The random linear bottleneck assignment problem
RAIRO - Operations Research - Recherche Opérationnelle, Tome 30 (1996) no. 2, pp. 127-142.
@article{RO_1996__30_2_127_0,
     author = {Pferschy, U.},
     title = {The random linear bottleneck assignment problem},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {127--142},
     publisher = {EDP-Sciences},
     volume = {30},
     number = {2},
     year = {1996},
     mrnumber = {1424230},
     zbl = {0868.90083},
     language = {en},
     url = {http://www.numdam.org/item/RO_1996__30_2_127_0/}
}
TY  - JOUR
AU  - Pferschy, U.
TI  - The random linear bottleneck assignment problem
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1996
SP  - 127
EP  - 142
VL  - 30
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/RO_1996__30_2_127_0/
LA  - en
ID  - RO_1996__30_2_127_0
ER  - 
%0 Journal Article
%A Pferschy, U.
%T The random linear bottleneck assignment problem
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1996
%P 127-142
%V 30
%N 2
%I EDP-Sciences
%U http://www.numdam.org/item/RO_1996__30_2_127_0/
%G en
%F RO_1996__30_2_127_0
Pferschy, U. The random linear bottleneck assignment problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 30 (1996) no. 2, pp. 127-142. http://www.numdam.org/item/RO_1996__30_2_127_0/

1. M. Abramowitz and I. A. Stegun, Handbook of Mathematical functions, Dover Publications, New York, 1965.

2. B. Bollobás, Random Graphs, Academic Press, 1985. | MR | Zbl

3. B. Bollobás and A. Thomason, Random graphs of small order, Random Graphs'83, Annals of Discrete Math., 1985, 28, pp. 47-97. | MR | Zbl

4. R. E. Burkard and U. Derigs, Assignment and Matching Problems: Solution Methods with FORTRAN-Programs, Springer Lecture Notes in Economics and Mathematical Systems, 1980, 184. | MR | Zbl

5. U. Derigs, The shortest augmenting path method for solving assignment problems, Annals of Operations Research, 1985, 4, pp. 57-102. | MR

6. U. Derigs, Programming in networks and graphs, Springer Lectures Notes in Economics and Mathematical Systems, 1988, 300. | MR | Zbl

7. P. Erdös and A. Rényi, On random matrices, Publ. Math. Inst. Hungar. Acad. Sci., 1964, 8, pp. 455-461. | MR | Zbl

8. J. B. G. Frenk, M. Van Houweninge and A. H. G. Rinnooy Kan, Order statistics and the linear assignment problem, Report 8609/A, Econometric Institute, Erasmus University, Rotterdam, The Netherlands, 1986. | Zbl

9. H. N. Gabow and R. E. Tarjan, Algorithms for two bottleneck optimization problems, J. of Algorithms, 1988, 9, pp. 411-417. | MR | Zbl

10. J. E. Hopcroft and R. M. Karp, An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput, 1973, 2, pp. 225-231. | MR | Zbl

11. R. M. Karp, An algorithm to solve the m x n assignment problem in expected time O (mn log n), Networks, 1980, 10, pp. 143-152. | MR | Zbl

12. R. M. Karp, An upper bound on the expected cost of an optimal assignment, Technical report, Computer Sc. Div., Univ. of California, Berkeley, 1984. | Zbl

13. S. Lang, Complex Analysis, Springer, 1985. | MR | Zbl

14. A. J. Lazarus, The assignment problem with uniform (0, 1) cost matrix, Master's thesis, Department of Mathematics, Princeton University, 1979.

15. B. Olin, Asymptotic properties of random assignment problems. PhD-thesis, Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm, 1992. | MR

16. E. M. Palmer, Graphical Evolution, J. Wiley & Sons, 1985. | MR | Zbl

17. D. W. Walkup, On the expected value of a random assignment problem, SIAM J. Comput., 1979, 8, pp. 440-442. | MR | Zbl

18. D. W. Walkup, Matchings in random regular bipartite digraphs, Discrete Mathematics, 1980, 31, pp. 59-64. | MR | Zbl