A generalization of dynamic programming for Pareto optimization in dynamic networks
RAIRO - Operations Research - Recherche Opérationnelle, Tome 34 (2000) no. 1, pp. 27-47.
@article{RO_2000__34_1_27_0,
     author = {Getachew, Teodros and Kostreva, Michael and Lancaster, Laura},
     title = {A generalization of dynamic programming for {Pareto} optimization in dynamic networks},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {27--47},
     publisher = {EDP-Sciences},
     volume = {34},
     number = {1},
     year = {2000},
     mrnumber = {1747707},
     zbl = {0963.90055},
     language = {en},
     url = {http://www.numdam.org/item/RO_2000__34_1_27_0/}
}
TY  - JOUR
AU  - Getachew, Teodros
AU  - Kostreva, Michael
AU  - Lancaster, Laura
TI  - A generalization of dynamic programming for Pareto optimization in dynamic networks
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2000
SP  - 27
EP  - 47
VL  - 34
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/RO_2000__34_1_27_0/
LA  - en
ID  - RO_2000__34_1_27_0
ER  - 
%0 Journal Article
%A Getachew, Teodros
%A Kostreva, Michael
%A Lancaster, Laura
%T A generalization of dynamic programming for Pareto optimization in dynamic networks
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2000
%P 27-47
%V 34
%N 1
%I EDP-Sciences
%U http://www.numdam.org/item/RO_2000__34_1_27_0/
%G en
%F RO_2000__34_1_27_0
Getachew, Teodros; Kostreva, Michael; Lancaster, Laura. A generalization of dynamic programming for Pareto optimization in dynamic networks. RAIRO - Operations Research - Recherche Opérationnelle, Tome 34 (2000) no. 1, pp. 27-47. http://www.numdam.org/item/RO_2000__34_1_27_0/

1. R. E. Bellman, Ona Routing Problem, Quarterly Appl. Math., 1958, 16, p. 87-90. | MR | Zbl

2. T. A. Brown and R. E. Strauch, Dynamic Programming in Multiplicative Lattices, J. Mafh. Anal. Appl., 1965, 12, p. 364-370. | MR | Zbl

3. J. Brumbaugh-Smith and D. Shier, An empirical investigation of some bicriterion shortest path algorithms, European J. Op. Res., 1989, 43, p. 216-224. | MR | Zbl

4. R. L. Carraway and T. L. Morin, Generalized Dynamic Programming for Multicriteria Optimization, European J. Op. Res., 1990, 44, p. 95-104. | MR | Zbl

5. K. L. Cooke and E. Halsey, The Shortest Route Through a Network with Time-Dependent Internodal Transit Times, J. Math. Anal. AppL., 1966, 14, p. 493-498. | MR | Zbl

6. H. W. Corley and I. D. Moon, Shortest Paths in Networks with Vector Weights, J. Opt. Theory Appl., 1985, 46, p. 79-86. | MR | Zbl

7. H. G. Daellenbach and C. A. Dekluyver, Note on Multiple Objective Dynamic Programming, J. Op. Res. Soc., 1980, 31, p. 591-594. | Zbl

8. E. W. Dijkstra, A Note on Two Problems in Connection with Graphs, Num. Math., 1959, 1, p. 269-271. | MR | Zbl

9. S. E. Dreyfus, An Appraisal of Some Shortest Path Algorithms, Ops.Res., 1969, 17, p. 395-412. | Zbl

10. T. Getachew, An Algorithm for Multiple-Objective Network Optimization with Time variant Link-Costs, Ph.D. dissertation, Clemson Univ., Clemson, South Carolina, USA, 1992.

11. T. Getachew, Optimization over Stratified Posets, in preparation.

12. J. Halpern, Shortest Route with Time-dependent Length of Edges and Limited Delay Possibilities in Nodes, J. Ops. Res., 1977, 21, p. 117-124. | MR | Zbl

13. M. I. Henig, The Principle of Optimality in Dynamic Programming with Returns in Partially Ordered Sets, Math. Ops. Res., 1985, 10, p. 462-470. | MR | Zbl

14. D. E. Kaufmann and R. L. Smith, Minimum Travel Time Paths in Dynamic Networks with Application to Intelligent Vehicle-highway Systems, University of Michigan, Transportation Research Institute, Ann Arbor, Michigan, USA, IVHS Tech. Rpt. 90-11, 1990.

15. M. M. Kostreva and M. M. Wiecek, Time Dependency in Multiple Objective Dynamic Programming, J. Math. Anal. Appl., 1993, 173, p. 289-308. | MR | Zbl

16. A. Orda and R. Rom, Shortest-path and Minimum-delay Algorithms in Networks with Time-dependent Edge-length, J. Assoc. Comp. Mach., 1990, 37, p. 607-625. | MR | Zbl

17. A. B. Philpott, Continuous-time Shortest Path Problems and Linear Programming, SIAM J. Cont. Opt., 1994, 32, p. 538-552. | MR | Zbl

18. S. Verdu and H. V. Poor, Abstract Dynamic Programming Models under Commutativity Conditions, SIAM J. Cont. Opt., 1987, 25, p. 990-1006. | MR | Zbl