A modified algorithm for the strict feasibility problem
RAIRO - Operations Research - Recherche Opérationnelle, Tome 35 (2001) no. 4, pp. 395-399.

In this note, we present a slight modification of an algorithm for the strict feasibility problem. This modification reduces the number of iterations.

Mots-clés : strict feasibility, interior point methods, Ye-Lustig algorithm
@article{RO_2001__35_4_395_0,
     author = {Benterki, D. and Merikhi, B.},
     title = {A modified algorithm for the strict feasibility problem},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {395--399},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {4},
     year = {2001},
     mrnumber = {1896579},
     zbl = {1015.90054},
     language = {en},
     url = {http://www.numdam.org/item/RO_2001__35_4_395_0/}
}
TY  - JOUR
AU  - Benterki, D.
AU  - Merikhi, B.
TI  - A modified algorithm for the strict feasibility problem
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2001
SP  - 395
EP  - 399
VL  - 35
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/RO_2001__35_4_395_0/
LA  - en
ID  - RO_2001__35_4_395_0
ER  - 
%0 Journal Article
%A Benterki, D.
%A Merikhi, B.
%T A modified algorithm for the strict feasibility problem
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2001
%P 395-399
%V 35
%N 4
%I EDP-Sciences
%U http://www.numdam.org/item/RO_2001__35_4_395_0/
%G en
%F RO_2001__35_4_395_0
Benterki, D.; Merikhi, B. A modified algorithm for the strict feasibility problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 35 (2001) no. 4, pp. 395-399. http://www.numdam.org/item/RO_2001__35_4_395_0/

[1] D. Benterki, Étude des performances de l'algorithme de Karmarkar pour la programmation linéaire. Thèse de Magister, Département de Mathématiques, Université de Annaba, Algérie (1992).

[2] J.C. Culioli, Introduction à l'optimisation. Édition Marketing, Ellipses, Paris (1994).

[3] I.J. Lustig, A pratical approach to Karmarkar's algorithm. Technical report sol 85-5, Department of Operations Research Stanford University, Stanford, California.

[4] A. Keraghel, Étude adaptative et comparative des principales variantes dans l'algorithme de Karmarkar, Thèse de Doctorat de mathématiques appliquées. Université Joseph Fourier, Grenoble, France (1989).

[5] D.F. Shanno and R.E. Marsten, A reduced-gradient variant of Karmarkar's algorithm and null-space projections. J. Optim. Theory Appl. 57 (1988) 383-397. | Zbl

[6] S.J. Wright, Primal-dual interior point method. SIAM, Philadelphia, PA (1997). | MR | Zbl