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ADVANCED SEARCH TECHNIQUES FOR THE
JOB SHOP PROBLEM: A COMPARISON (*)

by R. Taoer (1), F. Deca Croce (1) and G. Menca (1)

Communicated by Franco GIANNESSI

Abstract. — Recently several new heuristic search techniques have been used in machine
scheduling. In this paper we make some methodological and computational comparisons between
such techniques as bottleneck-based algorithms (Shifting Bottleneck), deterministic neighborhood
search procedures (Tabu Search), random oriented local search technigues (Simulated Annealing
and Genetic Algorithms) and Lagrangian relaxation approaches.

Keywords: Shifting Bottleneck, Tabu Search, Simulated Annealing, Genetic Algorithms,
Lagrangian Relaxation.

Résumé. — Récemment, des nouvelles méthodes de recherche heuristique ont été appliquées dans
le domaine de I’ordonnancement des machines. Dans cet article on présente des comparaisons
théoriques et de calculabilité entre les méthodes suivantes : des algorithmes fondés sur I’approche
« goulot d’étranglement » (Shifting Bottleneck), des procédures pour la recherche locale déterministe
(Recherche Tabu) et stochastique (Recuit Simulé et Algorithmes Génétiques), et enfin I’approche
de la relaxation Lagrangienne.

Mots clés : Shifting Bottleneck, Recherche Tabu, Recuit Simulé, Algorithmes Génétiques,
Relaxation Lagrangienne.

1. INTRODUCTION

This paper deals with the job shop scheduling problem where n jobs are
to be processed on m machines with the objective of minimizing a function
of the completion times. Let us define p; ; as the processing time of job
i on machine j (i.e. the processing time of operation o; j;), ¢; j, as the
completion time of o; j, d; as the due date (if present) of job 7 and 7; as
the release time (if present) of job ¢. The constraints are such that each
machine can process only one job at a time, no two jobs can work on the
same machine contemporaneously and no job can be interrupted while being
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180 R. TADEL F. DELLA CROCE, G. MENGA

processed (preemption is not allowed). The most commonly used objective
function is the makespan, i.e. the maximum completion time. It is useful to
represent this problem on a disjunctive graph (see Roy and Sussmann [23])
G = (N, A, E) where each node n € N represents an operation, each arc
a € A represents a precedence constraint between two operations belonging
to the same job and each edge e € F corresponds to a disjunctive constraint
of the two operations belonging to the same machine. With the makespan
as objective function, the problem is strongly NP-hard, therefore different
heuristics have been proposed in recent years. Panwalker and Iskander
[21] mention in their survey most of the practical priority rules on which
many of List Scheduler algorithms are based. Adams, Balas and Zawack
[1] introduced a sophisticated heuristic, the Shifting Bottleneck Procedure
(SBP), which minimizes the makespan in a job shop by the iterative choice
of the bottleneck machine and solution of the related subproblem. Also
based on the bottleneck philosophy is the Bottleneck Dynamics approach
(see [15, 17, 18]) in which the operations are given priorities and the
resulting schedule acts as a feedback for updating those priorities in order
to iteratively recompute improved schedules. Neighborhood techniques have
been proposed by Dell’Amico, Trubian [6] and Nowicki, Smutnicki [20]
in their papers based on Tabu Search (TS) and by Van Laarhoven, Aarts
and Lenstra [24] who applied the Simulated Annealing technique (SA).
Genetic algorithms were proposed by Della Croce, Tadei and Volta [5]
(GA) and by Nakano and Yamada [19]. Another attemp has been the
application of a Lagrangian relaxation approach to the job shop problem.
The Cellular Control approach (CC) proposed by Della Croce et al. [4]
relaxed the temporal consistency constraints of materials between modules,
i.e. the precedence constraints among the operations belonging to the same
job by using augmented Lagrangian multipliers. Hoitomt et al. [13] also
used augmented Lagrangian multipliers relaxing two sets of constraints:
the precedence constraints among operations belonging to the same job
and the disjunctive constraints among different operations operating on the
same machine. Many of these works (SBP [1], CC [4], GA [5], TS-1 [6],
TS-2 [20] and SA [24]) used the same input data (see Lawrence [14]) for
the job shop problem and applied it to the same objective function, i.e.
the makespan. The aim of this paper, however, is not to survey the search
techniques for the job shop problem and their applications but to carry out
a methodological and computational comparison of these methods, pointing
out both the differences and the similarities and extending this analysis to
other objective functions, e.g. total completion time, total tardiness etc.
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The paper is organized as follows. In section 2 we briefly outline and
comment the above mentioned heuristics. In section 3 a computational
comparison is introduced in terms of quality of the solution and computing
times and a methodological comparison is examined more fully pointing
out similarities, differences and links among the various methods. Section 4
concludes the paper with final remarks.

2. SKETCHING THE VARIOUS HEURISTICS
2.1. Shifting Bottleneck Procedure

The main concepts of the SBP are the following: first, the machines
are sequenced consecutively one at a time and, to do this, a one-machine
scheduling problem, which is a relaxation of the original problem, is solved
to optimality for each machine not sequenced yet. Then each solution is
compared with the others and all the machines are ranked on the basis
of their solution. The bottleneck machine is the one corresponding to
the worst solution. Each time the bottleneck machine is sequenced, every
previously sequenced machine susceptible to improvement is reoptimized
by solving a one-machine problem again (this is the so-called SBI part of
the procedure). The special feature of this method is that the iteratively
computed one-machine problem is the maximum lateness problem subject
to different release dates (1/r;/ max L;) to which, though strongly NP-
hard [9], Carlier’s method [2] provides an exact and rapid solution. As
mentioned by the authors, while solving the one-machine problem the
selection associated with the optimal solution may occasionally create a
cycle in the resulting disjunctive graph. To avoid this, it is sufficient to take
into account precedence relations between the operations when solving the
one-machine problem. A partial enumeration extension (SBII), which is a
beam search applied to the original SBI procedure, is then developed: each
time the bottleneck is searched for, the top few candidates are saved and
each defines a branch on the tree.

2.2. Simulated Annealing

Simulated Annealing is a random-oriented local search technique that
was introduced as an analogue from statistical physics of the computer
simulation of the annealing process of a hot material until the minimum
energy state is reached. In the field of machine sequencing it can be
considered a generalization of a classic neighborhood search such as pairwise
interchanges. Given an objective function and the neighborhood structure, the
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182 R. TADEL F. DELLA CROCE, G. MENGA

classic search moves from one solution to its neighbor only if the objective
function is improved. One a local minimum is reached, the search ends.
SA can be viewed as an attempt to allow the system to reach local minima
but to permit it to escape from them by accepting moves which worsen the
objective function. Van Laarhoven, Aarts and Lenstra [24] applied SA to
the job shop problem in the following way:

» The neighborhood chosen is the set S of all sequences obtained by
reversing one of the arcs on a critical path in the corresponding disjunctive
graph. This is due to the following properties of the problem:

— if s € S is the current solution, ‘then reversing one of the arcs on a
critical path of s can never lead to an unfeasible solution;

— if the reversal of an arc of the current solution s, that does not belong
to a critical path, leads to a feasible solution s*, then a critical path in s*
cannot be shorther then a critical path in s.

» The probability of accepting the transition from solution s to solution

s* is given by

P = min (1, ¢ [FC6N)=C G

where C (s) is the objective function of solution s and c is the control
parameter which starts from a given initial value and progressively decreases
until the system reaches its stability in a local minimum.

The slope of the decrease of c is proportional to the inverse of the cooling
parameter which belongs to the range ]0, 1]. The smaller this parameter is,
the more slowly the system reaches a stable state.

2.3. Tabu Search

Tabu search is a neighborhood search technique originally introduced by
Glover [11, 12]. Starting from a feasible schedule, the search moves from
one solution to another choosing the best not forbidden element (tabu-move)
in its neighborhood.

Moves with certain attributes may be forbidden in order to prevent
cycling and guide the search towards unexplored regions. The need for
such restrictions derives, from the fact that, without them, the method could
choose the “best” move away from a local optimum and then fall back at
the following step into the previous local optimum. Dell’ Amico and Trubian
[6] applied to job shop scheduling a Tabu Search procedure (TS-1) working
in the following way.

Recherche opérationnelle/Operations Research
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* A greedy (so-called “bi-directional”) algorithm is applied to find a
starting feasible solution.

» The neighborhood structure is strictly related to the above observation on
the disjunctive graph related to the job shop problem in which the makespan
is the objective function. Only moves that involve reversing at least one of
the arcs on any critical path of the current solution are therefore considered.

* In order to establish whether a candidate move is allowed, all its single
swaps are considered. Swapping arc (i, j) means to reverse the direction
of the arc, i.e. choose the arc (j, i). If at least one component swap is
currently tabu, the move is forbidden.

* Every time a move is accepted, all its component swaps are included
in the tabu list.

* The tabu list has a finite dimension and is handled through a First In
First Out policy, i.e. at each iteration the algorithm memorizes a new set
of swaps and forgets the oldest ones.

Nowicki and Smutnicki [20] reached better results than [6] by applying
a Tabu Search technique (TS-2) whose main differences from [6] are the
following:

* The starting solution is obtained with a fast heuristic based on an insertion
technique with complexity O (n®m?) where n and m are the number of jobs
and machines, respectively (see Wemer and Winkler [25]).

* The neighborhood is much smaller: just one critical path is considered.

2.4. Genetic Algorithms

Genetic Algorithms are an optimization technique for functions defined
over finite domains. Their name refers to their imitation of natural
evolutionary processes. The application of a GA in optimization problems
is performed in the following way.

* The search space of all possible solutions is mapped onto a set of finite
strings (chromosomes): the alphabet of symbols is of finite dimension.

*» For sequencing problems the chromosomes are usually the permutation
of a basic string: if there are k& jobs on a machine, a permutation of the
numbers from 1 to k is a chromosome which codifies a possible solution.

* A set of solutions is selected (usually at random) and this constitutes the
initial population, i.e. the first generation.

* A fitness is computed for each of the individuals. Fitness is a parameter
which reflects the quality of the solution represented by the individual.

vol. 29, n® 2, 1995
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* A set of individuals is selected for reproduction. The selection takes
place at random but with a probability proportional to fitness.

* From the selected set some progeny is generated by applying different
genetic operators.

* Some of the older individuals are eliminated from the population to
allow the entrance of the new ones.

» The new individuals’ fitness is computed and those individuals are
included in the population. This step marks the end of a generation.

» If the iteration threshold is reached, THEN the process is finished and the
best chromosome is returned, else the system performs a new reproduction.

The specific features of the genetic algorithm (GA) proposed by Della
Croce, Tadei and Volta [5] for the job shop problem are the following:

* Two genetic operators are applied: Crossover and Mutation. The
Crossover is a variant called LOX (Linear Ordered Crossover) introduced by
Falkenauer and Bouffoix [7] for machine scheduling problems. The Mutation
is defined as follows: two elements of the string are chosen at random and
their positions are exchanged.

* A chromosome is formed of several subchromosomes (strings
permutations as above), one for each machine. The actual schedule is
deduced from the chromosome through a simulation. When a number of
different operations is available for processing on the same machine the
conflict is solved using a preference list, but the machine lies idle if another
operation with greater priority is due to become available in a short time.

» Given that the chromosome does not describe an actual schedule and
that different chromosomes can produce equal schedules, a partition of
the chromosomes space C' into classes of equivalence is introduced. Let
S be the space of schedules and F© : C — S be the function which
generates a schedule starting from a chromosome. It is shown that in
each equivalence class there is one chromosome which is an “eigenvector”
of F' with “eigenvalue” equal to 1. By assuming that the eigenvector is
the chromosome which best transmits the specific characters of the class
to the descendants, the algorithm is consequently modified in such a way
as to substitute each new chromosome with the eigenvector of its own
equivalence class (updating step).

Recherche opérationnelle/Operations Research
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2.5. The Lagrangian relaxation approach

The Cellular Control algorithm (CC) proposed by Della Croce et al. [4]
uses a Lagrangian relaxation approach for iteratively computing a heuristic
solution. Let us consider the following formulation of the job shop problem
(JSP), where c;, j, p;, ; and d; are the completion time of job ¢z on machine j,
the processing time of job ¢ on machine j and the due date of job 3,
respectively. We assume that when we use terms c; j- and p; j-, the
subscript j* represents the j-th machine according to the routing of job 3.

Problem JSP:

min (max ¢;, m«)
i, g 2

subject to
G5 +D0i G+1)r — G, G+1)» <0 i=1,...,n 57=0,...,m (A)
with
€00 =0 ¢, (my1) =di Pi(my1)r =0

Cz‘,j—Cl,jZPi,j\/CI,j—Ci,jZPJ,j ®)
L,I1=1,...,n j=1,....m 1#]

To solve JSP, given a known upper bound of the makespan U B, a
search for a feasible solution is performed; U B, is then decreased and
the search for a feasible solution is repeated. Those steps are performed
iteratively until the problem becomes unfeasible.

This procedure can be summarized with the following
Algorithm (CC):
1. Initialize UB,,;, and set d; = UBy,;, Vi

2. Find a feasible schedule with respect to constraints (A) and (B), i.e.
solve

Problem JSP1:
min & (with k constant, e.g. k = 0) subject to constraints (A) and (B)
IF no solution is found END, ELSE decrease U B,,,;, and d; and GOTO 2.

In order to solve problem JSP1, the authors decided to use an Augmented
Lagrangian Relaxation approach (see [16] and [22]) such that the primal
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problem JSPlppg, relaxing the constraints (A) using the non-negative
Lagrange multipliers A; j- and the positive penalty coefficient p, became

Problem JSP1pp:

n m
min Y Y [N (g0 Pi, (41— G, (+1)°)

C; g £ ‘
’ 1=1 7*=0
2
+ p (i, j +Di, (j+1)° ~ G, (+1)*))
subject to:
Ci,j—Cz,jZpi,j\/CI,j—Ci,ijz,j (B)
Lil=1,...,n g=1,....m i#j X ;»>20 p>0
By setting:
(Ai,j= = Ai, =1y + 20P4, (j4+1)-
= 2pcq, (j+1)- — 20Ci, (j—1)+ = 2pPi, j*)
o e = ify <m
1,7 - (Ai’j* _ )\l‘ (]_1)1

= 2pdi — 2pc;, (j-1)- — 2pPi, j*)
ifj=m

the objective function for primal problem JSP1lpg can be rewritten as:

n

m
gnin L{c, A, p) = gr_li_n Z Z (2pc,271. + i, j+ i je)
n w1 =1

Problem JSP1lpp can be decomposed into m local problems JSPlpg_,
one for each machine j (independently from the job routing):

n
s 2
min » (2pcj ; + i j i, j)
"7 =1
subject to:
¢ij =i 2P\ e~ ey 2m; (B)

Lwil=1,...,n j=1,....,m i#]

As o j coefficients produce coupling between different machines due to
the presence of terms ¢; (;41)- and ¢; (;-1)-, in order to enforce separability
a Jacobi-type iterative technique bounded by a maximum number of iterations
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is used here (although this technique may not find a global optimal solution
for the problem). For each machine, a quadratic programming problem
with a set of disjunctive constraints must be solved. The authors solved it
heuristically by computing the unconstrained optimum and using the result
to define the sequence of jobs according to the non-decreasing value of
their completion times (obtained by calculating the unconstrained optimum).
Given the sequence, the problem is solved by using a quadratic programming
library package. Before carrying out the dual step, the feasibility of the
resulting schedule is tested and, in the case of violations, a constructive
algorithm is performed. In this algorithm the sequence represents the priority
rule for the choice of the job to be processed among all the jobs ready to
work on a particular machine. The dual problem is solved by using a
subgradient procedure.

3. COMPARISON BETWEEN THE HEURISTICS

3.1. Computational results

All the algorithms presented in section 2 (except CC) were tested on
40 benchmarks proposed by Lawrence [14]. The results are summarized in
Table 1 where we indicate with n the number of jobs, with m the number of
machines. For each method the machine used, the average time required and
the best solution obtained are presented. As far as the Tabu Search methods
are concerned, the variability of the computation times among instances
having the same size is due to the fact that one of the stopping criteria is
the comparison between its current solution and the optimum of the problem
(when known). If the values are coincident the algorithm ends. SBP uses
only SBI procedure for problems LA6 to LA15 and LA31 to LA35. The
cooling parameter for SA it set to 0.1 for problems 31 to 35 and to 0.01
for the other problems. Though it is hard to compare the performance of
different types of computer, we can reasonably affirm that a PC 486-25 Mhz
is practically twice as fast as a PC 386-33 Mhz which is comparable to a
VAX 785 (though this depends on the number of contemporaneous users
and the priority of the considered user). Notice that a “~” entry in the CPU
time columns means that the method required less than a second to find
the solution. From the results we evince that TS-2 performs generally best
both in terms of computation time and quality of the solution. In general,
however, the quality of the solution of all methods is fairly high and the
computation times are reasonably short. The Cellular Control method (CC) is
compared in Table 2 with the genetic algorithm for some job shop problems.

vol. 29, n°® 2, 1995
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In this case the genetic procedure outperforms the cellular one (both for
solution quality and computation time) but we should bear in mind that on a
real shop-floor the information resulting from the cellular algorithm (e.g. the
evolution of the objective function and the lagrangian multipliers) gives the
final user a much greater understanding of the problem. A random-oriented
heuristic (like GA) is normally seen by the final user as a black box which
provides an output but no further information.

TABLE 1

Comparison between the heuristics on Lawrence’s problems (CPU time in seconds)

Problem| n [ m OPT SA (CPU) | TS-1(CPU) |TS-2 (CPU) | SBP (CPU) | GA (CPU)
(LB, UB) | VAX 785 [PC 386-33 Mhz| PC 386DX | VAX 785 [PC 486-25 Mhz
LAOL [10] 5 666 | 666 (123) | 666 (-) 666 (-) 666 (1) 666 (282)
LAO2 |10] 5 655 | 655(117) | 655 (18.8) 655 (8) 669 (6) 680 (284)
LA03 [10] 5 597 | 606 (129) | 597 (21.6) | 597 (11) | 605(32) | 604 (281)
LAO4 [10] 5 590 | 590 (121) | 590 (32.2) 593 (-) 593 (23) | 590 (278)
LAO5 [10] 5 593 | 593 (118) | 593 (=) 593 (-) 593 (-) 593 (275)
LAO6 [15] 5 926 | 926 (286) | 926 (-) 926 (-) 926 (1) 926 (473)
LAO7 [15] 5 890 [ 890 (376) 890 (-) 890 (-) 890 (1) 890 (462)
LAO8 |15] 5 863 | 863 (292) 863 (-) 863 (-) 863 (2) 863 (457)
LA09 [15] 5 951 | 951(283) | 951 (=) 951 (-) 951 (-) 951 (467)
LAIO [15] 5 958 | 958 (243) | 958 () 958 (-) 958 (-) 958 (459)
LALl [20] 5 1,222 (1,222 (627) | 1,222 (=) 1222(5) | 1,222Q1) | 1,222(717)
LAI2 [20] 5 1,039 [1,039 (655) | 1,039 (-) 1,039 () | 1,039 () | 1,039 (726)
LAI3 [20] 5 1,150 [ 1,150 (564) | 1,150 (-) 1,150 (&) | 1,150 (1) | 1,150 (733)
LAl4 [20] 5 1,292 (1,202 (462) | 1,292 (-) 1292 (<) | 1292 (0 | 1,292 (699)
LAI5 [20] 5 1,207 (1,207 (736) | 1207 (12) | 1207 () | 1,207 (2) | 1,207 (689)
LA16 [10]10 945 | 956 (686) | 945(97.4) | 946(64) | 978 (120) | 979 (637)
LA17 |10]10 784 | 785(720) | 784 217) | 784 (3) 787 (96) | 784 (628)
LA18 [10]10 848 | 861(673) | 848(63.1) | 848(66) | 859 (112) | 853 (642)
LA19 [10{10 842 | 848 (830) | 842(103.8) | 842(60) | 860 (120) [ 850 (651)
LA20 [10]10 902 | 902 (667) | 902 (71.7) | 902 (150) | 914 (144) | 920 (640)
LA21 |15(10[(1,040, 1,047)|1,063 (1,991)] 1,048 (198.8) | 1,055 (21) | 1,084 (181) | 1,097 (1,062)
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Problem| n | m OPT SA (CPU) | TS-1(CPU) |TS-2 (CPU) | SBP (CPU) | GA (CPU)
(LB, UB) | VAX 785 |[PC 386-33 Mhz| PC 386DX | VAX 785 |PC 486-25 Mhz
LA22 |15]10 927 | 938 (2,163)| 933 (191.4) | 927 (9 933 (210) | 972 (1,020)
LA23 [15]10 1,032 [1,032 (2,093) 1,032 (1.8) 1,032 (1) | 1,032 (113) | 1,032 (1,063)
LA24 [15]10 935 | 952 (2,098)| 941 (181.8) | 948 (184) | 976 (217) | 984 (1,045)
LA25 [15[10 977 | 992 (2,133)] 979 (191.7) | 988 (155) | 1,017 (215) | 1,018 (1,052)
LA26 (2010 1,218 {1,218 (4,342)] 1,218 (22.1) | 1,218 (16) | 1,224 (372) | 1,231 (1,542)
LA27 [20(10((1,235, 1,236) (1,269 (4,535)| 1,242 (254.2) | 1,259 (66) | 1,291 (419) | 1,308 (1,555)
LA28 [20]10 1,216 (1,224 (4,354)| 1,216 (186.4) | 1,216 (107) | 1,250 (451) | 1,300 (1,535)
LA29 |20 10 (1,120, 1,160)[1,218 (4,408)| 1,182 (281.3) | 1,164 (493) | 1,239 (446) | 1,238 (1,550)
LA30 (20|10 1,355 1,355 (3,956)| 1,355 (10.4) | 1355(2) | 1,355 (276) | 1,355 (1,537)
LA31 |30 10 1,784 {1,784 (1,517)] 1,784 (1.5) | 1,784 (1) | 1,784 (19) | 1,784 (2,762)
LA32 [30]10 1,850 [1,850 (1,752)| 1,850 (1.7) | 1,850 (=) | 1,850 (15) | 1,850 (2,744)
LA33 [30]10 1,719 (1,719 (1,880)| 1,719 (1.3) | 1,719 () | 1,719 (14) | 1,719 (2,738)
LA34 {3010 1,721 {1,721 (1,886)| 1,721 4.6) | 1,721 (@ | 1,721 (1) | 1,721 (2,755)
LA35 [30]10 1,888 [1,888 (1,668) 1,888 (-) 1,888 (1) | 1,888 (11) | 1,888 (2,770)
LA36 [15]15 1,268 (1,293 (5,346)| 1,278 (238.4) | 1,275 (623) | 1,305 (268) | 1,305 (1,880)
LA37 [15[15 1,397 |1,433 (5,287)| 1,409 (242.2) | 1,422 (443) | 1,423 (419) | 1,519 (1,872)
LA38 |15(15((1,171, 1,184)[1,215 (5,480)| 1,203 (256.6) | 1,209 (165) | 1,255 (540) | 1,273 (1,887)
LA39 [15([15 1,233 1,248 (5,766)| 1,242 (237.8) | 1,235 (325) | 1,273 (335) | 1,315 (1,870)
LA40 |15[15 1,233 (1,234 (5,373)| 1,233 (236.6) | 1,234 (322) | 1,269 (450) | 1,278 (1,853)

3.2. The objective function

As far as the objective function is concerned some observations should
be made:

» The Shifting Bottleneck procedure is tailored for situations where we

take the makespan as objective function and cannot be easily generalized
for other performance measures. With a different objective function it is not
possible to provide rapid and exact solution to the Single Machine related
subproblem such as, for instance, the single machine total tardiness problem
with different release dates (see Chu [3]) which is much harder in practice
than the single machine maximum lateness problem.

* Though in a different way, the papers relating to Simulated Annealing

and Tabu Search are also tailored to the makespan as objective function:

vol.
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TABLE 2

Comparison between Genetic Algorithm and Cellular
Control on job shop instances (CPU time in seconds)

Problem n m OPT GA (CPU) CC (CPU)
(best UB) PC 486-25 Mhz VAX 9,000

Gl 6 6 55 55 (223) 58 (7)
G2 6 6 65 65 (222) 67 (45)
G3 6 6 113 113 (220) 114 (136)
G4 10 10 930 946 (628) 980 (1,585)
G5 10 10 725 740 (630) 788 (129)
G6 10 10 848 854 (626) 909 (446)
G7 20 5 (1,178) 1,178 (675) 1,296 (2,593)
G8 20 5 (1,122) 1,122 (670) 1,225 (298)
G9 20 5 (949) 949 (661) 1,013 (149)
G10 5 20 1,322 1,328 (717) 1,329 (636)
Gl1 5 20 1,237 1,264 (712) 1,264 (2,034)
G12 5 20 1,188 1,204 (713) 1,204 (170)

the structure of the problem allows us to consider an inversion only of
those couples of operations for which the corresponding arc in the associated
disjunctive graph is on a critical path. Therefore, given the sequence, it
is possible to automatically tighthen the neighborhood search and to use
faster procedures to compute the schedule (which obviously reduces the total
computation time and improves the quality of the results).

* As far Cellular Control is concerned, in [4] it is shown that the objective
function is a generalization of the makespan. Nonetheless only min-max
criteria can be considered and no generalization for different performance
measures is possible. Still the introduction of Released and Planned lots
leads to a Just-in-time philosophy, i.e. to an objective function that can keep
track of both early and tardy penalties.

* The Genetic Algorithm can operate with other objective functions such
as total weighted completion time, total weighted tardiness and weighted
number of late jobs and with some modifications (which should be expected
however to worsen and slow down their performance) Tabu Search and
Simulated Annealing can do the same. Nevertheless, none of those methods
can easily handle problems with a non-regular performance measure as
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objective function, e.g. sum of earlinesses and tardinesses. With such
performance measures the optimum may not belong to the set of active
schedules and therefore it is not straightforward to desume the schedule
from a given sequence (even on a single machine the optimal insertion of
idle time given the sequence requires an O (nlogn) algorithm — see [10]).
The above observation also applies to the bottleneck dynamics approach in
which the priorities of the operations and/or of the machines require not
only the sequence of the operations already set, but also their schedule as
preliminary information.

* Even for regular performance measures, the computation time remains
acceptable only for medium-size problems. For larger problems (e.g. those
involving more than 10,000 operations) it shoots up: in these cases a rougher
but faster way of estimating the schedule for a given sequence has to be
found.

3.3. Finding a feasible starting solution

Both Simulated Annealing and Tabu Search require a feasible starting
solution for their execution, whereas Genetic Algorithms need a set of
(possibly) different feasible solutions. Van Laarhoven, Aarts and Lenstra [24]
and Della Croce, Tadei and Volta [5] opted to start from randomly generated
schedules, whether Dell’Amico, Trubian [6] and Nowicki, Smutnicki
preferred greedy procedures. For Simulated Annealing and Tabu Search
methods it seems reasonable to choose the latter approach. This is true
mostly for large size instances where the neighborhood is wide and thus
convergence (even to a local minimum) may be too slow if a random start is
chosen, whereas the time required for a greedy procedure remains reasonably
short. For Genetic Algorithms the situation is different: although in this case
too it is worthwhile tightening the neighborhood, a full family of schedules
has to be generated and therefore the computational overhead cannot be
neglected. If problems involving deadlines are considered, the search for
a feasible starting solution obviously becomes much more difficult as there
is no guarantee that this solution exists. In order to partially overcome
this difficulty, we can perform a feasibility phase in which due dates are
substituted by deadlines and the objective function becomes the maximum
lateness (if for this new problem the optimal value of the objective function
is not positive, it means that no job is processed after its deadline and so the
schedule is feasible). The feasibility phase on its own will be an NP-hard
problem, but it will be possible to get a heuristic solution to the problem by
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using one of the above methods. If there are few feasible schedules, however,
the power of the local search techniques is greatly reduced because most of
the neighborhood of any solution is composed by unfeasible sequences.

3.4. Computing the schedule for a given sequence

If the sequence for all machines is given, the problem of computing the
schedule can be easily formulated as a linear programming model (see Fry,
Armstrong and Blackstone [8] for the single machine case: the extension
for the job shop problem is straightforward). Nonetheless, if it is necessary
to solve a linear program many times, the required CPU time may be too
long. In the multi-machine environment a further fact must be taken into
consideration. In a job shop not all sequences are feasible and thus a move
from a feasible configuration may lead to an unfeasible one. GA and CC
solve this issue by applying a constructive algorithm which derives a feasible
schedule by operating on the original unfeasible sequence. This is not the
case for SA, TS-1 and TS-2 in which the neighborhood presents just feasible
sequences (but only if the objective function is the makespan). Given a
feasible sequence, the problem of scheduling is trivial only if the objective
function is a regular performance measure, as an optimum may be found
in the set of active schedules. With non regular performance measures
(such sum of earlinesses and tardinesses), only for single machine problems
algorithms faster than the simplex method exist (see [10]). Two alternative
ways are currently available: either the use of a rough approach to prejudge
the quality of the sequence in order to avoid solving the LP model at every
step, or the choice of running a simplex method each time, with the drawback
of the explosion of the computing time. There is a dramatic need for a fast
polynomial method for this relatively simple subproblem.

3.5. The single machine as a subproblem

Both SBP and CC require the iterated solution of single machine problems
as a result of the decomposition of the main problem. As we mentioned
earlier the strength of SBP is the fact that Carlier’s algorithm [2] gives
an exact and rapid solution to the Single Machine Maximum Lateness
Problem subject to different release times. It is still to be proven that the
generalization of this method in presence of more complicated one-machine
problems requiring an approximate solution could lead to comparable results.
This observation applies equally to CC whose less brilliant results may well
be linked to the heuristic solution of its single machine total square lateness
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subproblem. The main difficulty is that the decomposition generally implies
the solution of NP-hard single machine problems, requiring an approximate
solution (except special cases like SBP procedure). Given that the robustness
of the SBP approach for other objective funtions has not been studied yet,
an application of the bottleneck philosophy using for instance a local search
for the solution of the single machine subproblems could be an interesting
direction for future research.

4. CONCLUSIONS

In this paper a methodological and computational comparison between
different multimachine scheduling heuristics has been proposed. Still much
work is to be done in this field and many different topics are to be explored.
In particular we point out the followings:

* As far as Genetic Algorithms are concerned, in order to improve
the quality of the solution, it should be worthy to start with an initial
population not randomly selected, but obtained through some fast greedy
problem-oriented methods as, for instance,

—lead time iteration technique (see [18]) with multiple and distinct
methods to obtain the starting release times and tails of the operations;

— a randomized version of the SBI technique (see 2.1.) with random
choice of the so-called “bottleneck-machine”;

— the “bidirectional method” proposed as the starting solution in [6]
modified by setting the cardinality of parameter “c” at a high value.

* A rough but fast method for prejudging the quality of a given
sequence without necessarily computing the whole schedule would save
much computing time allowing therefore to deal with large-size problems.

* A crucial issue is to find a more efficient algorithm for computing the
optimal schedule for a given sequence in the multi-machine early-tardy
environment.
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