The -principal points of a random variable with finite second moment are those points in minimizing the expected squared distance from to the closest point. Although the determination of principal points involves in general the resolution of a multiextremal optimization problem, existing procedures in the literature provide just a local optimum. In this paper we show that standard Global Optimization techniques can be applied.
@article{RO_2001__35_3_315_0, author = {Carrizosa, Emilio and Conde, E. and Casta\~no, A. and Romero-Morales, D.}, title = {Finding the principal points of a random variable}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {315--328}, publisher = {EDP-Sciences}, volume = {35}, number = {3}, year = {2001}, language = {en}, url = {http://www.numdam.org/item/RO_2001__35_3_315_0/} }
TY - JOUR AU - Carrizosa, Emilio AU - Conde, E. AU - Castaño, A. AU - Romero-Morales, D. TI - Finding the principal points of a random variable JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2001 SP - 315 EP - 328 VL - 35 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/item/RO_2001__35_3_315_0/ LA - en ID - RO_2001__35_3_315_0 ER -
%0 Journal Article %A Carrizosa, Emilio %A Conde, E. %A Castaño, A. %A Romero-Morales, D. %T Finding the principal points of a random variable %J RAIRO - Operations Research - Recherche Opérationnelle %D 2001 %P 315-328 %V 35 %N 3 %I EDP-Sciences %U http://www.numdam.org/item/RO_2001__35_3_315_0/ %G en %F RO_2001__35_3_315_0
Carrizosa, Emilio; Conde, E.; Castaño, A.; Romero-Morales, D. Finding the principal points of a random variable. RAIRO - Operations Research - Recherche Opérationnelle, Tome 35 (2001) no. 3, pp. 315-328. http://www.numdam.org/item/RO_2001__35_3_315_0/
[1] Puntos principales: Un problema de Optimización Global en Estadística, Presented at XXII Congreso Nacional de Estadística e Investigación Operativa. Sevilla (1995).
, , , , and ,[2] A use of complex probabilities in the theory of stochastic processes, in Proc. of the Cambridge Philosophical Society, Vol. 51 (1955) 313-319. | MR | Zbl
,[3] Principal points. Biometrika 77 (1990) 33-41. | MR | Zbl
,[4] Representing a Large Collection of Curves: A Case for Principal Points. Amer. Statist. 47 (1993) 304-306.
and ,[5] AMPL, A modeling language for Mathematical Programming. The Scientific Press, San Francisco (1993).
, and ,[6] Probabilistic Models of Computer Systems-Part I. Acta Inform. 7 (1976) 35-60. | MR | Zbl
and ,[7] An Algorithm for Nonconvex Programming Problems. Math. Programming 10 (1976) 312-321. | MR | Zbl
,[8] Global Optimization. Deterministic Approaches. Springer-Verlag, Berlin (1993). | MR | Zbl
and ,[9] Least Squares Quantization in PCM. IEEE Trans. Inform. Theory 28 (1982) 129-137. | MR | Zbl
,[10] Uniqueness of principal points for univariate distributions. Statist. Probab. Lett. 25 (1995) 323-327. | MR | Zbl
and ,[11] An asymptotic result on principal points for univariate distribution. Optimization 28 (1994) 397-406. | MR | Zbl
and ,[12] An Algorithm for Computing Principal Points with Respect to a Loss Function in the Unidimensional Case. Statist. Comput. 6 (1997) 187-190.
,[13] Two principal points of symmetric, strongly unimodal distributions. Statist. Probab. Lett. 20 (1994) 253-257. | MR | Zbl
,[14] Principal points and self-consistent points of symmetric multivariate distributions. J. Multivariate Anal. 53 (1995) 39-51. | MR | Zbl
,[15] Principal points and self-consistent points of elliptical distributions. Ann. Statist. 23 (1995) 103-112. | MR | Zbl
, and ,[16] Principal points of univariate continuous distributions. Statist. Comput. 5 (1995) 127-132.
,[17] On Uniqueness and Symmetry of self-consistent points of univariate continuous distribution. J. Classification 14 (1997) 147-158. | MR | Zbl
,