@article{RO_1999__33_4_421_0, author = {Bampis, E. and Manoussakis, Y. and Milis, I.}, title = {On the parallel complexity of the alternating hamiltonian cycle problem}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {421--437}, publisher = {EDP-Sciences}, volume = {33}, number = {4}, year = {1999}, mrnumber = {1735446}, zbl = {0952.68115}, language = {en}, url = {http://www.numdam.org/item/RO_1999__33_4_421_0/} }
TY - JOUR AU - Bampis, E. AU - Manoussakis, Y. AU - Milis, I. TI - On the parallel complexity of the alternating hamiltonian cycle problem JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 1999 SP - 421 EP - 437 VL - 33 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/item/RO_1999__33_4_421_0/ LA - en ID - RO_1999__33_4_421_0 ER -
%0 Journal Article %A Bampis, E. %A Manoussakis, Y. %A Milis, I. %T On the parallel complexity of the alternating hamiltonian cycle problem %J RAIRO - Operations Research - Recherche Opérationnelle %D 1999 %P 421-437 %V 33 %N 4 %I EDP-Sciences %U http://www.numdam.org/item/RO_1999__33_4_421_0/ %G en %F RO_1999__33_4_421_0
Bampis, E.; Manoussakis, Y.; Milis, I. On the parallel complexity of the alternating hamiltonian cycle problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 33 (1999) no. 4, pp. 421-437. http://www.numdam.org/item/RO_1999__33_4_421_0/
1. A parallel reduction of Hamiltonian cycle to Hamiltonian path in tournaments, J. Algorithms, 1995, 19, p. 432-440. | MR | Zbl
, , and ,2. Parallel algorithms for the Hamiltonian cycle and Hamiltonian path problems in semicomplete bipartite digraphs, Algorithmica, 1997, 97, p. 67-87. | MR | Zbl
, , and ,3. Alternating Hamiltonian circuit in two-colored complete graphs, Theory of Graphs (Proc. Colloq. Tihany 1968), Academic Press, New York, p. 11-18. | MR | Zbl
and ,4. Sorting, minimal feedback sets and Hamiltonian paths in tournaments, SIAM J. Discr. Math., 1990, 3, p. 7-20. | MR | Zbl
and ,5. On the complexity of some Hamiltonian and Eulerian problems in edge-colored complete graphs, RAIRO-Oper. Res., 1996, 30, p. 417-438. | Numdam | MR | Zbl
, , and ,6. Alternating Hamiltonian cycles, Israel J. Math., 1976, 23, p. 126-131. | MR | Zbl
and ,7. The parallel evaluation of general arithmetic expressions, J. ACM 1974, 21, p. 201-206. | MR | Zbl
,8. Graphs with Hamiltonian cycles having adjacent lines different colors, J. Combin. Theory Ser. B, 1976, 21, P 135-139. | MR | Zbl
and ,9. Structural balance: A generalization of Heider's theory, Psychological Rev., 1956, 73, p. 277-293.
and ,10. Aproximate and exact parallel scheduling with applications to list tree and graph problems, In Proc. 27th FOCS, 1986, p. 478-491.
and ,11. On permutations of chromosomes, In Contributions of General Algebra, 5, Verlag Hölder-Pichler-Tempsky, Wien, and Teubner-Verlag, Stuttgart, 1987, p. 95-103. | MR | Zbl
,12. Hamiltonian circuits determining the order of chromosomes, Discrete Appl. Math., 1994, 50, p. 159-168. | MR | Zbl
,13. Geometrical constraints on Bennetfs predictions of chromosome order, Heredity, 1987, 58, p. 321-325.
and ,14. Paths, trees and flowers, Canad. J. Math., 1965, 17, p. 449-467. | MR | Zbl
,15. Graph folding andprogrammable logical arrays, Networks, 1987, 17, p. 19-37. | MR | Zbl
and ,16. Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica, 1989, 9, p. 33-38. | MR | Zbl
and ,17. An improved parallel algorithm for maximal matching, Inform. Process. Lett., 1986, 22, p. 57-60. | MR | Zbl
and ,18. An O(|V|1/2|E|) algorithm for finding maximum matchings in general graphs, In Proc. 21th FOCS, 1980, p. 17-23.
and ,19. Matching is as easy as matrix inversion, Combinatorica, 1987, 7, p. 105-113. | MR | Zbl
, and ,20. DNA Physical mapping and alternating Eulerian cycles in colored graphs, Algorithmica, 1995, 13, p. 77-105. | MR | Zbl
,21. Finding a longest alternating Hamiltonian cycle in an edge colored complete graph is not hard, Rapport de Recherche No. 691, Laboratoire de Recherche en Informatique, Université de Paris-Sud XI, Sep. 1991, to appear in Combinatorics, Probability and Computing.
,22. A theory of alternating paths and blossoms for proving correctness of the O(VE) general graph maximum matching algorithm, Combinatorica, 1994, 14, p. 71-109. | MR | Zbl
,