In this paper, we present a new mathematical programming formulation for the euclidean Steiner Tree Problem (ESTP) in . We relax the integrality constrains on this formulation and transform the resulting relaxation, which is convex, but not everywhere differentiable, into a standard convex programming problem in conic form. We consider then an efficient computation of an -optimal solution for this latter problem using interior-point algorithm.
@article{RO_2001__35_4_383_0, author = {Fampa, Marcia and Maculan, Nelson}, title = {A new relaxation in conic form for the euclidean {Steiner} problem in $\Re ^n$}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {383--394}, publisher = {EDP-Sciences}, volume = {35}, number = {4}, year = {2001}, mrnumber = {1896578}, zbl = {1020.90042}, language = {en}, url = {http://www.numdam.org/item/RO_2001__35_4_383_0/} }
TY - JOUR AU - Fampa, Marcia AU - Maculan, Nelson TI - A new relaxation in conic form for the euclidean Steiner problem in $\Re ^n$ JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2001 SP - 383 EP - 394 VL - 35 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/RO_2001__35_4_383_0/ LA - en ID - RO_2001__35_4_383_0 ER -
%0 Journal Article %A Fampa, Marcia %A Maculan, Nelson %T A new relaxation in conic form for the euclidean Steiner problem in $\Re ^n$ %J RAIRO - Operations Research - Recherche Opérationnelle %D 2001 %P 383-394 %V 35 %N 4 %I EDP-Sciences %U http://www.numdam.org/item/RO_2001__35_4_383_0/ %G en %F RO_2001__35_4_383_0
Fampa, Marcia; Maculan, Nelson. A new relaxation in conic form for the euclidean Steiner problem in $\Re ^n$. RAIRO - Operations Research - Recherche Opérationnelle, Tome 35 (2001) no. 4, pp. 383-394. http://www.numdam.org/item/RO_2001__35_4_383_0/
[1] Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5 (1995) 13-51. | MR | Zbl
,[2] Steiner minimal trees. SIAM J. Appl. Math. 16 (1968) 323-345. | MR | Zbl
and ,[3] Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 6 (1995) 1115-1145. | MR | Zbl
and ,[4] A linear time algorithm for full Steiner trees. Oper. Res. Lett. 4 (1986) 235-237. | MR | Zbl
,[5] The shortest network under a given topology. J. Algorithms 13 (1992) 468-488. | MR | Zbl
and ,[6] The Steiner Tree Problem. Ann. Discrete Math. 53 (1992). | MR | Zbl
, and ,[7] Semidefinite relaxations and Lagrangian duality with application to combinatorial optimization. Rapport de recherche, Institut National de Recherche en Informatique et en Automatique, INRIA (1999).
and ,[8] The Euclidean Steiner Problem in : A mathematical programming formulation. Ann. Oper. Res. 96 (2000) 209-220. | MR | Zbl
, and ,[9] Self-Scaled Barriers and Interior-Point Methods for Convex Programming (manuscript). | Zbl
and ,[10] A recipe for semidefinite relaxation for (0,1)-quadratic programming. J. Global Optim. 7 (1995) 51-73. | MR | Zbl
, and ,[11] How to find Steiner minimal trees in Euclidean -space. Algorithmica 7 (1992) 137-177. | MR | Zbl
,[12] An Efficient Algorithm for Minimizing a Sum of Euclidean Norms with Applications. SIAM J. Optim. 7 (1997) 1017-1036. | MR | Zbl
and ,