j
1), 1 ≤ j ≤ 2n},

d(xj
1, x

j
2) = d(xj

2, x
j
3) = d(xj

3, x
j
4) = d(xj

4, x
j
1) = 2, d(x2j−1

1 , x2j
1 ) = d(x2j

2 , x2j+1
2 ) =

2 , j = 1, ..., n − 1, and d(x2n−1
1 , x2n

1 ) = d(x2n
2 , x1

2) = 2. Let the cost of all other
edges be one. Thus, we obtain:

d(SOL) = 3n, WOR(In) = 2n, OPT (In) = 4n

and thus δPatching.SRP (In) = 1
2 .

�

4.1. Some links with other routing problems

Now, we study some particular cases of this problem which are known to be
NP -hard problems in the literature. For instance, the traveling salesman problem
can be viewed as a special case of SRPP in which there is no specified edge
(take E′ = ∅). Nevertheless, this problem is as well approximable as TSP in its
minimization metric version since there is a 2/3-standard approximation and it is
the best known ratio until today.

Since we have proved in Monnot et al. [41] that no polynomial time algorithm
can guarantee a differential approximation ratio greater than 741/742 for TSP [2],
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we can deduce the following negative results:

Proposition 4.3. If P �= NP then SRPP [t] is not approximable with differential
ratio greater than 741

742 , for any t ≥ 2.

This problem also contains Hamiltonian path problem with two specified endpoints
and clustered traveling salesman problem with specified endpoints; the first one
consists in finding, in a complete graph Kn valuated on edges, a Hamiltonian path
from s to p of optimum weight whereas the second one consists in computing a
tour of Kn in which the vertices of each cluster Vi are visited consecutively from
si to pi, where V is split into V1,...Vk. These properties seem not to hold for the
standard framework; when considering the minimization metric version, several au-
thors estimate that HPPs,p and CTSPsi,pi are more difficult to approximate than
TSP or SRPP . Already in the middle of the eighties, Johnson and Papadim-
itriou [31] raised the question of the relative hardness of the Hamiltonian path
specified endpoint version compared to the traveling salesman. These conjectures
are strengthened by the positive results given on these problems since the best-
known standard ratios are respectively 3/5 and 11/21 for Min metric − HPPs,p

(see Hoogeveen [30]) and Min metric−CTSPsi,pi (see Guttmann–Beck et al. [25])
whereas it is 2/3 for Min metric − SRPP .

Proposition 4.4. The following results hold:

(i) (HPPs,p, δ) ≤A∗P (SRPP, δ) with c(ε) = ε;
(ii) (CTSPsi,pi , δ) ≤A∗P (SRPP, δ) with c(ε) = ε.

Proof. Suppose that SRPP contains a solution sol′ which is an ε-differential
approximation. �

For (i) When E′ = {(s, p)}, sol′ is a tour traversing (s, p). Thus, the removal
of this edge forms a Hamiltonian path from s to p (noted by sol) and we have
d(sol) = d(sol′) − d(e). Moreover, the same property holds for the respective
optimum and the respective worst values, so we obtain:

d(sol) = d(sol′) − d(e)
d(sol) ≤ ε(OPTSRPP (I) − d(e)) + (1 − ε)(WORSRPP (I) − d(e))
d(sol) ≤ εOPTHPP (I) + (1 − ε)WORHPP (I).

For (ii): Let I = (Kn, d) be an instance of Min CTSPsi,pi such that (V1, ..., Vk)
is a partition of V and {si, pi} ⊆ Vi. Denote by Gi the sub-graph of Kn induced
by Vi and G′ the sub-graph of Kn induced by {si, pi| 1 ≤ i ≤ k}. Consider
Ii = (Gi, d, si, pi) and I ′ = (G′, d, E′) with E′ = {(si, pi), 1 ≤ i ≤ k} as being
respectively an instance of HPPs,p and an instance of SRPP .

From (i), we know that HPPs,p is ε-differential approximable and if soli (resp.
sol′) is a feasible solution for HPPsi,pi on Ii (resp. SRPP on I ′), then
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sol = (sol′ \ E′) ∪i=1,...,k soli is a feasible solution of I for CTSPsi,pi ; this same
partition of optimal solutions also hold and we have:

d(sol) = d(sol′) − d(E′) +
∑k

i=1 d(soli)
d(sol) ≤ ε(OPTSRPP (I ′) − d(E′)) + (1 − ε)(WORSRPP (I ′) − d(E′))

+
∑k

i=1[εOPTHPP (Ii) + (1 − ε)WORHPP (Ii)]
d(sol) ≤ εOPTCTSP (I) + (1 − ε)WORCTSP (I).

That is the expected result.
We deduce from the previous results, thanks to Theorem 2.4 and Lemma 1.6:

Theorem 4.5. For any t ∈]1;∞], we have the following results:

• Min CTSPsi,pi [t], Min HPPs,p[t] and Min SRPP [t] are 2
t+1 -standard ap-

proximable;
• Max CTSPsi,pi [t], Max HPPs,p[t] and Max SRPP [t] are t+1

2t -standard
approximable.

5. Conclusion

In this article, we have established some basic properties on the approximability
of FGNPO-problems with respect to the differential ratio. We also have exposed
positive approximation results for some specific vehicles routing and spanning tree
problems.

An open question of particular interest regarding to this class is the following:
does any FGNPO-problem accept a differential approximation scheme? We con-
jecture that the answer is no, due to the structural properties on the size of any
feasible solution that define FGNPO problems.

Moreover, for a class of problems close to FGNPO, namely when replacing
the value m[I, E′] =

∑
e∈E′ d(e) of any solution E′ by m[I, E′] = maxe∈E′d(e)

and possibly turn the goal to minimize, the negative results become stronger.
Actually, we denote by NO APX(∆) the class of problems π from NPO which
are not differential approximable better than 0 by any polynomial time algorithm,
unless P = NP (even when looking for a ratio depending on the size of the
instance). In other words, NO APX(∆) is constituted by the problems π which
admit, for any polynomial time approximate algorithm A, an instance I0 such
that δA(I0) = 0. Thus, this class contains the worst approximation results we may
expect (with respect to this measure), but still we have shown in Monnot et al. [42]
that both the {0, 1}-Linear Programming problem (with goal to minimize as well
as to maximize) and a special weighted satisfiability problem are one of them.
Now regarding to FGNPO, we have the following result, given in Monnot [39],
similar to the Proposition 2.2 transposed to the differential framework.
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Let π be an FGNPO problem and π′ derived from π with the evaluating
function given by m[I, E′] = maxe∈E′d(e) for any solution E′ for π. If the decision
problem associated to Min π′ is NP -Complete, then Min π ∈ NO APX(∆).
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