Individual items of flow in a telecommunications or a transportation network may need to be separated by a minimum distance or time, called a “headway”. If link dependent, such restrictions in general have the effect that the minimum time path for a “convoy” of items to travel from a given origin to a given destination will depend on the size of the convoy. The Quickest Path problem seeks a path to minimise this convoy travel time. A closely related bicriterion problem is the Maximum Capacity Shortest Path problem. For this latter problem, an effective implementation is devised for an algorithm to determine desired sets of efficient solutions which in turn facilitates the search for a “best” compromise solution. Numerical experience with the algorithm is reported.
Mots clés : quickest path, shortest path, path capacity, efficient solution
@article{RO_2002__36_1_1_0, author = {Boffey, T. Brian and Williams, R. C. and Pelegr{\'\i}n, B. and Fernandez, P.}, title = {The maximum capacity shortest path problem : generation of efficient solution sets}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {1--19}, publisher = {EDP-Sciences}, volume = {36}, number = {1}, year = {2002}, doi = {10.1051/ro:2002002}, mrnumber = {1920376}, zbl = {1006.90013}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ro:2002002/} }
TY - JOUR AU - Boffey, T. Brian AU - Williams, R. C. AU - Pelegrín, B. AU - Fernandez, P. TI - The maximum capacity shortest path problem : generation of efficient solution sets JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2002 SP - 1 EP - 19 VL - 36 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro:2002002/ DO - 10.1051/ro:2002002 LA - en ID - RO_2002__36_1_1_0 ER -
%0 Journal Article %A Boffey, T. Brian %A Williams, R. C. %A Pelegrín, B. %A Fernandez, P. %T The maximum capacity shortest path problem : generation of efficient solution sets %J RAIRO - Operations Research - Recherche Opérationnelle %D 2002 %P 1-19 %V 36 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ro:2002002/ %R 10.1051/ro:2002002 %G en %F RO_2002__36_1_1_0
Boffey, T. Brian; Williams, R. C.; Pelegrín, B.; Fernandez, P. The maximum capacity shortest path problem : generation of efficient solution sets. RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 1, pp. 1-19. doi : 10.1051/ro:2002002. http://www.numdam.org/articles/10.1051/ro:2002002/
[1] Multiobjective routing problems. TOP 3 (1995) 167-220. | MR | Zbl
,[2] Distributed Computing: associated combinatorial problems. McGraw-Hill (1992).
,[3] Efficient solution generation for the Bicriterion Routing problem. Belg. J. Oper. Res. Statist. Comput. Sci. 39 (2000) 3-20. | MR | Zbl
,[4] On the quickest path problem. Inform. Process. Lett. 46 (1993) 125-128. | MR | Zbl
and ,[5] Algorithms for the constrained quickest path problem and the enumeration of quickest paths. Comput. Oper. Res. 21 (1994) 113-118. | Zbl
and ,[6] The quickest path problem. Comput. Oper. Res. 17 (1990) 179-188. | MR | Zbl
and ,[7] An algorithm for finding the quickest paths in a network. Comput. Oper. Res. 20 (1993) 59-65. | MR | Zbl
,[8] Finding the quickest simple paths in a network. Inform. Process. Lett. 50 (1994) 89-92. | MR | Zbl
,[9] Multiobjective Programming and Planning. Academic Press (1978). | MR | Zbl
,[10] The maximum covering/shortest path problem: A multiobjective network design and routing problem. EJOR 21 (1985) 189-199. | MR | Zbl
, and ,[11] The multichannel quickest path problem. Int. J. Systems Sci. 25 (1994) 2047-2056. | MR | Zbl
, and ,[12] Shortest-route methods: 1. Reaching, pruning, and buckets. Oper. Res. 27 (1979) 161-186. | MR | Zbl
and ,[13] A computational analysis of alternative algorithms and labelling techniques for finding shortest path trees. Networks 9 (1974) 215-248. | MR | Zbl
, , and ,[14] A note on two problems in connection with graphs. Numer. Maths 1 (1959) 269-271. | MR | Zbl
,[15] Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34 (1987) 596-615. | MR
and ,[16] A formal basis for the heuristic determination of minimal cost paths. IEEE Trans Syst. Man. Cybernet. 4 (1968) 100-107.
, and ,[17] Distributed algorithms for the constrained routing problem in computer networks. Computer Communications 21 (1998) 1476-1485.
,[18] On the quickest path problem. Springer, Lecture Notes in Comput. Sci. 46 (1991). | MR
and ,[19] Distributed algorithms for the quickest path problem. Parallel Comput. 18 (1992) 823-834. | MR | Zbl
and ,[20] Algorithms for the constrained quickest path problem and the enumeration of quickest paths. Comput. Oper. Res. 21 (1994) 113-118. | Zbl
and ,[21] The quickest path problem in distributed computing systems. Springer, Lecture Notes in Comput. Sci. 579 (1992). | MR
and ,[22] On the computation of fast data transmission in networks with capacities and delays. Springer, New York, Lecture Notes in Comput. Sci. 955 (1995) 291-302. | MR
, , and ,[23] The all-pairs quickest path problem. Inform. Process. Lett. 45 (1993) 261-267. | MR | Zbl
and ,[24] On the self-similar nature of Ethernet traffic. IEEE/ACM Trans. Networking 2 (1994) 1-15.
, , and ,[25] On the fastest route for convoy-type traffic in flowrate-constrained networks. Transportation Sci. 10 (1976) 113-124. | MR
,[26] A generalized permanent label setting algorithm for the shortest path between specified nodes. J. Math. Anal. Appl. 38 (1972) 328-334. | MR | Zbl
,[27] Wide-area traffic: The failure of Poisson modelling. Proc. ACM Sigcomm '94 (1995) 149-160.
and ,[28] Implementation of algorithms for shortest loopless paths. Networks 16 (1987) 149-160. | MR | Zbl
,[29] Algorithms for the quickest path problem and the enumeration of quickest paths. Comput. Oper. Res. 18 (1991) 579-584. | MR | Zbl
, and ,[30] Multiple Criteria Optimization: Theory, Computation and Applications. Wiley (1986). | MR | Zbl
,Cité par Sources :