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APPROXIMATION ALGORITHMS FOR INTEGER COVERING
PROBLEWIS VIA GREEDY COLUMN GENERATION (*)

by Y. CRAMA (1J 2 ) and J. VAN DE KLUNDERT (2)

Communicated by Catherine ROUCAIROL

Abstract. — Many combinatorial problems can beformulated as covering problems. In some cases,
e.g. the cutting stock problem, this formulation is not polynomial in the input size of the original
problem. In order to solve the problem approximately one can apply the Greedy algorithm to the
covering formulation. In this case, the column génération subproblem is to détermine which column
the Greedy algorithm chooses. This problem might be NP-hard in itself. We propose a modification
ofthe Greedy algorithm in which the column génération subproblem is solved approximately, within
a factor a. We dérive upper boundsfor the worst case ratio ofthis algorithm and related polynomial
approximation algorithms.

Keywords: integer programming; covering problems; greedy heuristics; approximation
algorithms; column génération.

Résumé. - Beaucoup de problèmes d'optimisation combinatoire peuvent être formulés comme
des problèmes de recouvrement Dans certains cas, par exemple pour le problème de découpe de
stocks, cette formulation est de dimension exponentielle en la dimension du problème de départ.
Pour résoudre le problème de façon approximative, on peut appliquer une heuristique gourmande
au modèle de recouvrement. Dans ce cadre, le problème du choix de la meilleure colonne, à chaque
itération de l'heuristique gourmande, peut être vu comme un problème de génération de colonne. Ce
sous-problème est parfois lui-même NP-difficile. On propose ici une modification de l'heuristique
gourmande, dans laquelle le sous-problème de génération de colonne est résolu par une heuristique
polynomiale à performance garantie. On analyse de façon précise la performance de l'algorithme
résultant. Une analyse similaire est réalisée pour différentes variantes de cette approche.

Mots clés : programmation entière ; problèmes de recouvrement ; heuristiques gourmandes ;
algorithmes approximatifs ; génération de colonnes.

1. INTRODUCTION

Many combinatorial optimization problems can be formulated as covering
problems of the form:
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284 Y. CRAMA, J. VAN DE KLUNDERT

mimmize ex

s.t. Ax ^ b (P)

x G Z l

where c G RI}., A G Z™xn and b G Zip. (Notice that ail data are
nonnegative.)

In some cases, this covering formulation is not polynomial in the input
size of the original problem. Typically, for instance, m may be a parameter of
the original problem, whereas n is exponential in m. This can be illustrated
by the covering formulation of the cutting stock problem due to Gilmore and
Gomory [5] (see also Chvâtal [2]; for a gênerai discussion of cutting stock
problems see Dyckhoff [3], Haessler and Sweeney [7]). In this problem there
are rolls of material of various length, called raws, from which pièces of
specified length, called finals, have to be eut. The demand for each final is
given. The cost of cutting finals from a raw may depend on the size of the
raw, and/or on the cutting pattern. A covering formulation can be obtained
as follows. Each row corresponds to some final. Each column corresponds
to a feasible cutting pattern, Le. to some way of cutting certain finals from
some spécifie raw. The cost of pattern j is denoted c7-, the number of finals
of type i produced by pattern j is denoted ay, and the demand for final i
is denoted bt. It is not hard to see that the number of columns might be
exponential in the problem size.

Gilmore and Gomory [5] proposed a column génération technique to
solve the linear relaxation of such large-scale models. In their approach,
the columns of (P) are not explicitly listed. Rather, the pricing step of
the simplex algorithm is implemented as follows: given current values
i t i , . . . , um of the dual variables, the column génération subproblem
max{Xi u% dij — Cj\j = 1, ..., n } is solved in order to detect columns
with positive reduced cost. For the method to be applicable, the column
génération problem should be (relatively) easy to solve, and should not
require a complete enumeration of all columns of (P). For instance, Minoux
[14] observed that the approach allows to solve the linear relaxation of (P)
in polynomial time whenever the column génération subproblem itself is
polynomially solvable. When (P) is a cutting stock problem, the column
génération subproblem turns out to be a knapsack problem, which is NP-
hard, but can be solved reasonably fast in practice (see Gilmore and Gomory
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[5] or Chvâtal [2] for details). Similar approaches have been successfully
applied to many other problems.

In this paper, we turn to a different, but related question. Rather than
solving the linear relaxation of (P) [which only yields a lower-bound on
the optimal value of (P)], we are interested hère in Computing a good
heuristic solution of (P). More preeisely» we are going to discuss a class
of approximation algorithms for problem (P) and to dérive bounds on their
worst-case ratio (the worst-case ratio of an approximation algorithm is the
supremum, taken over all problem instances, of the ratio between the value
of the solution delivered by the approximation algorithm and the optimal
value of the problem instance; see e.g. Nemhauser and Wolsey [15]). As
customary when discussing heuristics» we will be especially interested in
polynomial-time algorithms.

Our algorithms build on the algorithm Greedy studied by Johnson [9],
Lovâsz [12] (in the case where ail entries of b and c are 1), Chvâtal [1]
(in the case where ail entries of b are 1) and Dobson [4] (for gênerai b
and c). Dobson [4] showed that Greedy has worst-case ratio H (Amax)

m d

where Amax = max V^ aij, and JET (ci) = V^ l / i It is well known that

\nd < H(d) < In d + 1. (Recently Lund and Yannakakis [13] proved
that there cannot exist an approximation algorithm for the Set Covering
Problem having worst-case ratio c x log m with 0 < c < 1/4, unless
NP = DTME (npolylog *).) The previous results assume that the formulation
(P) is explicitly given as input. Our goal will be to circumvent the difficulties
posed when this is not the case, Le, when n is very large.

For instance, Greedy requires to select (iteratively) a column j of A which
minimizes the ratio Cj/^2 aij- Of course, this step poses no particular

i

difficulty if all columns of À are explicitly available. When this is not
the case, it is also clear that the column to be selected can be found by
solving a génération subproblem similar to the one discussed above. If this
subproblem is polynomially solvable, then the complexity of Greedy is only
affected by a polynomial factor. Ho wever, when the subproblem itself is NP-
hard, Greedy may no longer be a polynomial-time procedure (for instance,
in the framework of Gilmore and Gomory's cutting stock problem, the
subproblem is a knapsack problem, as bef ore). In this paper we concentrate
on the situation where an approximation algorithm with worst-case ratio a is
available to solve the column génération subproblem. (Notice that a may not
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2 8 6 Y. CRAMA, J. VAN DE KLUNDERT

be a constant, and that the approximation algorithm need not be polynomial
- though this is obviously the most attractive case.) In other words, we
assume that we can find (in polynomial time) a column k of (P) such that

= a x

where a ^ 1 (this extends to problem (P) the Master-Slave approach
described by Simon [18] for "elassieal" set covering problems). Under this
assumption, we prove in Section 2 that the worst-case ratio of a modified
version of Greedy (called aGreedy) is a times the worst-case ratio of Greedy
(Theorem 1). In the special case where ail entries of b and c are 1, Simon
[17] established the worst-case ratio a In m for aGreedy. Theorem 1 refines
this resuit and extends it to gênerai values of b and c. As a matter of fact,
under Simon's assumptions, we can even obtain a slightly sharper resuit,
which we state as Theorem 2.

When applied to (P), aGreedy may require the sélection of O (n + m)
columns. Therefore, the complexity of aGreedy is O ((n + m)T), where T
is (up to some algebraic manipulations on A, b and c) the running time of the
approximation algorithm used to solve the column génération subproblem.
Notice that this running time is not satisfactory when n is large {Le.,
exponential in m), even if we assume that T is polynomial in m. To remedy
this difficulty, we propose in Section 3 a modification of aGreedy that
reduces its complexity to O (m T) while degrading its worst-case ratio
by a factor of at most 2 (see Theorem 3). In particular, the resulting
HyperaGreedy algorithm runs in polynomial time if T is polynomial in m,
Some illustrations are presented in Section 4.

2. aGREEDY ALGORITHMS AND THEIR WORST-CASE RATIO

In this section we first describe the greedy algorithm for problem (P)
(Dobson [4]). Thereafter we present the aGreedy algorithm and we dérive
its worst-case ratio. We give a worst-case example, showing that the bound
is tight. Finally, we dérive a sharper resuit for the case where all entries
of b and c are 1.

The idea behind the greedy algorithm is, in each itération, to increase the
variable corresponding to the relatively cheapest column. Hence, the greedy
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algorithm picks a column k such that

k = arg min
i

and increases xjç by 1 unit. In order for the greedy algorithm not to be
misled by extremely high values of the constraint coefficients, we assume
as in Dobson [4] that a^ < bi for ail / in {1, ..., m }, j in {1 , .,., n }
(otherwise the data should be updated accordingly.) We now formulate the
greedy algorithm in a slightly different version from the one in Dobson [4].

Hère and in the remainder of this paper, we implicitly assume that any
row or column which becomes zero during the exécution of the algorithm
is left out of considération in all subséquent itérations.

ALGORITHM 1: Greedy
x:=0

z-0

while b ^ 0 do

begin

k := arg min

white for all i, 6j ^ dik do

begin

Xk '= %k + 1

bi := bi — dik for all i

z := z + Cfc

end

dij := min (aij, b{) for all i, j

end.

This présentation of the algorithm facilitâtes its worst case analysis.
However, it is easy to see that the inner-while loop could also be replaced
by a statement of the form

min

with corresponding updates of b and z. This would resuit in an algorithm
with O (n + m) itérations.

We now give the description öf the aGreedy algorithm. The idea here is
that instead of iteratively picking the relatively cheapest column, we piek

vol. 28, n° 3, 1994



288 Y. CRAMA, J. VAN DE KLUNDERT

some column k such that

/

m

Y] aik < a x min CJ /Y](Hj, (1)
/

m ƒ m

Y] aik < a x min CJ /Y](Hj,
where a > 1, and a is fixed throughout the algorithm. Formally the aGreedy
algorithm is:

ALGORITHM 2: aGreedy
x:=0
z:=0
while b ^ 0 do
begin

select k such that

/

m / i m

2_\ aik = ce x min [ Cj I 2_\ c

while for all i% bi >. aik do
begin

bi := bi —aik for all i
z := z + Ck

aij := min (aij, bi) for all i, j
end.

Clearly aGreedy can be modified in the same way as Greedy, so as to
reduce its number of itérations to O (n + m). In partieular, aGreedy can be
implemented to run in polynomial time if there is a polynomial algorithm
to select a column k satisfying (1).

As mentioned in the introduction, Dobson [4] proved that Greedy has
worst-case ratio H (Amax). We claim the following worst-case ratio for
aGreedy:

THEOREM 1: If x* is an optimal solution of problem (P) and ji is the
solution computed by aGreedy, then

CXf/cX* < a X H (Anax)

and this bound is tight.

Proof of Theorem 1: Since the proof is analogous to the proof in Dobson
[4] for the worst-case ratio of Greedy, we introducé the same notations and
we skip most of the parts that go through with little or no modification. We

Recherche opérationnelle/Opérations Research
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consider one exécution of the body of the inner while statement to be one
itération of aGreedy and we dénote by t the total number of itérations. During
the exécution of the algorithm, A and b change frequently. The notations
Ar = (aL) and br = (&£) refer to the data at the beginning of itération
r, r = 1, . . . ,* + 1, with At+l = 0 and 6 t + 1 = 0, by définition. We also let

wr- = \_] a\j for all j in { 1, ..., n }. Notice that the following implication

holds, in view of the description of aGreedy: for i — 1, ..., m, j = 1, ..., n
and r = 1, ..., £

if a\j < ajj then d-j = b\ (2)

We also use a set of step fonctions, one for each constraint of (F). Let kr

be the column picked in itération r of aGreedy. Then we define pi (s) to be
the fonction with domain [0, b{) and such that

Pi (s) = ckjwl if s e [b\+\ bï) for r = 1, ..., t.

Finally we introducé a step fonction pij for each a^, where

{S) — { J , l .» r 1 i \

[pi (s) if s e [al
ijy bi).

The proof will be based on the following three lemmas.

LEMMA 1: Ifxf is the solution computed by the aGreedy algorithrn, then

cxf = y^ / Pi (s) ds.

Proof: See Dobson [4]; the reasoning goes through without modification.

LEMMA 2: For all i = 1. ..., m and j = 1,..., n,

-~- Pi(s)ds <a pij (s) ds.
Oi JO JO

Proof; Fix j € {1, ..., n } and i G {1, .-,, m}. The inequality
holds if üij = 0. So assume a^ 7̂  0. Define Min = min pij (s) and

0g5<a
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Max = max pij (s). Let r be such that

5

where a7^1 < aij, and let u and k = ku be such that

where 6?+ 1 >

Notice that from (1), it follows that a [ + 1 =
now claim that the following inequalities hold:

, and hence r > u. We

a x Min = a-~ > a ~- > —- = Max.
wu.

(3)

Indeed, by définition,

and
rn

*=1 t = l

Since n < r it must be the case that ar- < afj for ail i € {1, ..., m}.
This proves the first inequality in (3). The second inequality is immédiate
by définition of aGreedy. Now Lemma 2 can be proved as follows:

— / pi (s)ds = j - \ l pi (s) ds + / pi (s) ds
bi JQ bi [JO Jai:i J

/ a pij (s) ds+ / p^ (s) ds
Jo Jai:i

(by définition of aGreedy)

ss[T
s f f r

bi Uo

(s) ds + (bi - aij) Max
J

î

a
ai>
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LEMMA 3: For all j = 1, . . . , n,

a f l

ir / Pi ^ ds = a °jb J

where
Vj wr- - wr+1

and v3 = min {r .= 0}.
r = l

Proof: One proves, as in Dobson [4], that

Pij (s) ds =

Together with Lemma 2, this easily implies the statement. •
Now we are in a position to prove Theorem 1. Let JC be any feasible

solution, then the following holds for % — 1, ..., m:

JH—L ^ i an (i hence:

ex — Pi (5)

EET

j = l 2 = 1 * J 0

<

Lemma 1)

Lemma 3)

< a max c?- Xj.

ex .
— S a; max lij,

Hence we have

where JC is any feasible solution. Dobson [4] shows that

max hj ^ i ï (
l< j£n

vol. 28, n° 3, 1994
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This inequality yields the desired upper bound.

The following problem instance (adapted from Chvâtal [1]) shows that
this bound is tight for any a ^ 1, and any (integer) value of

Min -xi + X2 +. . . + - xd-i + a xd +x<i+i

s.t- xi
X2

+Xd+1 ̂  1.

The optimal solution of this instance is given by x* = 0 (1 ' < i ^ d),
= 1, and has value 1. But aGreedy could set x% = 1 in itération % (1 < i ^ d),
thus resulting in a solution with value a H (d). •

Notice that the worst-case instance is in fact a Weighted Set Covering
Problem. Since in the Weighted Set Covering Problem the constraint matrix
is a 0-1 matrix, the running time of an aGreedy algorithm is O (m) instead
of the O (n + m) in the case of intégral constraints.

When all entries of b and c are 1 (Unweighted Set Covering Problem),
we can obtain a sharper result than Theorem 1, (Theorem 2 strengthens a
resuit of Simon [18] - see also Johnson [10], Simon [17] - who establishes
the asymptotic worst-case ratio a In m for aGreedy.)

THEOREM 2: If JC* is an optimal solution of the Unweighted Set Covering
Problem and x! is the solution given by aGreedy then

cxf/cx* < a H(\d/a\) + -f^- - a
\d/a\

and this bound is tight.

Recherche opérationnelle/Opérations Research
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Proof: As in Lovâsz [12], one proves in case of aGreedy that:

>,cx*< y; J ^ L + *cx>

t ï ï ~ l ) + d x ^ i ( i 1 ) + 1

d-l

= aH(\d/a\)-a + dx
i=\d/a\

This bound can only be tight for intégral values of a, as is easily checked.
Hence we show now how to construct a worst-case instance for arbitrary
intégral values for a and d. The worst case instance consists of \d/ot\ + 1
groups of columns. The columns of the last group will constitute the optimal
solution. The columns of the other groups will together constitute the solution
found by aGreedy. For the construction of the columns we refer to the
example. We give here the number of columns in each group, showing that
the bound is tight.

In total there are d x (\d/a])\ rows. Every column in the last group
covers d rows and there are (\d/a])l such columns. Every column of group
i (i = 1... \d/ot\) covers / rows. In the i-th group (i = 1... \d/a] — 1) there
are a/i x ([d/a])! columns. In group [d/a] there are (d — a(\d/a\ — 1)) x
(\d/a\)l))\d/a\) columns.

Any two columns in the last group are disjoint, as are any two columns
not in the last group. Thus, together, the columns in groups 1... [d/a] cover
all d x ([d/a])! rows.

Together, all columns in group i intersect an arbitrary column of the
last group in exactly a rows, for (i = 1... \d/a] — 1). Similarly, all
columns in group \d/a\ intersect an arbitrary column of the last group in
(d — a ([d/a] — 1)) rows, Le. at most a rows. It follows that aGreedy may
first piek all columns of group \d/a]7 then all columns of group \d/a] — 1,
and so on until group 1. Hence, the solution found by aGreedy consists of

] ! x (a H (ld/a] - 1) + (d - a ( [ d / a ] - l ) ) / [ d / a ] )

= [ d/a ] ! x f a H ( [ d/a ] ) + j~——- — a
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columns, whereas the optimal solution contains {\d/a\) ! columns.

An example with a• = 4, d — 10 is shown in Figure 1. The example
actually shows only half of the rows and columns. The first group is on
the right etc. •

1 1
1 1
1 1
l i
1 1
l l
1 1
l 1
l 1
1 l

1 1
l l
l l
1 l
l 1
1 l
l l
l 1
1 1
1 1

l 1
l 1
1 1
1 1
1 1
l 1
1 1
1 l
1 1
1 1

Figure 1

3. HYPERaGREEDY ALGORITHMS AND THEIR WORST-CASE RATIO

For reasons explained in the introduction we are not satisfied with an
aGreedy algorithm performing 0(m + n) itérations. To get rid of the 0{n)
term, we now propose a modification of the aGreedy algorithm into a
HyperaGreedy algorithm performing O (m) itérations. In this section we
describe the HyperaGreedy algorithm, and dérive a bound on its worst-case
ratio.
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ALGORITHM 3: HyperaGreedy
x:=0

z:=0

while b / 0 do

begin

select k such that
, m / » m

Ck 2^aik < a x mm I c, / ^ a{j

while for ail i, bï > 0 rfo

%k ••= xk + 1
bi := max(0} bi — a{k) for all i

z := z + Ck

end

aij := min (a i j , bi) for ail i, j

end.

This présentation parallels the présentation of aGreedy in Section 2. The
différence between the two algorithms is that» in aGreedy, xt stops increasing
as soon as bi < a^ for some i. Under the same conditions, x^ is increased
by one more unit in HyperaGreedy. It is easily seen that the inner-while
statement can be replaced by a statement of the form

min \bi/aik]

with corresponding updates of b and z. (Contrast this with the statement
xk := xjç + min [6i/at-fcJ in the case of aGreedy.) This results in an

algorithm performing O (m) itérations, since HyperaGreedy covers then at
least one bi in each itération of the outer while statement (ie. satisfies at
least one constraint).

We claim the following worst-case ratio for HyperaGreedy:

THEOREM 3: If x* is an optimal solution of problem (P) and x? is the
solution computed by HyperaGreedy, then

ex/ex* <2aH(4max).

Proof of Theorem 3: First, we introducé some notations. We view one
exécution of the outer while statement as a step of HyperaGreedy. Let / be
the number of such steps, and notice that I is in {1, ..., m } . The data at
the beginning of step r are denoted by Ar', br. Let fcr, r € { 1, ..., l}, be

vol. 28, n° 3, 1994
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the column picked by HyperaGreedy in step r. Let ir be any row such that

J-

and let

hr =
O k

Thus, hr represents the increase of xkr in step r. Let

p r =

Notice that pr > 1 for ail r in { 1, . . . , / } . We will use p r in order to define
a problem (P1) that plays an important role in the proof. We define Aj to
be the j-th column of Ar and 0r as follows:

The idea behind this définition is that f3r is precisely the vector that would
have been covered by aGreedy in steps r. ..., l, had aGreedy followed the
same steps as HyperaGreedy. Notice that, in these steps, HyperaGreedy
covers ¥, This motivâtes the following lemma:

LEMMA 4: For all r in { 15 . . . , l} and i in { 1, . . . , m }, /?[ < 6J*.

Proof; Fix r and i and assume that row i is covered by HyperaGreedy in
step Sj i.e. i — î6. Observe that for t > «s, a* = 0 for ail j in {1, ..., n } .
Now consider first the case where r ^ s, Then, since 6̂* — bf is precisely the
quantity "covered" in steps r, r + 1, ..., 5 — 1, we have:

5 - 1 5 - 1 ,5

6f = 5 3 ht a\kt +bi = J2ht a\k± + - / - oSfĉ

Since ht ^ pt and (bf/afk ) > p5, we obtain for r ^ s,

t = r

Recherche opérationnelle/Opérations Research
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On the other hand, when r > s, b\ = /?[ = 0. This proves lemma 4. •
Define now a new problem (P1) as follows:

mmimize cy
s.t. Ay > P1 (P1)

ny e £+

Dénote by y* an optimal solution of (P1), then,

LEMMA 5: cy* < ex*.

Proof: Directly from Lemma 4. •
The next lemma makes more précise the intuitive interprétation of the

vector P1 that we gave earlier.

LEMMA 6: When applied to (P1), aGreedy may piek the séquence of
columns fci, ..., ki and increase y^r by pkT in step r, r in { 1, ..., / }.

Proof: We prove this by induction on r. In fact we prove slightly more.
For / in { 1, ..., m}, j in { 1, ..., n } and r in { 1, ..., l}, let

arij = min(aij, p\)

We are going to prove that, when applied to the foUowing problem (P r ) :

minimize cy

aGreedy may piek column kr in the first itération; moreover, this column
is equal to Ar

k , Le.

ahr = a\kr
 for a11 i in { 1, ..., m }

and, updating (P r) yields (P r + 1 ) . Lemma 6 directly follows from these
claims.
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To prove our claims, notice first that, for ail i in {1, ..., m}5 j in
{!,..,, n} :

alj = min (a^, /3f ) ^ m i n (<Hj, &F ) = <&r, (4)

(the inequality follows from Lemma 4). Moreover:

<*ïkr
 = m i n 0 ^ 0i) ^ min(a^r, /3[) = a\K,

since a^r ^ o^k and /?[ > ajfe by the définition of (3r. Together with (4)
this implies aT

ik = aT
ik for ail / in {1, ..., m} as claimed.

Observing that column kr of (Pr) is equal to Ar
k , while each other

column j of (F r) is smaller than or equal to Ar- by (4), it is clear that
aGreedy may piek column kr in the first step (since HyperaGreedy did pick
it.) For each i in { 1, ..., m }

Moreover, since row ir was covered by HyperaGreedy applied to (P) in
itération r, a*̂  fct = 0 for ail t in { r + 1, ..., i}. Thus

Pr- (6)
alkr

From (5) and (6) it follows that» when applied to (P r), aGreedy increases yur

by pr in the first step, and decreases the right hand side by pr Akr, Le. (3r

becomes ,9 r+1. Hence (P r) is updated into (P r + 1). •
i

Let yfj — *S\ pT. From the previous proof, it follows that yl =

(Vii V2->-•••> Vn) i s a n «Greedy solution to (P 1 ) . Thus, by Theorem 1
and Lemma 5,

m

cyf ^aH j max S^ a1^ I cy* (by Theorem 1)

m
^ a H I max V^ aij J ca;* (by Lemma 5)
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Notice that the solution xr delivered by HyperaGreedy satisfies

hr, and that hr ^ 2pr for ail r in { 1, ..., l }. '*̂ ~

Hence cxf ^ 2 cyf ^ 2 a H (Amax) ex*, as announced. •
It is not too difficult to see that the bound in Theorem 3 can not hold

with equality. Indeed, if xf = y', then the previous proof shows that
ex* ̂  a H ( i m a x ) ex*. If xf ^ yf, then 6 > /31, and hence Ax* > f3l. The
last part of the proof of Theorem 1, in Section 2, implies that, under these
conditions, cyf < a H ( Amax) ex*, and thus ex' ̂  2 cyf < 2 a H ( Am a x) ex*.

In fact, we conjecture that the bound in Theorem 3 can be tightened as
follows:

cxf/ex* ̂ 2axH(d)x . À
Am*x . .

The following instance shows that this bound would be tight for ail values
of a and all integer values of Am a x:

d d d d
Mm — xi +j- - — x2 +...+ — xd-i H— Xd -\-%d+i

da (d- l)a 2a a
s.t. dx\ +%d+i ̂  d+

^ d +

+0̂ -1-1 ^ d + 1
+Xd+i ̂  d+ 1.

For this instance, Am3iX = d. The optimal solution is given by x* —
£ i S d), Xd+i = d + 1, and has value d + 1. But HyperaGreedy

could set Xi = 2 in itération i (1 < i ^ d), thus resulting in a solution with
value 2 a dH (d).

4. APPLICATIONS

We conclude this paper with a brief discussion of two applications of the
results presented in the previous sections.

The first application is to the Cutting Stock problem described in Section 1.
Consider the rather gênerai variant of this problem in which there is a cost
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associated with each raw. Then, the Cutting Stock problem can be modelled
in the format (P), where the cost CJ associated with thcj-th cutting pattern
is simply the cost of the corresponding raw. When this is the case, Gilmore
and Gomory [5] observed that the column génération subproblem reduces
to a séquence of knapsack problems, one for each raw (see also Chvâtal
[2]). Now, there is a simple approximation algorithm for (the maximization
version of) the knapsack problem with worst-case ratio 1/2. This, together
with Theorem 3, yields an approximation algorithm with worst-case ratio
4üT(.Amax) for the Cutting Stock problem. In fact» this ratio can even be
made arbitrarily close to 2H(Ama,x) since the knapsack problem admits
a fully polynomial time approximation scheme (see e.g. Nemhauser and
Wolsey [15]).

A second application arises when probabilistic logic is used to model
uncertain information (e.g. the information contained in the knowledge
base of an expert System). A fondamental problem in this framework is
the Probabilistic Satisfiability problem, which can be informally stated as
follows (see Nilsson [16]): given a set of propositional clauses and the
probability that each clause is true, décide whether this probability assignment
is consistent. We are now going to show how one variant of this problem
can be modelled as a covering problem with a large number of columns
(see also Kavvadias and Papadimitriou [11], Hansen, Jaumard and Poggi de
Aragâo [8]). To describe this model, let {Ci, ..., Cm } be a set of clauses
on the propositional variables {Vi, ..., Vn], and let p = (pi, ..., pm ) ,
where pi is the probability assigned to clause d*, i = 1. ..., m. Let
W = {lui, ..., it/2* } = { True, F aise } n dénote the set of possible worlds,
Le. the set of possible truth assignments for { Vi, ..., Vn }. We introducé now
a m x 2 n matrix A, such that aij = 1 if Wj is a satisfying truth assignment
for clause Q , and a%j = 0 otherwise. Then, the Probabilistic Satisfiability
problem asks whether the following System has a feasible solution:

2 7 1

-flJb _ jJ} 7 Jb% ij JU i_ U.

Assume now (without loss of generality for practical purposes) that all
parameters pi are rational numbers of the form p2 = bi/q9 with 62 and q
integer (i = 1, ..., m). Then it is easy to see that the above system is
feasible if and only if the optimal value of the following linear programming
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problem is at most q:

minimize ^ >

i=i % (PS)
s.t. Ax > b

x G R^T

Kavvadias and Papadimitriou [11] have observed that problem (PS) can
be solved by a column génération approach, and that the column génération
subproblem turns out in this case to be a weighted maximum satisfiability
problem (M AXS AT). Since there exist polynomial time approximation
algorithms with worst-case ratio 3/4 for MAXSAT (see e.g. Goemans and
Williamson [6]), Theorem 3 implies that one can find in polynomial time
an integer-valued solution of (PS) whose value is at most 8/3 H (m) times
the optimal value of (PS). If this solution has value at most q, then it
solves the Probabilistic Satifiability problem. Otherwise, it could provide a
reasonable initial solution (viz, set of columns) in order to solve (PS) by
column génération.
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