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FORECASTING ACCURACY AND SYSTEM COMPLEXITY (*)

by Spyros MAKRIDAKIS (*)

Abstract. - Accurate forecasts are essential for a great number of applications yet large errors
and considérable uncertainty characterize most ofour attempts for predicting the future. This article
surveys empirical studies on forecasting accuracy, summarizing their conclusions and examining the
implications involved. It then discusses the effects of System complexity on forecasting accuracy and
the related uncertainty while predicting future events. Finally, it provides suggestions for forecasting
as accurately and realistically as possible when large and complex Systems are involved.

Keywords: Forecasting accuracy, time series forescating, empirical studies, System complexity,
chaos theory.

Résumé. - Des prévisions précises sont indispensables dans un grand nombre d'applications et
pourtant de grosses erreurs et une incertitude considérable caractérisent la plupart de nos tentatives
de prédire l'avenir. Cet article examine des études empiriques sur la précision des prévisions en
résumant leurs conclusions et en examinant leurs implications. Ensuite il traite de l'effet de la
complexité des systèmes sur l'exactitude prévisionnelle et l'incertitude correspondante en prédisant
les événements futurs. Pour conclure, il fournit des propositions pour prédire avec le plus de
précision et de réalisme possible quand il s'agit de grands systèmes complexes.

Mots clés : Exactitude prévisionnelle, précision des prévisions, prévision de séries chronologiques,
études empiriques, complexité des systèmes, théorie du chaos.

We might have trouble forecasting the température of coffee one minute in
advance, but we should have little difficulty in forecasting it an hour ahead.

Edward Lorenz, A Founder of Chaos Theory

The 1960s were forecasters' euphoria. Computers, with exponentially
increasing speed and decreasing costs, were promising unlimited and
affordable power for solving praetically any and all kinds of optimization
problems. The belief at that time was of limitless potential, creativity being
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the only constraint. Quantitative models, for example, growing bigger and
in sophistication. This trend was nowhere as evident as in the areas of
weather and economie forecasting, involving in many cases as many as
50000 équations. It was thought, at that time, that if small models can
predict well, it is only natural to expect that bigger and more sophisticated
ones would do even better.

Reality, however, did not turn out to satisfy these theoretical expectations.
Bigger did not turn out to be better; more sophisticated did not improve
accuracy. In the area of weather forecasting it soon became evident that
no matter the size and sophistication of the models used, forecasting
accuracy decreased considerably beyond two to three days and provided
no better prédictions than using the average weather conditions (referred to
as climatology) of similar days of previous years to predict température,
rainfall, or snow. What came to be known as the "butterfly effect" (sensitive
dependence on initial conditions, such as those caused by the flying of a
butterfly) could exert critical influence on future weather patterns which
could not, therefore, be predicted since it was impossible to figure out the
effect of the numerous initial conditions and how they could influence future
weather conditions (Lorenz, 1966). In the short term too, the accuracy of
weather forecasting could not improve much beyond the use of the naive
approach which predicts that tomorrow's or the next day's weather will be
exactly the same as today's.

In economie and business forecasting, the accuracy of prédictions did not
turn out to be any better than those of weather forecasting. First, studies
(McNees, 1975) comparing small and large econometrie models showed that
there was no différence between the two. Second, empirical comparisons
(Armstrong, 1978) concluded that large and sophisticated econometrie models
were not more accurate than mechanical time series methods using a single
équation. Finally, additional empirical work (Makridakis et al, 1993; Fildes
and Makridakis, 1995) indicated that simple methods did as well as or better
than statistically sophisticated ones.

The purpose of this article is three-fold. First it surveys the literature
of empirical studies related to the forecasting of economie and business
series, outlining and examining their major conclusions. Second it discusses
the effects of system complexity on forecasting accuracy and the related
uncertainty. Finally, it provides suggestions for forecasting future events
when large and complex Systems are involved.
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Model Fitting vs Post-Sample Forecasting Accuracy

In statistical forecasting, a model is fitted to the available data. The choice
of the method (or methodology) is a matter of personal préférence with
some guidelines drawn from expérience. Once a method (or methodology)
has been selected, the spécifie model that best fits the available historical
data for one-period-ahead forecasts is selected and used to predict the future
(post-sample). This is realized by making at period t, m forecasts: -Xt+i,
i = 1, 2, 3 , . . . , ra. "Best fit" commonly means that the model minimizes the
Mean Square Error (MSE), the Mean Absolute Percentage Error (MAPE),
Mean Absolute Déviation (MAD), Médian, Akaike's information criterion,
or some analogous loss function. In some methods, such as ARIMA or
Régression, the residual errors need to be independent, constant and normally
distributed. In other methods (e. g., exponential smoothing, décomposition,
Bayesian forecasting), no restrictions about these errors are made although it
is désirable that they be random, constant and normally distributed. However,
even if the residual errors resulting from fitting a model to available data are
random, constant and normally distributed there is no way of guaranteeing
that the post-sample forecasting errors will possess properties analogous to
those of the model's disturbances. As a matter of fact empirical studies have
shown that this is not ordinarily true (Makridakis and Winkler, 1989).

Two assumptions are implicit in the prevalent approach to model sélection.
First, it is assumed that the model that "best" fits the available data
will also be the best model to predict beyond these data (post-sample).
Second, it is assumed that the model that "best" forecasts for one period
ahead, will also be best for predicting two, three, ...., ra periods ahead.
Both of these assumptions, however, do not hold true for many real-
world économies/business series (Makridakis, 1990). The implications of
the fact that the model that best fits the available data might not be the
best model for post-sample forecasting have not been adequately considered
in the forecasting literature (Priestley, 1979). Even during the 1970s the
latter possibility was not mentioned in the most popular forecasting or
econometrie textbooks (Box and Jenkins, 1970; Montgomery and Johnson,
1976). Furthermore, no serious effort was made to validate the ability of the
selected model to accurately forecast for out-of-sample periods. This is due
partly because all data is being used to develop the "best" model, and partly
due to the belief (originated in natural/physical sciences) that a "true best"
model exists, and that such a model could be correctly identified and used for
forecasting. In the social sciences most series used are short, measurement
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errors abound, and controlled expérimentation is not possible. Thus, the basic
premise that the "best" model fitted to past data exists and can be identified,
and is also best to forecast beyond these data, is invalid, and cannot be used
as the basis for model sélection. In other words the assumption of constancy
of patterns and/or relationships (or even stationarity) does not hold in the
majority of cases, for reasons to be discussed below.

If superior model fitting performance results in better out-of-sample
forecasting accuracy then there should be a close corrélation between the
two. However, this is not the case; Makridakis (1986) and Makridakis and
Winkler (1989) have found that such corrélations are around 0.2 (Le., only
4% of the post-sample accuracy is explained) for the first three forecasting
horizons, which then drop towards 0.1 by period five and zero by period 12.
Similar conclusions (based on the M-Competition data) have been reached
by Pant and Starbuck (1990). If a close relationship between model fit and
out-of-sample forecasts does not exist it is hard to argue that model sélection
should be based on minimizing model fitting errors. Moreover, there is no
reason to guarantee that a certain method will perform better than others
because it better explains the past, or because its model fitting errors are
smaller. In effect, the use of model fitting criteria may be viewed as more
sophisticated variants of the case of fitting a n n - 1 degree polynomial to a
set of n data points to achieve zero model fitting errors. Forecasting errors
will not be zero in practical applications.

THE CONSTANCY AND REGULARITY OF THE GENERATING PROCESS

Any system, no matter how simple or complex, can be presented by
Figure 1 and consists of an input, a generating process and an output.

InpuW Yt = f(Xt) -^Output

Xt Yt

Generating Process
Figure 1. - The schematic présentation of input/output and generating processes

In forecasting terms the output Yt needs to be predicted given the input
Xt, knowing the generating process ƒ, and realizing that the output can be
influenced by fluctuations in both the input and the generating process.
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By définition the impact of fluctuations, denoted by et, is considered to
be white noise (otherwise it would be considered part of the input, or some
systematic variation caused by the generating process itself which could be
captured and included as part of the output) has a mean of zero, a constant
variance, and is normally distributed,

E{et) = 0 (1)

rp / \ f er2 w h e n i — 0 / O N

E(etet+i) = < (2)
[ 0 when % ^ 0

Predicting Yt can be realized by attempting to either relate the input to the
output, which would require identifying and measuring their interconnections
and the interrelationships among the various factors affecting the generating
process; or alternatively it can be done by studying the actual behavior of Yt
over time. The first approach is called explanatory as it attempts to explain
output through input and the generating process that transforms the latter
to the former. Régression and econometrie models are the major methods
for applying this methodology. The second approach is called time series
analysis. lts purpose is to identify and measure systematic patterns in Yt

which can consequently be extrapolated and used for forecasting.

In theory the generating process must be constant; otherwise the accuracy
of forecasting could not be guaranteed. In practice, as it was mentioned
above, this assumption of constancy has been ignored, or played down until
rather recently (Fildes and Makridakis, 1995). The result has been that models
have been developed with the only concern of how well they fitted available
data, making measures such as R2 or the minimization of the Sum of Square
Errors (SSE) the only criterion for model sélection. Consequently, constancy
of relationships and/or patterns was assumed and equally accurate forecasts
and uncertainty (expressed in terms of confidence intervals) were expected for
future (post-sample) values not used when developing the model. In reality,
however, relationships and patterns changed, sometimes considerably, during
the post-sample phase. Such change makes forecasts and confidence intervals
worse than expected through statistical theory (Makridakis et al., 1987). This
explains the common observation that simple models and the combining of
forecasts of such models outperform, post-sample accuracy-wise, large and
sophisticated ones.
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Major finding of empirical studies

Comparative reviews of forecasting accuracy by alternative forecasting
methods showed, as early as 1956 (Ferber (1956) and Shupack (1962)),
that "correctly specified, well-fitted" models often underperform when tested
outside the sample data. It was not until the late 1960s, however, that
forecasting accuracy studies were performed on a wide range of comparisons
that covered several methods and used real data in order to détermine the post-
sample accuracy of such methods. The greater availability, lower cost and
improved speed and memory of computers made such empirical studies easier
permitting an enlarged number of series and methods to be compared. Reid
(1969), and Newbold and Granger (1974) using 106 time series concentrated
on the accuracy of univariate forecasting methods. They also considered in
depth various forms of combining forecasts from these three methods. The
Makridakis and Hibon (1979) study was based on 111 series. While the
Newbold and Granger study offered findings that confirmed (albeit weakly)
the strongly held opinions of the leading time series statisticians of the day,
the results of the Makridakis and Hibon study were more openly in conflict
with such conclusions. Further study by Makridakis and his colleagues
resulted in the so called M-Competition (Makridakis et al, 1982) which
reconfirmed the results of the Makridakis and Hibon study. Since 1982 many
additional empirical comparisons (Fildes and Makridakis, 1995) have been
conducted and the following conclusions reached.

Sophisticated vs. simple methods

Because sophisticated methods permit the user to select an appropriate
theoretical model to best match the characteristics of the data, it could
be reasonably expected that the theoretical correctness and the additional
flexibility would lead to improved accuracy. However, this has not happened.
Simple, mechanical methods, such as exponential smoothing or even the
benchmark methods of a random walk, or a seasonal variant, outperformed,
on average, more complex spécifications such as the ARIMA methodology
or variants of Kalman filters. Additional empirical research has given further
support to the view that simple time series models do at least as well
as statistically sophisticated ones: Schnaars (1986), Koehler and Murphee
(1988), Huss (1985), Geurts and Kelly (1986), Watson et al (1987), Collopy
and Armstrong (1992), Fildes (1983), Makridakis et al (1993). These studies
use different data sets and a variety of methods.
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General and special cases

It can be shown that many variants of exponential smoothing are special
cases of ARIMA models (Cogger, 1974, Gardner and McKenzie, 1985). It
was therefore argued that it was not possible for the latter to outperform
the former, performance should at best be equal. Starting with Makridakis
and Hibon (1979) évidence has accumulated that ARIMA based forecasting,
even when applied strictly according to the authors' original intentions,
is outperformed by exponential smoothing. This result was supported by
Makridakis et al (1982) and (1993). However, the only claim that can be
made is that the model for fitting errors in ARIMA models will be as small
as those of exponential smoothing methods which empirical studies have
shown to be true. As far as post-sample accuracy is concerned, we cannot
assure that more genera! models will be at least as accurate as their special
case ones when the assumption of constancy does not hold true.

Forecasting accuracy and prédiction intervals

All forecasts are expected of the most likely outcome and are associated
with an interval that expresses uncertainty. Empirical studies (Makridakis
and Winkler, 1989, Makridakis et al, 1987) have shown however, that actual
forecasts fall outside the theoretically constructed confidence intervals more
often than postulated by the theory, regardless of the model used to describe
the data (see Chatfield, 1993, for a survey of this topic). For example, in
Makridakis et al (1987) it was shown that 17% of the forecasts feil outside
the 95% confidence interval for lead 1 rising to 26% for lead 6. This finding
again means that constancy between model fitting and post-sample forecasts
does not hold.

The effect of sample size

According to statistical theory, the size of the prédiction interval, directly
related to the standard error, ought to decrease according to the square root
of the sample size used in model estimation. Empirically, however, this
result has not been confirmed (Makridakis and Hibon, 1979; Makridakis et
al, 1982; and Lusk and Neves, 1984). Such a result contradicts a major tenet
of statistical theory and raises some fundamental questions about the optimal
sample size in real-life applications, the obvious conclusion being that there
is no need to search for more data (an expensive and time consuming task)
when less can do as well.
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Combining

Starting with Newbold and Granger (1974) and supported by Makridakis
and Hibon (1979), the M-Competition (1982), the M2-Competition (1993)
and a large number of other empirical studies both inside and outside the field
of forecasting (see Clemen, 1989, for a review and annotated bibliography)
the conclusion has been maintained that combining more than one forecasting
method (at least one of which will naturally be suboptimal for a given data
set) results in more accurate out-of-sample forecasts. In addition, to add
"insuit to injury", empirical research has found that simply averaging the
forecasts of the various methods is as accurate as combining them according
to some optimizing procedures that minimize the variance and/or covariance
of the methods being combined.

THE "REAL" GENERATING PROCESS

In theory it is convenient to assume that the generating process is constant.
In reality it is practically impossible to assure constancy. Figure 2 shows
the average yearly températures in Paris since 1851, the earliest time for
which data is available. Figure 2(a) shows a rising trend of about 0.016
degrees a year, which can be shown to be statistically greater than zero for
the entire period. Alternatively, it can also be demonstrated statistically (see
Figure 2(b)) that there is a yearly increase of 0.005 degrees between 1851
and 1920, and an even greater increase of 0.028 degrees from 1921 onwards.

13;
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Figure 2(a). - Average yearly Paris températures - A single rising trend.
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Figure 2(b). - Average yearly Paris températures - Two different rising trends.

Does Figure 2 imply a change in the generating process (that is, the Earth's
climate) that will result in global warming? Answering this question is not
possible without additional information as a température rise for 142 years
can be the increasing part of a long cycle, or be the result of temporary
factors (e.g., the urbanization of Paris).

For forecasting purposes our prédictions will be quite different if we
assume that:

(a) the generating process has changed, as suggested in Figure 2, implying
continued increase in the Earth's température and a global warming

(b) the rise in température seen in Figure 2 is part of a cycle that will
peak and reverse itself

(c) urbanization has contributed to the température increase seen in
Figure 2 and as such urbanization has been completed and effective pollution
control is reducing heat exhausts, Paris températures will stop their increase.

The forecasting of business and economie series can also provide
quite different prédictions depending upon our assumptions concerning the
behavior and constancy of the generating process involved.

Figure 3 shows real, that is, adjusted for inflation, copper priées for four
different periods, each longer than the previous one. The obvious conclusion
from Figure 3(a) is that prices are falling, from Figure 3(b) that they are
constant, from Figure 3(c) that they are increasing, while from Figure 3(d)
that they are declining. As each graph of Figure 3 covers a certain time
span, we have to be sure that the generating process that applies to such
a span is constant.
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Real Priée: $ Per Kilo
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Figure 3(a). - Real 1994 monthly copper prices.
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Figure 3(b). - Real yearly copper prices.
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Figure 3(c). - Real yearly copper prices.
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Figure 3(d). - Real copper prices in constant 1994 $.

Clearly, the longer the time horizon the stronger the chance of describing
the real generating process and not showing some cyclical fluctuation of
a certain length and amplitude, as cycles are widespread in all types of
phenomena from natural and physical to economie and business ones. This
means that the real generating process cannot be inferred unless we can
persuade ourselves that any persistent increase or decrease is not part of
some cycle. This is obviously the case in Figures 3(a), 3(b) and 3(c) which
describe only a small, cyclical part of the data since 1800 displayed in
Figure 3(d). A further study of the copper price data can assure us that 1800
is the right time to start (this is when the effects of the industrial révolution
started being feit, see also below). In such a case we can conclude that
the exponential decreasing prices and the huge cycles of various lengths
and amplitudes are part of the real generating process and must be included
in any and all forms of forecasting beyond 1993. In other words, and
until évidence proving otherwise becomes available, we can conclude that
Figure 3(d) depicts the real generating process of real copper prices.

For the Paris températures we cannot make a similar claim because
température cycles lasting several thousand years have existed throughout
the Earth's history, bringing both ice ages and hot summers to places
covered by ice beforehand. Thus, we cannot infer the real generating process
of températures for the Paris région unless much more data is available to
us that needs to be found through other sources such as ice core, pollen,
and deep ocean measurements (Duplessy and Morel, 1990) which suggest
cyclical fluctuations considerably bigger than those in the Paris températures
over the last 143 years (Jouzel et al., 1987, Guiot, 1989).
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Random walks and cyclical movements

Figures 4(a), 4(b), 4(c) and 4(d) show four series generated as follows:

Yt = Se* (3)

where et is defined by (2).
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Figure 4(a). - Cycles in real copper priées and a random walk.

3-

2-

1 -

o-

-1 -

-2-

- 3 -

-4-

R -

i
l n/

V'y

1

1

M\V

L
\
H
\,H

V

J
A
\ i ht

1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

Figure 4(b). - A generated series through a random walk.

Figure 4(a) is the best of ten attempts made to resemble as close as
possible the cycle of copper prices (Le., the déviations of real copper prices
shown in Figure 3(d) from their long-term exponential trend). Figures 4(b),
4(c) and 4(d) were selected from among a total of ten tries to illustrate
extreme cases of applying équation (3).
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Figure 4(c). - A generated series through a random walk.
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Figure 4(d). - A generated series through a random walk.

The obvious resemblance in Figure 4(a) between the copper price cycle
and the series generated through expression (3) is striking, pro ving that
cycles are the outcome of random factors (a fact that has been pointed out
by Slutsky, 1937) whose influence is being accumulated over time. The
shapes of Figures 4(b), 4(c) and 4(d) suggest that the cumulative effect of
random fluctuations can result in illusory patterns that look like cycles and/or
trends and make us believe that there are underlying factors behind them.

Y% as presented by équation (3) is called a random walk and it is
characterized by our inability to predict its next turning point. Many economie
and business series behave like random walks making the most appropriate
forecast, for any future value of Yt, the latest one available, or

= Yt (4)
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What is important in Figure 4 is to realize the conséquences of initial
conditions and random disturbances on the final outcome. Figure 4(a) clearly
illustrâtes the effects of chaos on the behavior of an economie variable:
copper priées. It suggests that copper prices, once the long-term trend has
been excluded, are chaotic, or random walks, and cannot be predicted, unless
additional non-quantitative information is available (e. g., inside information
about capacity utilization rates, cartels, etc.) which are behaving like random
walks. The various cycles shown in Figures 2(b), 3(c) or 4(d) are, in effect,
the conséquences of cumulative random fluctuations. Figures 2(b), 4(c) and
4(d) suggest that random walks can take forms that may make us believe,
wrongly, in the existence of strong patterns which are illusory, however.

Regular/Repetitive generating processes

Some processes are not only répétitive, but also seasonal. A typical case
can be seen in Figure 5 which shows the average monthly températures in
Paris since 1970 or Figure 6 which displays monthly gin sales in the USA
for twelve years. Figures 5 and 6 have been generated by the process

Yt = Yt-12 + et

Températures in Degrees CeJcJus

(5)

1970 72 74 76 78 1980 82 84 86 88 1990 92

Figure 5. - Average monthly Paris températures.

For forecasting purposes prédictions involving équation (5) are the most
accurate ones as the magnitude of et is a small part of Yt. Moreover, the
seasonal part of the generating process stays constant while the cyclical and
trend which may be included in (5) exert little influence for the short time
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Figure 6. - Gin sales: 1973-1984.

intervals (e. g., months) represented by the series. However, when cycles
and/or trends also become influential then future values of Yt cannot be
predicted as accurately as in the case of Figures 5 or 6 for three reasons.
First, the influence of et is not necessarily additive. Second, a cyclical
turning point might affect future values of Yt, and finally even the trend of
the generating process cannot be assured to be constant since in practically all
cases the available data will be short. This means that the overall generating
process is of the form:

where L is the length of seasonality, 12 for the monthly data shown in
Figures 5 and 6, Ct is the cyclical part of the generated process as defined
by (3), and Tt is the trend of the generating process.

When (6) applies it is much more difficult to identify the real generating
process unless the data series available is much longer than the longest cycle.

Near white noise processes

A large number of series in the economie and business areas, in particular
those referring to short time intervals, are white noise or near white noise
and can be expressed as:

(7)
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A typical series generated by équation (7) can be seen in Figure 7, the
inventory demand for product RMEUZ3. For forecasting purposes the best
prédiction for future values of Yt is Y as et cannot be predicted.
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Figure 7. - RMEUZ3: Monthly demand.

FORECASTING AND GENERATING PROCESSES

Although there is an overall generating process, in practical ternis we are
interested in some aspect of it depending upon the time horizon of interest
when forecasting. For instance, for daily or weekly prédictions cyclicality
is of little importance and trend even less so while seasonality is critical.
On the contrary, when long-term forecasts are needed, seasonal fluctuations
are of no value while cycles are of little importance. The trend, on the
other hand, is critical. We must, therefore, understand the characteristics
and behavior of the generating process in relation to the time horizon our
forecasts intend to cover. This is more so as people are capable of influencing,
or even permanently changing, the generating process through their actions
and reactions.

Ability to influence/change the generating process

People are capable of influencing, or even permanently changing generating
processes in the economie and business environment. This makes forecasting
even more difficult because it is not only possible that we cannot properly
identify a certain generating process, or that some other might naturally
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change on its own; people can also influence and/or change them. Figure 8
shows the real oil prices since oil was mass produced in 1870. In 1973 oil
prices more than doubled and consequently increased more than eightfold
going from $3.4 a barrel in 1972 to $31.8 in 1981. Such a huge price
increase was the direct result of a cartel, OPEC, which was created by oil
producing countries and which was successful in controlling oil production.
The large increases in oil prices could not have been predicted as it could
neither have been known that a cartel would have been created nor that such
a cartel would have the cohésion and power to impose production quotas
and manage to raise prices to such an extent. Ho wever, OPEC's hold could
not, and did not last for long. Oil prices feil as OPEC could not maintain
its hold of production which kept increasing in spite of all its efforts, even
though demand, because of the higher prices, was decreasing. In 1994 the
real oil price was about the same as that of 1973 and below the constant
long-term trend (see Figure 8).

Prie o: $ Per Barrel

1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

Figure 8. - Oil prices in constant 1994 dollars.

Figure 9 shows gold prices since 1880, the earliest data available. There is
a similar huge increase in gold prices starting in 1970 and lasting until 1980,
this time not because of a cartel but because gold was used by governments
as a reserve for the paper money they were issuing and by individuals as
a safe haven against inflation and other instabilities. The use of gold for
reserves and as an investment increased its demand and, therefore, price
which went from $36.4 a troy ounce in 1970 to $612.6 ten years later.
The reasons for such a huge increase were, however, purely psychological.
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Gold had little other worth than its perceived safety and "agreed" value as
a reserve. When governments decided they did not need to keep gold as a
reserve, and its perceived safety disappeared, its price feil as fast as it had
risen. In 1994 the constant price of gold was the same as that of 1973 and
close to its constant long-term trend.

Real Price: $ Per Troy Oz
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Figure 9. - Gold priées in constant 1994 dollars.

System complexity

We know that the behavior of large, complex Systems is chaotic as it is
governed by complex interrelationships and multiple causalities. Moreover,
we know that such Systems are unstable in the short term, as they are strongly
influenced by initial conditions, and highly stable in the long run. Large
complex Systems are governed by a multitude of independent components
and are subject to random external influences (Gleick, 1987, p. 303) whose
cumulative impact can sometimes contribute to strong short and medium-
term fluctuations. What I have shown so far is that business and economie
Systems are also chaotic and, in addition, can be influenced through human
actions, and reactions, making their prédiction even more difficult than the
corresponding chaotic Systems found in the physical or natural environment.

The problem is that business executives, policy makers and others
searching for accurate forecasts to improve their decision-making are not
willing to accept the chaotic behavior of economie/business Systems and
the extent of uncertainty that surrounds them in the short and medium
term. Instead they are looking for substitutes to prophesy which will
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eliminate future uncertainty and allow them to achieve deterministic planning.
Needless to say, prophesies are neither possible, as economie/business
Systems are chaotic, nor useful even if they could, somehow, become a
realistic alternative. For instance, consider the possibility that a model could
predict, with perfect accuracy, which stocks will do well or that a certain
product will grow by 20% each year for the next ten years. In such cases
the price of the stocks will instantly increase to account for the certainty that
it will do well, while high growth forecasts will create strong compétition
as existing firms and new entrants will increase their capacity to profit for
the predicted strong increase in demand. It is practically certain, however,
that increased capacity will bring oversupply and strong compétition which,
in all likelihood, will result in low profits, or even losses. This means that
our limits to predictability must be accepted (as it has already been done
in physical and natural sciences where chaos is considered as important as
order) and the uncertainty surrounding all future prédictions acknowledged.
After all, we cannot expect to be capable of forecasting social Systems any
better than meteorological (Lorenz, 1966) or natural ones (Peterson, 1993).
As the weather and the motion of planets are governed by chaotic aspects,
so are économies, industries and firms.

Long-term trends and various cycles

Figure 10 shows real wheat prices (one of the longest series for which
reliable data is available) in England since 1264. There are some definite
trends lasting for long periods of time in Figure 10. The first involved a
small but persistent décline that went on from 1264 to 1570. The second
consisted of an upward trend that lasted from 1570 to the beginning of
the nineteenth century. The final trend, starting around 1800, is downward
sloping and of an exponential fashion, very similar to that of copper prices
shown in Figure 3(d).

This trend, part of Yt, is

t) (8)

where T is the Trend and ut is

ut = (Se t, Sot) (9)

where Eet is defined by (3) and Sat refers to the cumulative effect of
human actions to influence future outcome.
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Price: £ Per Ton
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Figure 10. - Wheat prices in constant 1993 £.

It is clear that et cannot be predicted as it is made up of white noise
while it is debatable whether or not some part of at is forecastable as we
can observe the cumulative impact of human actions over time. Maybe a
good knowledge of the initial conditions of the series we are interested in
as well as the cumulative influence of human interventions can contribute
to estimating more accurately (8) and predicting forthcoming turning points
in équation (9), somewhat better than just using (4), but there is not enough
évidence to allow us to support such a statement, although some claim that
they can predict turning points more accurately than (4) (that is using today's
values as the most accurate forecasts).

If we are sure that the long-term trend is constant then the probability that
there will be a régression towards such a trend increases the further away
a series gets from the long-term trend. This means that the likelihood of a
turning point increases the further away the data gets from their long-term
trend. However, it might take many decades before a turning point occurs
as it can be seen in Figure 3(c). At the same time trends can and do change
as Figure 10 can confirm. We must, therefore, persuade ourselves that the
process generating the trend is indeed constant. However, once we can assure
ourselves that the trend is constant (as in the copper or wheat prices after
1800 when the effects of the industrial révolution started) then long-term
forecasting can be highly accurate.

The biggest problem as far as forecasting is concerned comes in the
medium and longer term, when not enough data is available, and where
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upward or downward swings whose origin can be cyclical, or psychological
can be confused with trends (as in Figures 3(a), 3(b) and 3(c) or with the
graphs of Figure 4 which are actually random walks). Such a confusion can
provide disastrous forecasts exactly because the likelihood of a turning point
increases the longer the "presumed" trend goes away from the real trend
of the generating process. For example, consider extrapolating Figure 3(c)
and the disastrous forecasts it would have produced as there was indeed a
régression towards the long-term trend shown in Figure 3(d), and therefore a
turning point which occurred after 1973. The same will be true if we assume,
wrongly, that there is an upward trend in Figure 4(c) that started in 1922 as
the series is actually a random walk generated by équation (3).

Unfortunately, the great majority of series in the business world are
extremely short, barely extending more than four or five years. In such cases
it is practically impossible to separate short, medium and long-wave cycles,
or other causes, from trends and we have to be content with forecasting the
trend and cycles together and not believing that changes in trends can be
predicted unless we can confirm them with several/many decades of data.
Moreover, we cannot expect to predict cyclical turning points as such points
cannot be forecast for series generated by équation (3).

Répétitive, seasonal patterns

Like fractals, seasonality repeats itself at regular intervals and can,
therefore, be predicted although it is intermixed with trend, cycles and
white noise. Moreover, seasonality can be easily identified and measured
even when short series, covering a few years, are available. Finally, the
process generating seasonality seems constant, or changing very slowly
and usually in a predictable fashion, allowing us to extrapolate it, with a
reasonable degree of confidence, beyond available data. The major problem
is not the incapability of predicting seasonality accurately but rather that
cyclical turning points, and other systematic fluctuations (fashions, special
events or actions etc) can produce substantial errors, when they occur, which
decrease overall accuracy substantially.

Post-sample forecasting accuracies and generating processes

As already mentioned, forecasting compétitions have shown that simple
methods like single exponential smoothing are extremely accurate because
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they assume that the generating process can be described by équation (3)
or (7). In such a case their forecasts are optimal as they are of the forai

Ft+i = aXt + (l-a)Ft (10)

where Ft dénotes forecasts.

Equation (10) can optimally predict (7) by using a value for a close to 0,
or adequately extrapolate (3) by using a value for a close to 1. Moreover,
in case that the generating process is a combination of (3), (5) and/or (7),
équation (10) can also be used by determining a value for a between 0
and 1 and estimating and extrapolating the seasonality of the series. More
sophisticated methods, on the other hand, attempt to détermine a consistent,
no changing, trend which they consequently extrapolate assuming constancy.
This results in less accurate forecasts than simpler methods such as that
described by (10), when, say, a rising cyclical component is taken to be an
increasing trend and extrapolated. In other words sophisticated methods are
too quick to learn and assume that increases or decreases in the data are
caused by a constant trend in the generating process which will not change
in the future. This assumption is impossible to guarantee from the limited
amount of data available which only allows us to study a very small snapshot
of the long-term behavior of the generating process.

Unless we possess extremely long series such as those employed in the
Santa Fe Compétition (Weigend and Gershenfeld, 1994) where the shortest
series included 1000 points and the longest 34000, we could ne ver be certain
of distinguishing cycles from long-term trends, as in the Paris températures
series shown in Figure 2, and make strong statements about the trend of the
generating process. In the usual case of short series our best choice is to
predict the seasonality of our series as accurately as possible and then use
expression (10) that accepts that we cannot predict cyclical turning points.
Unless we have series, or other information, allowing us to predict the
long-term trend we had better only stick to identifying and extrapolating
the répétitive, seasonal aspect of the series (the equivalent of fractals) and
accept that not much more is possible.

CONCLUSION

Unless we possess an infinité amount of data we cannot estimate the
real generating process of series. In particular it is practically impossible to
distinguish cyclical swings from trends, make sure that a trend has or is about
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to change, or predict when the next cyclical turning point will occur. As the
great majority of series coming from the economie and business environment
are short (a few to several years of data) it is impossible to use them for
forecasting much more than their seasonality unless additional judgmental
information is available to us. This means that the short-term behavior of the
series can be predicted fairly well by simple methods which can accurately
extrapolate seasonality and adequately deal with randomness. This is what
forecasting compétitions (Fildes and Makridakis, 1995) have shown.

When extremely long series are available (Weigend and Gershenfeld,
1994) it is possible to find sophisticated methods capable of more effectively
identifying the real génération process and more accurately forecasting.
However, such a task is practically impossible in the economie and business
world where having three years of monthly data (Le. 36 observations) is
considered a long series (versus up to 34000 observations used in the Santa
Fe Compétition, Weigend and Gershenfeld, 1994).

Unless much longer series become available and more is learned about
the generating processes of businesses and economie e vents we will have
to accept the conclusion of empirical accuracy studies and be content with
using simple methods and their combining to forecast series in the business
and economie environment which is complex and chaotic. We can assume,
as most people do at present, that the world is orderly and we can forecast it
with some exceptions when we will be wrong, being surprised when making
large errors; or alternatively we can accept reality and realize that the
business and economie environment is unpredictable with some exceptions,
being realistic. Of course, improvements in forecasting accuracy, through
whatever means we can achieve them, can provide us with great value.
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