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ON GLOBALLY SOLVING LINEARLY CONSTRAINED
INDEFINITE QUADRATIC MINIMIZATION PROBLEMS BY
DECOMPOSITION BRANCH AND BOUND METHOD (*)

by THAÏ QUYNH PHONG (*), LE THI HOAI AN (*) and PHAM DINH TAO (

Communicated by Michel MINOUX

Abstract. - The global minimization ofan indefinite quadratic function over a bounded polyhedral
set using a décomposition branch and bound approach is considered. The objective function
consists ofan unseparated convex part and a separated concave part The large-scale problems are
characterized by hoving the number of convex variables much more thon that of concave variables.
The advantages of the method is that it uses the rectangular subdivision on the subspace of concave
variables. Using a easily constmcted convex underestimating function îo the objective function,
a lower bound is obtained by solving a convex quadratic programming problem. Three variants
using exhaustive, adaptive and w-subdivision are discussed. Computational results are presented
for problems with 10-20 concave variables and up to 200 convex variables.

Keywords: Global minimization, indefinite quadratic programming, décomposition, branch and
bound.

Résumé. - La minimisation globale d'une forme quadratique indéfinie sur un polyèdre convexe
borné par une méthode décomposition-séparation et évaluation est étudiée dans ce papier. La
fonction objectif est la somme d'une forme quadratique convexe et d'une forme quadratique concave
séparable en ses variables. Les problèmes de grande dimension sont caractérisés par le fait que
le nombre des variables convexes est beaucoup plus grand que celui des variables concaves.
L'avantage de la méthode réside dans l'utilisation de la subdivision rectangulaire uniquement
dans le sous-espace des variables concaves. A l'aide d'une minorante très simple à calculer de la
partie concave, une borne inférieure est obtenue en résolvant un programme quadratique convexe.
Trois variantes utilisant la subdivision exhautive, la subdivision adaptive et la w-subdivision sont
considérées. Les simulations numériques sont présentés pour les problèmes ayant 10-20 variables
concaves et jusqu'à 200 variables convexes.

Mots clés : Minimisation globale, programmation quadratique indéfinie, décomposition -
séparation et évaluation.

1. INTRODUCTION

Quadratic programming is an important subject in mathematical
programming since it has many applications in économies, planing,
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3 2 THAI QUYNH PHONG, LE THI HOAI AN, PHAM DINH TAO

and engineering design. In addition, complicated problems of ninlinear
programming are often simplified into quadratic programming problems.
Indefinite quadratic programming problems are multiextremal global
optimization problems in the sense that they have local optima which fail
to be global.

This paper studies the problem of minimizing an indefinite quadratic
function over a polytope. As is well-known, a quadratic function can be
converted into the separable form by means of affine transformations.
Specifically, we are concerned with the problem

(IQP) min ƒ (x, y)=p(x) + q (y), s.t. (z, y) E fi

where Q = {(x, y) : Ax + By < a, x > 0, y > 0} is a polytope and
x E Rn, y E Rs, A e R m x n , B e Rmxs

9 a e Rm. The objective function
is a sum of an unseparated convex term

p(x) = -(Cx,x) + (c,x) (1)

(C is a symmetrie positive semi-definite (n x n) matrix), and a separable
concave term

where qi(yi) = d{ yi - ^iy\ {k > 0).

A special case of (IQP) is the constrained concave quadratic global
minimization problem for which C = 0. This problem is known to be
NP-hard, and hence it follows that problem (IQP) is NP-hard. Several
algorithms have been proposed for this problem. Exploiting the spécifie
structure of the problem, Rosen [16] developed a parametric décomposition
algorithm. In [17] Rosen and Pardalos considered the quadratic function under
the separable form over a rectangle that tightly encloses ü and computed
an approximate solution by solving a zero-one mixed integer programming
problem associated to the quadratic problem. Another branch and bound
approach was proposed by Kalantari and Rosen [9] who used successively
refined parallelepipeds defined by conjugate directions of the quadratic
function and convex envelopes. More recently a parallel algorithm for linearly
constrained large-scale concave quadratic minimization problem has been
proposed in Phillips and Rosen [13]. The reported results demonstrate the
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ON GLOBALLY SOLVING L1NEARLY 33

practical interest of the method. An important property of problem {IQP) in
the special case when C = 0 {i.e. when the objective fonction is concave) is
that the global minimum is always attained at at least a vertex of the convex
polytope Q. This property is no longer true when C / 0. Hence, problems
{IQP) with C ^ 0 are likely even more difficult to solve computationally
than concave programs.

In convex approaches to nonconvex optimization, Pham D. Tao has
extensively studied subgradient methods for solving convex maximization
problems [18, 19, 20] and d.c. (différence of two convex functions)
optimization problems [1, 21, 23, 22]. Theses algorithms of d.c. optimization
(DCA) can not guarantee global optimality of computed solutions.
Nevertheless they have been sucessfully applied to many large-scale concrete
d.c. optimization problems for which DCA have proved to be more robust
and efficient than related Standard methods [2, 24].

In Pardalos et al [12] the technique of concave minimization is used
to obtain a good approximation for {IQP). Using a linear underestimating
fonction of the concave part a convex problem is solved to obtain a solution.
Branch and bound technique is then used to improve the lower and upper
bound and to reduce the domain under considération. If the obtained solution
is not a satisfactory approximation to the global minimum a piecewise
linear approximation is used to convert the considered problem into a linear
zero-one mixed integer program.

It should be noted that problem (IQP) is a special case of the minimization
of a d.c. fonction (différence of two convex functions) over a polytope, for
which the method developed by Horst-Phong-Thoai-Vries [7, 15] can be
applied. A different branch-and-bound method using a normal subdivision
was proposed in Tuy [26] while an outer approximation method was given
in Tuy [25]. Recently, an approximation algorithm was proposed in Vavasis
[27] for finding an e-approximate solution. It was shown that such an
approximation can be found in polynomial time for fixed e and t, where t
dénotes the number of négative eigenvalues of the quadratic term.

The aim of this paper is to develop an efficient algorithm for solving
problem {IQP) in the case the number of convex variables is much larger
than that of concave variables. Since the objective fonction is a sum of a
convex and concave parts we use a décomposition approach which enables
us to work essentially in the small subspace of concave variables. This idea
was first used in Phillips and Rosen [13] for dealing with concave quadratic
minimization and then was extended to the case of partially separable
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nonconvex minimization in [14]. More recently, the same approach was used
in Muu-Phong-Tao [11, 15] for solving a class of nonconvex programming
problems dealing with bilinear and quadratic functions.

Taking advantage of the separable concave part in the objective fonction,
we use a branch and bound method where branching proceeds by a
rectangular subdivision in the y-space. Our method can be outlined as
follows. The separability of the concave part motivâtes the use of rectangular
subdivision. First a rectangular domain RQ C RS is constructed that contains
the projection of fi in the y-space. This rectangle is then divided into smaller
and smaller subrectangles. For each rectangle R a convex underestimating
function p (x) + (i> (y) of the original objective function ƒ (x, y) is constructed
and the convex minimization problem

min {p (x) +$(y): (z, y) G fi, y G M}

is solved. The solution of this convex program gives both a lower and upper
bound for the optimal value of the problem

min {p (x) + q(y): (x, y) G fi, y G R}.

The branch-and-bound procedure is then applied to discard régions which
can not contain any global minimizer and eventually to locate an optimal
solution.

The efficiency of branch and bound method dépends upon the choice of
opérations such as branching that is, in our case, a rectangular subdivision.
To guarantee convergence, in [13] (see also Kalantari-Rosen [9]) Phillips-
Rosen used an exhaustive subdivision, Le. any nested séquence of rectangles
generated by the algorithm will tend to a single point. Another one,
called ^-subdivision was proposed earlier in Falk-Soland [3], In Horst-
Tuy [8] a concept of "normal rectangular subdivision" was introduced
for a class of separable concave minimization problems that includes just
mentioned subdivisions. Recently, a so-called adaptive rectangular bisection
proposed in Muu-Phong-Tao [11, 15] seems to be more efficient because
the exhaustiveness is not necessary for the convergence. In this paper we
provide a natural extension of this concept to problem (IQP) and establish
the convergence of our method. Especially, we shall show that the adaptive
rectangular bisection does belong to the class of normal subdivision, too.

An important question is the choice of the best subdivision stratégies.
Intuitively, variants of rectangular algorithms using ^-subdivision and
adaptive subdivision should converge more rapidly that those using
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ON GLOBALLY SOLVING LINEARLY 35

exhaustive subdivision, because they take account of the conditions of the
current relaxed subproblem. By numerical experiments, we not only confirm
this observation but also point out that u/-subdivision is the best.

The method presented in this paper should be efficient for large-scale
(IQP) problems, when the number of variables that enter the concave part
of the objective function is small in comparison with the total number
of variables. We pro vide extensive numerical experiments for randomly
generated problems with 10-20 concave variables and up to 200 convex
variables.

The next section describes in detail a décomposition branch and bound
algorithm for Problem (IQP) which is based on normal rectangular
subdivision (NRS). The variants of NRS are discussed in Section 3.
The implementation of the algorithm is presented in Section 4, where an
illustrative example is given. Finally, the computational results are reported
in Section 5.

2. DESCRIPTION OF THE ALGORITHM

To construct the smallest rectangular domain RQ C R5 which contain the
projection of ft on the y-space, we solve 5 linear programming problems

max{yjS.t. (x, y) G ÎÎ}, i = 1 , . . . , s

to get optimal values l£ , i = 1 , . . . , s. The rectangular domain can then
be expressed as

2.1. Lower bounding

Let R~{y: k < yi < Li} be a rectangle in Rs. As usual, we adopt the
convention that the infimum of an empty set is +oo.

A standard method for lower bounding in branch and bound algorithms
it to use convex underestimators of the objective function. Since concave
function q (y) is separable, its convex envelope over a rectangle R is simply
the sum of affine function (f)ni {yi) that agrées with qi at the endpoints of
the segments [k, L«], Le, the function (cf. [9, 17, 13], etc)

s

te (y) = £>*.• (IK) (3)
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36 THAI QUYNH PHONG, LE THI HOAI AN, PHAM DINH TAO

where <j>Ri{yi) is given explicitly by

4>R% (Vi) =\di-l\i(h + Li) \yi + \ A2 k Li. (4)

So p (x) + <f)R (y) is a convex underestimating function of ƒ (re, y) over
the domain {(x, y) £ Rn x Rs : (x, y) £ fl, y £ R}. The solution to the
convex program

(RCP) min {p (x) + <t>R (y) : (x, y) e ft, y G tf}

provides a point (ar*2, lu*2) such that

p (xR) + ^ (o;^) < min {ƒ (x, y) : (x, y) e tt, y £ R}

<f(xR,wR) (5)

i.e. 0(R)=p (xR)+<f>R (wR) is a lower bound for ƒ over R and ƒ (x72, iw^)
is an upper bound for the global optimal value ƒ*.

Remark 1: A convex underestimator of the concave function q can be
chosen in many différent ways. In [11], as an application of a décomposition
method for bilinear programming problems, the authors proposed the
following underestimator

s

V>i (y) = ^2(di- ^i Li) yi. (6)
i-l

Another underestimator can be taken simply as

*w-AiL?). (7)

It should be noted that ^ i , ip2 are no convex envelopes of q over R.
Moreover, the underestimator <j)ji is the best in the sense

2.2. Normal rectangular subdivision (NRS)

We first recall the concept of a normal rectangular subdivision as introduced
by Tuy (see e.g. Horst-Tuy [8] (Définition VII.7)).
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Let R = {y : li < yi < Li} be a rectangle and let (f>R(y) be the above
defined convex underestimator of q (y) over R. Dénote by (xR, wR) and
(3 (r) an optimal solution and the optimal value, respectively, of the convex
program (RCP).

Consider now a rectangular subdivision process in which a rectangle is
subdivided into subrectangles by means of a finite number of hyperplanes
parallel to certain facets of the orthant R+. Such a process générâtes a family
of rectangles which can be represented by a tree with root Ro and such that
a node is a successor of another one if and only if it represents an éléments
of the partition of the rectangle corresponding to the latter node. An infinité
path in this tree corresponds to an infinité nested séquence of rectangles Rh,
h = 0, 1 , . . . For each h let (xh, wh) = (xRh, wRh), <f>h (y) = <j>Rh (y).

DÉFINITION 1: A nested séquences Rh is said to be normal if

q{wh)-<t>h{wh)\ = Q. (8)

A rectangular subdivision process is said to be normal if any infinité nested
séquence of rectangles that it générâtes is normal.

We shall discuss some methods for constructing normal rectangular
subdivision (NRS) process in the next section. Suppose now than an NRS
process has been defined. Using this subdivision process in conjunction with
the lower bounding defined in 2.1 we can construct the following branch
and bound algorithm for solving (IQP).

23. Algorithm

Initialization: Compute the enclosing rectangle Ro by solving s linear
programs. Compute </>#0 and solve the convex program

(RQCP) mm{p(x) + cf>Ro (y) : (x, y) G fi, y G Ro}

to obtain an optimal solution (x^0, wR°) and the optimal value /3{RQ). Set
n = {Ro}, A) = 0(i2o), a0 = f(xR\ wR°) and (x°, y0) = (x*°, wR°).
Itération k = 0, 1, 2... :
k.l. Delete all R G Uk with f3(R) > ak. Let Vk be the set of remaining
rectangles. If Vk — 0 stop: (xk\ yk) is a global optimal solution.
k.2. Otherwise, select Rk e Vk such that

fa := 0 (Rk) = min {/? (R) : R G Vk}.
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and subdivide Rk into Rki, Rk2 according to the chosen normal rectangular
subdivision proeess.

k 3 . For each R^i, R^ compute tj>Rki and solve

(RkiCP) min{p(x) + <f>Rk. (y) : (x} y)eü}ye Rki}

to obtain (xRki, wRki) and 0(Rki).

k.4. Set (xk+1, yk+1) to the best of the feasible solutions known so far
and update otk+i-

k.5. Set 7lk+i := (Vk\Rk) U {Rki, Rk2J and go to the next itération.

THEOREM 1: (i) If the Algorithm terminâtes at itération k then (xk^ y ) is
a global optimal solution to problem (IQP),

(ii) If the Algorithm is infinité then it générâtes a bounded séquence (x , yk)
every accumulation point ofwhich is a global optimal solution of(IQP), and

®kXf*, (3k / ƒ*•

Proof: Part (i) is clear from the définition of <*&, Pk and (xk. yk).

Assume now the Algorithm is infinité. Then it must generate an infinité
nested séquence {Rh} of rectangles. It is clear from the construction that the
séquence a# = ƒ ( ^ \ yk) is nonincreasing, while the séquence /?& = 0(Rk)
is nondecreasing. Hence {otk — 0k} is a nonincreasing séquence of positive
numbers,

By the normality condition we may assume, by taking subsequences if
necessary, that

]im\q(wRh)-<l>Rh(w
Rh)\=0.

Since f3(Rh) = p(xRh) + <f>Rh (w
Rh) this implies

From the updating rule in step k.4. we have

0 < ah - 0h < f(xR\ wRh)

hence a^ — / ^ —> 0 as h —»• co. Since {a^—0k} is a nonincreasing, the whole
séquence a^ — 0k must tend to 0. This and 0k < ƒ* < ®k f° r every k imply

OîfcX/*, 0k /ƒ*•
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ON GLOBALLY SOLVING LINEARLY 39

Since (xk, yk) G ft and a^ = f(xk, yk), any cluster point of the séquence
{(xk, yk)} belongs to Q, and has the function value ƒ*, Le., solves problem
(IQP). The theorem is proved.

3. CONSTRUCTION OF A NRS

As pointed out in [8], there are different ways to construct a NRS process.
Suppose a rectangle R& — {y : lk < yi > Lk} is selected in step k.2.
The following rule for bisection of Rk was used in Kalantari-Rosen [9] and
Phillips-Rosen [13]:

3.1. Exhaustive bisection

In gênerai, ik is chosen as the index of the longest edge of Rk, Le.,
such that

( 4 - II)2 = m a x { ( 4 - If)2, i = l,...,s}.
Let a — 1/2 (L/fc + l{k). Then R^ is bisected into two subrectangles:

Rk,i = {y e Rk: yik < â} , Rki2 = {y e Rk '• yik > a} .

In particular, for separable concave quadratic function ik can be also chosen
such that

K ( 4 - II ? = max {Xt (Lf - if)2, i = 1,..., s}.

It was shown that in both cases any nested séquence of rectangles tends
to a single point.

An alternative rule was earlier proposed by Falk and Soland [3] for
separable nonconvex programming problems:

3.2. ^-subdivision

It follows from the description of the Algorithm that, for the selected i?&,
(3{Rk) < f(xk,yk\ hence,

q(wk)-$k(w
k)>0.

Choose an index ik satisfying

ik e arg max {g» (w$) - (j>ki (wf)}
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and subdivide Rj~ into two subrectangles

Rk,i = {y£ Rk : yih < < } , Rk,2 = {ye R k : y i k > « £ } .

Recently, for solving a class nonconvex programming problems dealing
with bilinear and quadratic fonction, in Muu-Phong-Tao [11, 15] the authors
introduced the following subdivision rule:

3.3. Adaptive bisection

For each selected R^, two points are considered. The first one is wk, the
other is a point vk such that

Ü? 6 argnrni { « ( / ? ) , « ( / £ ) } . (9)

In other words

vk G a r g m i n <j>Rk (y). (10)

These points are called the bisection points. Let i*. be an index such that

and let a = 1/2 (wfk + vfk). Then we bisect R^ into two subrectangles as

Rk,i = {y € ^ : y%h < â } , jRfe)2 = {y e i2fc : y2fc > â } .

The following property has been established in [11].

PROPOSITION 1: Let R\ D R2 D . . . be an infinité séquence of nested
rectangles so that Rh+i is obtained from Rh via the adaptive bisection, and
let {vh}> {wh} be the séquences of the corresponding bisection points. Then
there exists subsequences {vhl} and {whl} such that

\\vhl -whl\\^0 as / ->oo.

It has been shown in [8] that the exhaustive bisection and w-subdivision
rules (in conjunction with the lower bounding defined in 2.1, i.e., using
convex envelope <J}R) generate a normal rectangular subdivision process. We
show below that the adaptive subdivision also générâtes a normal one.
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Let {Rh} be any infinité nested séquence of rectangles. By Proposition 1,
by taking a subsequence if necessary we may assume that \\vh - wh\\ —> 0
as h —» oo. From the définition (10) vh is a vertex of Rh therefore
<t>h(vh) = q(vh). Thus

\q(wh) - fa (wh) <\q(wh) -q(vh)\ + \q(vh) - fa (wh)\
< \q (wh) -q(vh)\ + \<t>h (vh) - fa (wh)\.

hence, \q (wh) — q (vh)\ —> 0. By (4) there exists a constant rj such that

\<t>hi(vt)-<t>hi(wï)\<r,\vï-wt\
for ail h so

where io E arg m a x | ^ — wf\. Therefore when \\vh — wh\\ -^ 0 we have

\<f>h (vh) ~ 4>h {wh)\ -+ 0 that implies (8).

Crucial points in the above proof are the following:
(i) (f)^ (vh) = q(v) where v is defined by (10).

(ii) <f>hi is Lipschitzian on [k^Li] such that

Khi <K, V/i, V*

where Khi is the Lipschitz constant of the fonction ^ .
Arguing analogously we can establish the following more gênerai resuit:

PROPOSITION 2: Let (j>h be an underestimator for q over R satisjying the
conditions (i)-(ii). Then for any nested séquence {Rh} generated by the
adaptive bisection, one has (8).
Comment. The adaptive rectangular subdivision was successfully used in
[11, 15] for global minimizing a concave quadratic function under linear
constraints and for sol ving quadratic mixed integer programming problems.
We pointed out that, indeed, this is a particular case of the normal
subdivision so the convergence of the methods in [11, 15] follows from
Theorem 1. Specifically, both underestimators ^ i , V>2 defined in Remark 1
satisfy the conditions (i)-(ii) so by Proposition 2, the adaptive subdivisions
in conjunction with the lower bounding which use 0i , ^2 instead of <f>R
also generate a NRS process.

vol. 30, n° 1, 1996



42 THAI QUYNH PHONG, LE THI HOAI AN, PHAM DINH TAO

Intuitively, it can be expected that rectangular algorithms using the w-
subdivision and adaptive subdivision should converge more rapidly than
those using exhaustive bisection, because the former dépends on the solution
wk of the current relaxed subproblem. This has been confirmed by our
numerical experiments (see Section 5). Moreover, the numerical results have
shown that for the problem under considération, the ^-subdivision is more
efficient than the adaptive bisection.

4. IMPLEMENTATION AND ILLUSTRATIVE EXAMPLE

A matter of utmost importance in the computer implementation of an
branch and bound algorithm is the construction of a convenient computer
scheme for storing and updating the information about partition éléments.
This scheme should permit an efficient use of computer resource and must
be able to:

1) store the information decribing the current list of rectangles at each step

2) select a rectangle to be subdivided further

3) remove a number of rectangles from the list when necessary

4) record the information about the newly generated rectangles.

It should be noted that the number of rectangles to be stored may increase
very quickly and that a number of vertices of different rectangles may
coincide. This fact should be taken into account in order to save memory
storage.

Since each rectangle is defined by (at least) two opposite vertices, for
storing rectangles we use two linked lists: list POINT contains the coordinates
of vertices of ail rectangles and list REC each éléments of which contains the
information about the rectangle: two indexes of two vertices, lower bound,...
In passing from step k to step k + 1 the rectangle with the smallest lower
bound is selected from the list REC to subdivided. This éléments will be
replaced by (at most) two new éléments. It may happen that the new vertex
coincides with one previously generated and already stored in list POINT.
One can also free an element of list POINT if the number of éléments of
list REC having is as a vertex is null.

The main subroutine in the Algorithm described in the preceding sections
is for solving a convex programming problem

(RCP) min {p (x) + <j>R (y) : (s, y) G fi, y € R).
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For a given rectangle R, the convex underestimator defined by (4) can be
rewritten as

<f>R (y) = (e, y) + 7

where

ei = di — 1/2 AÏ (li + Z^), i = 1 , . . . , s
s

7 = 1/2^A^L,.
8 = 1

Thus problem (RCP) is reduced to solving

min - (Cx, x) + (c, x) + (e, y)

subject to

Ax + By < 6, a; > 0, l <y< L.

Several methods are available for minimizing a convex quadratic function
over a polytope, in particular active set methods and Lemke's method (cf.
e.g. [4, 6]). We choose to use Lemke's method for its simplicity. Our
implementation also takes account of the fact that the above problems differ
only by the linear term (e, y) and the box constraints l < y < L.

The algorithm was coded in Pascal under Unix System. Optionally, the
user can choose one of the three types of normal rectangular subdivision
discussed in Section 3.

We illustrate the described algorithm by the following example taken from
Floudas and Pardalos [5].

10 10
2min ƒ Or, y) = 0.5 ^ //t- (xi - pi)2 - 0.5 ^ Aj (yj - a3)

2

«=i «=i

subject to

Ax + By < 6, x > 0, y > 0, x e R10, y G R10
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where

A = (63, 15, 44, 91, 45, 50, 89, 58, 86, 82),

H = (42, 98, 48, 91, 11, 63, 61, 61, 38, 26),

a = (-19, -27 , - 2 3 , -53 , -42, 26, -33 , -23 , 41, 19)

0 = (-52, - 3 , 81, 30, -85 , 68, 27, - 8 1 , 97, -73),

A =

B =

(2
5
1
3
6
5
3
1
8

^1

f8

3
1
7
7
4
4
2
4

U

5
4
5
2
6
5
6
2
5
1
2
6
7
7
5
1
3
3
5
1

5
5
2
6
6
2
6
1
2
1

4
1
2
8
3
7
1
5
5
1

6
4
4
3
4
1
3
7
5
1
1
7
4
2
6
3
4
5
6
1

4
1
7
2
5
3
1
8
3
1
1
7
7
3
7
8
3
4
1
1

4
4
3
1
2
5
6
7
8
1
1
5
5
4
5
3
6
5
7
1

5
4
1
6
2
5
1
6
1
1
2
8
3
5
8
1
4
4
1
1

6
2
5
1
4
7
6
5
3
1
1
7
4
8
4
6
6
2
2
1

4
5
7
7
3
4
7
8
3
1
7
2
1
1
6
2
5
2
2
1

4 \
2
2
3
2
3
1
7
5
1 /

3 \
1
2
2
3
8
4
8
4
1 J

and

b = (380, 415, 385, 405, 470, 415, 400, 460, 400, 200)T.

The convex part can be rewritten as 0.5 < Cx, x > + < c, x > +911425.50
where

C = diag(42, 98, 48, 91, 11, 63, 61, 38, 26),
c = diag (2184, 294, -3888, -2730, 85, -4284, -1647,

4941, -3686, 1898).
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We choose

Ro = {x : 0 < yi < 50, 0 < y2 < 67, 0 < y3 < 67,

0 < 2/4 < 64, 0 < y5 < 55, 0 < y6 < 50, 0 < 2/7 < 67.5,

0 < 2/s < 60, 0 < y9 < 55,0 < y10 < 66}

and solve the convex program

min - {Cx, x) + (c, x> + (e, y) + 547663.5

s.t. Ax + By < 6, x > 0, y €

where

e = (-2772, -907.5, -2486, -7735, -3127.5, 50, -5940.75,

-3074, 1161, -1148)

to obtain (3(RQ) = 37923.5 and
xRo = (0., 0., 0., 0., 0., 6.666667, 0., 0., 0., 0.),

wRo - (6.666667, 0., 0., 60., 0., 0., 0., 0., 0., 0.).

Set

^o - {i?o}, A> - 37923.5, (x°, w°) = (xRo, yRo)

and ao = ƒ (#°, 2/°) = 57943.5. Applying tt;-subdivision rule we choose
^ 0 = 4 and subdivide RQ into two subrectangles

R1 = {x : 0 < yi < 50, 0 < y2 < 67, 0 < y3 < 67, 0 < y4 < 60,

0 < y5 < 55, 0 < y6 < 50, 0 < 2/7 < 67.5, 0 < ys < 60,

0 < y9 < 55,0 < 2/io < 66},

R2 = {x:Q'<yi< 50, 0 < y2 < 67, 0 < w < 67, 60 < y4 < 64,

0 < 2/5 < 55,0 < ?/6 < 50, 0 < y7 < 67.5, 0 < y8 < 60,

O<2/9 < 55,0 < 2/io < 66}.

For J?i we compute

e = (-2772, -907.5, -2486, -7553, -3127.5, 50, -5940.75,

-3074, 1161, -1148),
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and solve

min - (Cx, x) + <c, x) + (e, y) + 547663.5

s.t. Ax + By <b, x > 0, y E R\

obtaining p{R\) = 48833.50543 and

ar*1 = (0., 0., 0., 0., 0., 7.22995, 0., 0., 0., 0.),

wRl = (9.008739, 0., 0., 54.307875, 0., 0., 5.781065, 0., 0., 0.).

Analogously for R2 we get

e = (-2772, -907.5, -2486, -10465, -3127.5, 50, -5940.75,

-3074, 1161, -1148)

P(R2) = 48843.5 and

xR* = (0., 0., 0., 0., 0., 6.666667, 0., 0., 0., 0.),

wR* = (6.666667, 0., 0., 60., 0., 0., 0., 0., 0., 0.).

We update ft = 48833.50543, ai = 57943.5 and set Ui = {Ru R2}.
The algorithm terminated after 5 itérations at the global optimal solution

x = (0., 0., 0., 0., 0., 4.347826, 0., 0., 0., 0.),

y - (0., 0., 0., 62.608696, 0., 0., 0., 0., 0., 0.)

with the optimal value -49318.01796. It is interesting to note that the same
solution was provided in [5] but it has not been proved to be globally optimal.

5. COMPUTATIONAL RESULTS FOR LARGE-SCALE PROBLEMS

It should be noted that the algorithm still converges if instead of bisection,
a rectangle is subdivided into a relatively high number of small rectangles.
At first glance, this usually leads to better lower bounds and so needs less
itérations as compared to bisection. However, the most expensive part in our
algorithm is the solution of subproblems at each itération and an algorithm
is faster if the total number of subproblems to solve is lower. From reported
expérimental results, we see that the algorithm using bisection converges very
rapidly, in gênerai after 11 itérations, Le. one needs to solves 23 subproblems.
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We have tested the Algorithms on a number of problems, where ail
éléments of matrices A, B and vectors c, d, À are randomly generated
together with their signs, so that the feasible région was nonempty and
bounded. A positive definite matrix C is constructed following More and
Sorensen [10]. More precisely, we set C — QDQT for some orthogonal
matrix Q and a diagonal matrix D. The orthogonal matrix Q of the form
Q1Q2Q3 where

Wj
T

\Wn\
j = 1,2,3

and the components WJ are random numbers in (—1,1). The diagonal
éléments of matrix D are random numbers in (0,5).

The deletion rule f3 (R) > a& was replaced by /3 (R) > (a& — e) so
that the algorithm terminâtes whenever and e- optimal solution x has been
ob ta ined , Le, w h e n \f(x)-f(x*)\<e.

AU the test problems were ran on SPARC station (processor 2). In
Tables I and II the quantities "min iter", "avg iter" and "max iter" represent,
respectively, the minimal average and maximal number of itérations, while
"time" means the average excecution time over 3 problems with the same
size. We took e = 0.001. The relative error (in percentage) ranged from
0.000002 to 0.0001.

TABLE I
Comparison of three variants us ing exhaustive, adaptive and w-subdivision.

Subdiv rule

Exhaustive
Adaptive
tu-subdivision

min iter

45
12
5

avg iter

49.67
15.7
13

max iter

56
19
12

time

78.94
25.25
11.71

TABLE n
Numerical resultsfor large-scale problems using w-subdivision.

n

50
100
150
150
150
200

s

10
10
10
15
20
10

m

10
20
20
20
20
20

min iter

8
8
4
4
5
6

avg iter

10.0
8.7
5.0
5.3

15.0
8.0

max iter

11
10
6
8

32
11

time

17.26
88.37
86.57

195.23
429.25
380.10
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Table I présents the numerical results for n — 50, s — 5, m — 10. We see
that the variants of the Algorithm using adaptive bisection and u>-subdivision
converge more rapidly than that using exhaustive bisection. Moreover, the
u>-subdivision is more efficients than the adaptive bisection.

Table II présents the numerical results for large-scale problems using the
w-subdivision. The number of variables entering the convex part of the
objective function was increased up to 200. As expected the number of
itérations appears to increase only linearly with the number of concave
variables. This reflects the theoretical aspect of the décomposition approach
that the branching procedure is actually performed in the space of the concave
variables. Numerical experiments reported in this paper are only preliminary.
Nevertheless, we hope that the proposed algorithm will be practicable for
the class of problems under considération.
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