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THE DESIGN AND APPLICATION OF IPMLO
A FORTRAN LIBRARY FOR LINEAR OPTIMIZATION

WITH INTERIOR POINT METHODS (*) (1)

by J. GONDZIO (2) and D. TACHÂT (3)

Communicated by Pierre TOLLA

Abstract. - The design principles of the IPMLO, a modularly structurée library of FORTRAN
subroutines for large scale Linear Optimization with Interior Point Methods are addressed. The
objective of the library is to provide the base for the development and experiments with the new
attractive approaches that apply interior point methods for solving linear programming problems.
An example application ofitfor the implementation of the primal-dual logarithmic barrier interior
point method of McShane et al. (1989) is described. The preliminary computational results of the
code's application to the solution of medium scale LP test problems from Netlib collection are given
and the comparison with the implementation of the simplex method is made.

Keywords: Linear programming, interior point methods, program library.

Résumé. - Dans cet article, on présente les principes de conception de IPMLO, une bibliothèque
structurée de façon modulaire, de procédures FORTRAN pour l'Optimisation Linéaire de problèmes
de grande taille à l'aide de Méthodes de Point Intérieur.

L'objectif de cette bibliothèque est de fournir une base afin de développer et expérimenter
de nouvelles approches intéressantes qui utilisent des méthodes intérieures pour résoudre des
programmes linéaires.

On décrit un exemple d'application de cette bibliothèque pour implémenter la méthode primale-
duale avec barrière logarithmique de McShane et al. (1989).

Enfin, on présente les premiers résultats expérimentaux de l'application de ce code à la résolution
des problèmes-test déprogrammes linéaires de taille moyenne de la collection Netlib et on le compare
avec l'état de l'art en matière d'implementation de la méthode du simplexe.
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38 J. GONDZIO, D. TACHAT

1. INTRODUCTION

Karmarkar's (1984) publication of the polynomial-time linear program-
ming algorithm initiated a flood of research papers in which the application
of different interior point methods to the solution of linear optimization
problems was addressed. In parallel, much effort has been made so as to
develop implementations of the interior point methods that could outperform
the state-of-the-art simplex codes. It seems that, when large scale linear
problems of over 1,000 constraints are solved, the interior point methods are
f aster than the simplex-type ones (see e. g.: Adler et al, 1989 è, Cheng et al,
1989, Marsten et al, 1990 and Monma and Morton, 1987). Consequently,
further search for its new attractive and more efficient variants seems well
justified.

A need then arises for an expérimental modularly structured library of
subroutines that could facilitate this research. In this paper the design
principles and example applications of such a library are addressed.

The IPMLO is a set of FORTRAN subroutines that can be applied
to solve large scale Linear Optimization problems with Tnterior Point
Methods. It has been designed to use as much as possible the ideas of
structured programming. The interior point algorithm has been modularized
and the closely related or even identical steps of its different variants
{e. g.: input/output management, preprocessing, handling the projections or
problem-oriented BLAS-basic linear algebra System) have been identified.
They have later been implemented resulting in a software that accurately
reflects the overall structure of the basic algorithm. In particular, the routines
that incorporate the logic of the interior point method can almost never
access directly two fundamental data structures: one for the original problem
data and one for Computing Karmarkar projections. The later are in our code
handled by a direct approach L e. the Cholesky factorization of Gondzio
(1991).

Although in the library design a good structure rather than an efficiency
of code has been emphasized, the program is compétitive. Additionally, due
to the careful exploiting of the sparsity of the linear program both in the
management of original problem data and in the computations of orthogonal
projections, it was possible to solve with it even medium scale problems
(of up to 500 constraints and 1,000 variables) on a microcomputer with
operational memory limited to 640 kB.
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THE DESIGN AND APPLICATION OF IPMLO 39

The most computationally attractive variant of the interior point algorithm,
i. e. the primal-dual logarithmic banier one of McShane et al. (1989)
has already been developed on the basis of the IPMLO. Issues of its
implementation are discussed in detail to illustrate possible applications
of the library.

The expérience gained so far indicates that any new variant of the interior
point method can be quickly incorporated into EPMLO library and tested
when applied to solve medium scale problems, which should show whether
it is attractive for further study or not. The library seems thus to be a useful
tooi that may facilitate algorithmic research when an application of interior
point methods to linear optimization is concerned.

The paper is organized as follows. In Section 2 gênerai issues of the
IPMLO design are addressed. It contains: description of the library structure,
management of the linear programming (LP) problem data, computing
Karmarkar projections, implementation of the problem-oriented basic linear
algebra routines and the implicit treatment of rows and columns that are
added to the constraint matrix in the preprocessing phase of different variants
of the method. In Section 3 a theoretical background of the primal-dual
method implemented on the basis of the library is discussed. Issues of its
implementation are addressed in Section 4. In Section 5 the efficiency of
the code is empirically evaluated and, on the basis of its application to the
solution of medium scale problems from Gay's (1985) Netlib collection,
compared with the one of the expérimental simplex code of Gondzio (1990).
The purpose of this comparison is to show reasonable efficiency of BPMLO
library. Unfortunately, we do not know how our benchmark simplex code
compares with the state-of-the-art simplex implementations. We only know
that it is in the average 5-10 % faster than XMP of Marsten (1981). Finally,
Section 6 brings our conclusions.

2. IPMLO DESCRIPTION

We start this section with some gênerai remarks concerning the construction
of a FORTRAN program library for linear optimization. Such a library should
satisfy several widely accepted requirements (see e. g., Gill et al, 1979) that,
unfortunately, often conflict with each other. Let us now briefly discuss the
most important of them. For their analysis the reader is referred to the paper
of Marsten (1981).
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40 J. GONDZIO, D. TACHAT

Subservience. The library should consist entirely of the set of subroutines
that can be called (and linked) in different configurations. Argument lists
should be the only mean for communication between different routines.

Readability. The source code should be well documented and thus readable
to its intended users.

Extendibility. It should be possible to replace library routines by the
alternative ones and add new capabilities.

Modularity and hierarchical structure. User programs should be able to
call library routines at any level in their hierarchical structure.

Hidden data structures. No routine should access directly problem data
structures (neither the routines that incorporate the logic of interior point
algorithm nor the ones that handle Karmarkar projections).

Ability to solve large problems. It should be able to solve at least medium
scale problems (of up to 2,000 constraints and 10,000 variables) such as for
example those from Netlïb collection.

Reliability. It should respond quickly to user's errors or numerical
difficulties.

Portability. It should be easy to install and compile on any kind of
computer.

In the following subsections the process of finding the compromise among
these requirements is addressed.

2.1. Structure of the library

The structure of the library reflects as much as possible the natural phases
of solving an LP problem. In particular, such fonctions as: reading MPS-
formatted data, preprocessing, solving the problem and writing the results
can be distinguished in it. To satisfy the modularity requirement, much effort
has been made to minimize the cross références among these phases and
within them.

MPS data input has practically been completely isolated from the rest of
the library. It was possible since a special internai standard formulation of
the LP problem, independent of the variant of interior point algorithm is
kept (see section 2.2).

Analogously, the whole preprocessing phase is also independent of the
logic of the interior point method chosen. This phase is in turn (see section
2.3) strongly dependent on the method of handling Karmarkar projections
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THE DESIGN AND APPLICATION OF IPMLO 4 1

for which we applied the Cholesky décomposition and should be replaced if
the user wants to apply another approach for Computing projections.

The most implementationally involved part of the code is the driver routine
(solver) for the chosen variant of the interior point method. We describe it
in section 4.

IPMLO output, /. e. writing the MPS formatted results, was also made
gênerai in wide extent.

2.2. Problem data management

IPMLO is intended to solve the linear programming problems

minimize cTx, ü f l )
subject to A x=b, (1 b)

0<x<u, (1 c)

where A e Umxn, c, x, u G Rn and b G Rm. This internai standard form
used in the library differs from the gênerai one in which inequality constraints,
ranges for the right hand sides and nonzero lower bounds of the variables
are allowed. Any linear program of more gênerai form

minimize c^ y, (2 à)
subject to by - r < Ayy <by, (2 b)

ly <y < uyi (2 c)

where Ay eRpxq, cy, y, ly, uy e Rq and by,r eRp, can easily be trans-
formed to its equivalent form (1) (see e. g., Murtagh, 1981). It is achieved
by applying to (2) some straightforward techniques such as: adding slack
variables to constraints (2 b) (upper bounded, if ranges r are present),
removing fixed variables and moving variables bounded from below to zero
lower bound (these opérations require simple modifications of by vector),
splitting unbounded variables, etc.

We have found useful to stop problem transformations with form (1)
although we are aware that many variants of the interior point algorithm {see
e. g., Vial, 1987 and Goldfarb and Todd, 1989) need further transformations
(leading to zero right hand side, removing upper bounds of variables, etc).
As those usually depend on the chosen approach, it is advantageous to handle
them implicitly within the logic of the algorithm instead of explicit bordering
LP constraint matrix with additional (presumably dense) rows and columns.
Since this problem seems particularly important for the modularity of the
library, we shall address it in more detail in section 2.4.
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42 J. GONDZIO, D. TACHAT

Differently to the simplex method, in which it suffices to handle LP
constraint matrix A by columns oniy, interior point algorithms need much
more computations that involve A and, consequently, require comfortable
access to both rows and columns of it (see e. g., Aider et al, 1989 a).
Following the techniques discussed in chapter 2 of the book of Duff et a/.
(1989), we thus store it as a collection of sparse column vectors (CLPNTS,
RWNMBS and ELMNTS arrays are pointers to columns, row numbers
and nonzero éléments, respectively), and additionally remember the sparsity
pattern of A by rows in the form of row linked lists (RWHEAD, RWLINK
and CLNMBS arrays are hearders to the lists, row linked lists and column
numbers where nonzero entries are present, respectively).

2.3. Preprocessing

The reading of the MPS input file ends up with the construction of
data structures for the IPMLO internai standard problem formulation (l).
Depending however on the method applied to Karmarkar projections these
data structures may require further modifications.

Preprocessing phase dépends on the choice of the method used for
Computing Karmarkar projections. As has already been stated, the Cholesky
décomposition of the matrix of form A 9AT is used for this purpose. The
matrices that have to be inverted in successive itérations of any interior
point method differ only with the diagonal weighting matrix 6. They thus
share the same sparsity pattern although their numerical values change. This
means that an expensive sparsity structure analysis, L e. reordering that
minimizes the fill-in of Cholesky matrix and the symbolic factorization, can
be performed only once in the whole solution process (see e. g., Gondzio,
1991). The building up of the matrix A0AT and the numerical phase of
Cholesky décomposition (followed with the solves with the triangular factor)
have to be repeated at every itération of the method.

The whole sparsity structure analysis is then done in the following five
steps:

(i) removing empty rows from A;

(ii) splitting dense columns of A;

(iii) finding the minimum degree ordering of AAT;

(iv) permuting rows of A according to the reordering resulting from (iii);

(v) building static data structures for the Cholesky matrix (symbolic
factorization).
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THE DESIGN AND APPLICATION OF IPMLO 43

The reader interested in more detail in the preprocessing phase is referred
to Aider et al (1989 d) and Gondzio (1991, 1992). Let us only mention
that the idea of splitting dense columns of A applied in our library was
first suggested by Karmarkar at the Asilomar Conference on Interior Point
Methods in 1985 and later analysed by Vanderbei (1991).

It is a particularly important feature of the IPMLO library that all the
preprocessing opérâtes on the pure LP constraint matrix. Consequently, the
Cholesky factorization is computed for matrix A 6AT without bordered rows
or columns. The routines computing the décomposition are thus well isolated
from the logic of an interior point algorithm, which ensures their generality.
Any modifications of A required by different variants of the interior point
method, that cause usually bordering A with (probably dense) rows and/or
columns, are always handled knplicitly.

2.4. Bordered rows and columns

There exist several reasons which justify the choice of direct
approach to the solution of équations with A9AT {see e. g., Gondzio,
1991). (Direct approach is the only one available in a current version
of IPMLO library.) As was already mentioned, IPMLO library applies
Cholesky factorization to handle these équations

A6AT = LLT, (3)

where L is a lower triangular matrix of dimension m. It is easy to observe
that having computed (3), équations with A 0AT can be replaced with two
triangular solves with matrices L and LT, respectively.

The computational practice of application of the Cholesky factorization
indicates that the process of finding décomposition (3) involves usually
much more flops (floating point opérations) than applying this factorization
to solve équations with A 6AT. The costs of computing the décomposition

ra m

and one triangular solve with factor L (or LT) 1/2 ^]nf and 5^n*>
i= l Ï = 1

respectively (ni dénotes the number of entries of the i-th column of matrix
L). Consequently, it is often advantageous to simplify the décomposition
alone even if more triangular solves have to be done later. Such approach
is particularly useful when dense columns are added to the LP constraint
matrix, which is the case in many variants of the interior point method that
transform the problem to be solved into a new equivalent form with zero
right hand side or add an artificial variable when an initial feasible solution
is looked for {see e. g.: Vial, 1987 and Lustig, 1991).

vol 28, n° 1, 1994



44 J. GONDZIO, D. TACHAT

Consequently, instead of solving the équation

ri = d, (4)

the computation of the projection requires solving the more complicated
équation

Ac9cA'£ç = fi (5)
where

Ac= [A \C] w i t h C e e m x &
; (6)

and
6o = [ diag 0 I diag Dc ) with diag Dc € Rkxk, (7)

Observe that this technique could be applied not only to handle added
columns but also to deal with dense columns removed from A, if such
are present in the linear program. We do not however suggest to use it
for such purpose sinee removing dense columns from A may lead to the
rank-deficiency of As 9S Aj (AS and 0S dénote sparse parts of A and 0,
respectively). We rather suggest a more robust approach that splits dense
columns into shorter ones (see e. g.: Karmarkar, 1985, Vanderbei, 1991 and
Gondzio, 1992) and can never affect the full row rank property of A.

Substituting (6) and (7) into (5) gives

(A0AT + CDcC
T)(^f (8)

Applying (3) and the Sherman-Morrison-Woodbury formula (see e. g., Golub
and Van Loan, 1983, p. 3) to (8), we obtain

= (LLT + CDcC
T)-1f

= {LL-1) (I - VS'1 WTL-X) ƒ (9)

where ., ,o
, (10)

W = L~lV, (11)

and
S = I + WTW (12)

is a kxk Schur complement (see e. g,: Cottle, 1974 or Hager, 1989).
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THE DESIGN AND APPLICATION OF IPMLO 45

Summing up, given the factorization (3), the solution £ of (5) can be
obtained by the following séquence of calculations (see (9)-(12)):

(i) solve Lg = ƒ,

(ii)solve LW = V = CDlJ2,
(iii) compute S = / + WTW,
(iv) solve Sh = WTg,
(v) solve {LLT)i = f-Vh.

We thus avoid the décomposition of Ac 6C A^ for which we pay with more
triangular solves in steps (i) and (ii) and an additional factorization of the
small, in gênerai, Schur complement S.

Although the above présentation assumes adding a gênerai mxk matrix C
to A, in practice, C is usually built with only one or two columns. These
two special cases have already been implemented in IPMLO.

One has to be aware that applying Schur complement approach to handling
dense columns of A may lead to serious stability problems (even for well
formulated programs the part of A remaining after removing dense columns
may be rank deficiënt). Lustig et al (1991) address this problem and
discuss methods to overcome numerical difficulties in such case. IPMLO
library uses splitting to prevent degrading influence of dense columns and
applies the Schur complement mechanism only for handling artificial column
[équation (35)] bordered to the LP problem. Usual difficulties associated with
applying Schur compléments cannot thus arise in it as long as the original
linear program is well formulated, /. e. rank (A)-m.

Another problem constitutes bordering matrix A with new rows, L e. the
need of solving

%t = f, (13)

where

= [ ! | with iï GR*™, (14)

and £, ƒ G Rm x f c .

In this case, formulas for solving (13) trace back to the block élimination
technique (see e. g., Duff et al, 1989, p. 97):

6[AT\R2
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46 J. GONDZIO, D. TACHAT

(15)

where

and

S = R6RT - R6AT {A6AT)~lA6RT (17)

Consequently, given the factorization (3) and partition

£ ( 6 6 0 d f ( f j )and f = (fAjR), (18)

équation (13) may be replaced with the following séquence of calculations:
(i)solve (LLT)Q = A9RT,
(ii) solve (LLT)g = fA,
(iii) compute S = R6RT - R6 AT Q,

(iv) solve SÇR = fR-
(v) compute £A = g -

In other words we avoid the décomposition of AR 0 A^ but more équations
with the Cholesky factor have to be solved in steps (i) and (ii) and an
additional factorization of the small Schur complement has to be computed.

In the above présentation, a gênerai kxn matrix R bordered to A was
considered. In practice however only one row is usuall\ added to A, which
has already been implemented in IPMLO.

Summing up, rows and columns bordered to A by different reformulations
of the original problem (1) can be handled implicity without affecting
the Cholesky décomposition (3). The maintained generality of Cholesky
factorization (it is independent of the variant of the interior point method
used) and the preventing of the sparsity of L (added columns might dégrade
it substantially) are obvious advantages of such approach.

3. THE PRIMAL-DUAL LOGARITHMIC BARRIER METHOD

In this section we shall briefly remind a logarithmic barrier interior point
algorithm that has already been implemented on the basis of IPMLO. We
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THE DESIGN AND APPLICATION OF IPMLO 47

address theoretical issues rather, leaving implementational details to be
discussed in the next section.

We have chosen the primal-dual logarithmic banier interior point method
(see e. g.: Megiddo, 1986; Kojima et al, 1986; Monteiro and Adler, 1989;
McShane et al., 1989 and Choi et al, 1990) mostly due to its high efficiency.
It applies the logarithmic banier approach (see e. g., Fiacco and McCormick,
1968) simultaneously to primai and dual problems. Consequently, it itérâtes
at the same time on the interior estimâtes of both primai and dual variables
and performs Newton steps that maintain feasibility and reduce the violation
of the complementarity constraint Although its single itération is slightly
more expensive than that of a pure primai or a pure dual banier method, the
primal-dual method has several advantages. It gives both primai and dual
optimal solutions and it can earlier be terminated since it works with the
exact duality gap as soon as the primai feasibility is obtained.

Gill et al (1986) showed that the projective method of Karmarkar (1984)
is under some assumptions equivalent to a logarithmic banier one. Meddigo
(1986) was to our knowledge the first to propose applying logarithmic banier
approach to primai and dual problems at the same time. This led Kojima
et al (1986), Monteiro and Aider (1989) and McShane et al (1989) to
practical (implementable) methods.

Let us consider the dual pair of LP problems

(P) minimize c rx, (19 fl)
subject to Ax=b, (19 b)

x>0, (19 c)

and

(D) minimize bTy, (20 a)

subject to ATy+z-c, (20b)
z > 0, (20c)

where y G Rm and z G R71.

Simple bounds (19 c) and (20 c) can be replaced in these problems by
logarithmic banier function (see e.g., Fiacco and McCormick, 1968) leading
to the following primai and dual objective fonctions

/P(X, ji) = cTx — IJ, y^ln#;, (21)
z = l
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48 J. GONDZIO, D. TACHAT

, z, ti) = bT x- n ] P l n ^ , (22)

where fi dénotes the banier coefficient.
Problems (19) and (20) can thus be replaced by the banier équivalents

(PB) minimize fP(x, //) (23 a)
subject to A x = 6, (23 b)

and

(DB) maximize fD(y, z, fj) (24a)

subject to ATy + z = c. (24 b)

Having formulated lagrangians for (23) and (24):
n

LPB (x, y, ^) = cTx - fi ^ l n o ; z - yT (Ax - 6), (25)

n
T ( AT„LDB (xy y, z, IJ) - bTy - /x ^ l n z ? - xT (ATy + z - c), (26)

we can easily dérive the first order conditions for (23) and (24)

Ax = b, (21a)

ATy + z = c, (21b)

X Ze = /i e, (27 c)

where X and Z dénote diagonal matrices built with JC; and z,-, respectively
and e is a vector of ones in Rn.

(27 a, b) eire primai and dual feasibility conditions while (27 c) leads to
the complementarity condition as // tends to 0. The algorithm assumes that
feasible interior primai, dual and dual slack solutions x > 0, y and z > 0
are known and applies Newton's method to détermine their conections Ax,
Ay and Az, respectively. The corrections maintain the feasibility and reduce
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THE DESIGN AND APPLICATION OF IPMLO 49

the violation of the complementarity constraint (27 c). This leads to the
following équations that define the corrections

AAx = 0, (28 a)

ATAy + Az = 0 (28 b)

ZAx + XAz = v(n), (28c)

where

v{n) = XZe- fie. (29)

Their solution gives

Ay = -B-^AZ'^vbi), (30a)

Az = -ATAy, (30b)

Ax - Z'xv([i) - Z~YXAz, (30c)

where

B = AZ~lXAT. (30 d)

Correction of the current solutions x, y and z with the direction (30) complètes
the itération.

The algorithm proceeds until the duality gap becomes small. It is
advantageous that it opérâtes on feasible solutions, which allows its earlier
termination. Additionally, if continued until the end, it gives both primai and
dual optimal solutions never mind whether a degeneracy is present or not.

4. IMPLEMENTATION OF THE PRIMAL-DUAL METHOD

In this section we shall address the problem of method's implementation on
the basis of IPMLO. We shall in particular focus our attention on exploiting
modularity features of the library.

As was shown in section 3, the primal-dual method opérâtes on feasible
estimâtes x, y and z of primai, dual and dual slack variables. As those are
not known in advance, we shall apply the approach of McShane et al. (1989)
and transform problems (19) and (20) to some more complicated forms
with a priori known feasible solutions. We assume that some initial values
x° > 0, y° and z° > 0 that may violate constraints (19 b) and (20 b) are
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50 J. GONDZIO, D. TACHAT

given. Consequently, (19 b) may be replaced by a new constraint with the
artificial variable xa

(b-Ax°)xa = b, (31)

that has a strictly positive feasible solution (x°, 1). Similarly, given y0, a
sufficiently large f3 can be found such that for ya = — 1

z° =c-AT y°-peya, (32)

is strictly positive.
Summing up, a new dual pair with a priori known feasible solutions can

be formulated

minimize cTx + caxa, (33 a)

subject to Ax + (b - Ax°) xa = b, (33b)

0eT x + xb = ba, (33c)

^, xa, %b > 0, (33d)

and

maximize 6ry + baya, (34 a)

subject to ^ r y + ƒ3 e2/a + z = c, (34 6)

( è - ^ x ° ) r 2 / + ̂  = ca, (34c)

2/a+^6 = O; (34 d)

^, za, zb > 0. (34e)

Observe that artificial variables xa, ya and slack variables xt» za and z\, were
added to the original problem leading to its bordering with two columns
and one row

\ A d °1 ri^
(35>(3 e1 O

where column d=b-Ax° is presumably dense.

As shown in section 2.4 such bordered row and columns can and should
be handled implicitly. This is then the approach chosen. We use the Cholesky
factorization to décompose AZ~1XAT and later, when the direction (30)
has to be computed, solve équations with AZ_~l2LAT applying techniques
of section 2.4.
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THE DESIGN AND APPLICATION OF IPMLO 5 1

Observe that once primai (or dual) feasibüity is achieved, the artificial
column (or row) may be removed from (35), which simplifies the computation
of Newton's direction.

We omit further discussion of implementational details and refer to Choi
et al (1990), Lustig (1991), Lustig et al (1991) and McShane et al (1989)
for their studies. The numerical results reported in this paper were obtained
for the parameters set up as below.

Initial solutions:

primai and dual step lengths:

aP - aD = 0.999,

artificial cost coefficients:

ca = 10 n2 max |CÏ|,

and 6a = 10 n2 max |6j|,
the banier parameter determined at every itération as:

cT x — 6Ty

and the stopping criteria

cTx — bTy
cTx

with e=10~8.

5. NUMERICAL RESULTS

We shall now present some preliminary computational results. They show
in particular that when the efficiency of code is concerned, IPMLO routines
compare favorably with other LP codes. Consequently, below, the results of
applying the primal-dual interior point method and the expérimental simplex
code of Gondzio (1990) to the solution of several medium scale problems
from Netlib collection (those which have no upper bounded variables) are
presented. The simplex method used in this comparison was based on
Marsten's XMP library. LA05 routines of Reid (1982) that handle Bartels-
Golub updates of the basis were however replaced in it with slightly faster
and remarkably more storage efficient basis inverse représentation that apply
Schur complement updates.
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The simplex implementation of Gonzio (1990) is an expérimental one
and is probably less efficient than state-of-the-art simplex codes (see e.g.:
CPLEX of Bixby (1992), OSL of Forrest and Tomlin (1991) or MINOS 5.3 of
Murtagh and Saunders (1987)). Comparison of IPMLO with this benchmark
LP code does not aim to draw gênerai conclusions on the performance of two
practicable LP approaches: interior point and simplex ones. It is made only to
show reasonable efficiency of the IPMLO library on some of Netlib tests.

Table I contains the description of the test problems (M and N dénote
problem dimensions, TA indicates the number of nonzero éléments of the LP
constraint matrix (lb)) and the numbers of nonzero entries in appropriate
inverse représentations. In case of the interior point method this contain the
number of subdiagonal entries of A 6 AT, the number of subdiagonal entries
of its Cholesky factor L, and the fill-in. For the simplex method, the number
of nonzero entries of the largest Schur complement encountered during the
whole run is reported.

TABLE I

Nonzeros of the inverse représentations.

Problem

AFIRO
ADLITTLE . . .
SHARE2B . . .
SHARE1B . . .
SCAGR7 . . . .
SCSD6
BEACONFD . .
ISRAËL
ISRAËL

(split)
BRANDY . . . .

SC205

E226
SCTAP1
BANDM . . . .
SCFXM1
SCAGR25 . . .
SCRS8

M

27
56
96

117
129
147
173
174

182
182
(*)
204

(*)
223
300
305
330
471
490

N

51
138
162
253
185

1,350
295
318

326
292

316

472
660
472
600
671

1,275

TA

102
424
777

1,179
465

4,316
3,408
2,443

2,459
2,191

664

2,768
1,872
2,494
2,732
1,725
3,288

Interior point method

T(AAT)

63
328
775
884
500

1,952
2,669

11,053

5,819
2,541

451

2,600
1,386
3,419
2,903
1,922
1,708

TL

80
355
941

1,266
637

2,398
2,728

11,259

7,640
3,231

1,000

3,443
2,360
4,358
4,452
2,509
5,804

Fill-in

17
27

166
382
137
446

59
206

1,821
690

549

843
974
939

1,549
587

4,096

Simplex

nz
of Schur

36
900
961

1,521
961

2,025
1,849

961

1,849

729

1,936
2,304
1,849
2,401
1,843
1,936

(*) Empty rows have been removed from BRANDY (38) and SC205 (1).
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The analysis of table I results substantiates the well known conclusion on
the storage efficiency of simplex code when compared with interior point
method, especially that the memory needs of the interior point algorithm
are at least two times larger than that indicated in column T/, (results
collected in table I indicate numbers of nonzero entries of different inverse
représentations and not their storage needs).

Table II collects results on the efficiency of the two methods considered:
primal-dual logarithmic barrier one and the benchmark simplex one. For
every method, both the number of itérations and the solution times on a
20 MHz IBM 80386 computer with the arithmetic coprocessor 80387, the
memory limited to 640 kB and the relative précision e = 2.2 x 10"16 are given.

TABLE II

Comparison of the methods' efficiency.

Problem

AFIRO
ADLUTLE
SHARE2B
SHAREIB
SCAGR7
SCSD6
BEACONFD
ISRAËL
ISRAËL (split)
BRANDY (*)
SC205 (*)
E226
SCTAPl
BANDM
SCFXMl
SCAGR25
SCRS8

Primal-dual method

iters

14
20
18
51
22
15
21

33
31
21
36
27
32
32
33
53

time

2 sec.
8 sec.
12 sec.
42 sec.
10 sec.
33 sec.

1 min. 2 sec.

3 min. 22 sec.
1 min. 20 sec.

15 sec.
1 min. 32 sec.

40 sec.
1 min. 30 sec.
1 min. 36 sec.

55 sec.
3 min. 18 sec.

Simplex method

iters

9
171
146
330
112
543
118
464

329
50
806
349
578
475
642
683

time

1 sec.
9 sec.
12 sec.
34 sec.
10 sec.

1 min. 04 sec.
16 sec.

1 min. 04 sec.

56 sec.
7 sec.

2 min. 02 sec.
51 sec.

2 min. 01 sec.
1 min. 25 sec.
2 min. 05 sec.
2 min. 33 sec.

(*) Empty rows have been removed from BRANDY (38) and SC205 (1).

As the results of table II show, primal-dual implementation based on
IPMLO compares favorably with the simplex code. They also indicate that
even medium scale LP problems may be solved on a microcomputer with
only 640 kB of operational memory. IPMLO library seems thus to be a
useful and easy to install tooi when a practical development of new interior
point methods is concerned.
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6. CONCLUSIONS

IPMLO library can be used for different research purposes:
- it can be the basis for implementing new attractive variants of interior

point method (see e.g., Tolla, 1987);
- it can be modified to deal with specially structured linear programs such

as dynamic, stochastic, network (see e.g., Lisser and Tolla, 1989);
- it can be used for experiments with different projection techniques

(itérative as e. g., Karmarkar and Ramakrishnan, 1991 and others as e.g.,
Tachât, 1991).

The code itself is small and uses storage efficient data structures.
Consequently, even on a microcomputer with 640 kB of operational memory,
problems of remarkable size (up to 500 constraints and 1,000 variables) can
be solved with it. Additionally, it compares favorably with other LP solvers.

It is well-documented and easily extendible due to its modularity.

We end up this paper with indicating near future development of the
IPMLO library. There are at least three attractive directions of these
enhancements. The first one is the incorporation of upper bounds on
variables in it (current version does not accept them). The second one
is the improvement of the efficiency of the already implemented primai-
dual logarithmic banier interior point method and the coding of other
computationally attractive methods. The third one is the implementation
of different methods for Computing projections that could deal with badly
conditioned problems.
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AVAILABILITY OF CODE

It is our intention to make the IPMLO code available for any research purposes. More
information regarding this can be obtained by contacting Jacek Gondzio.
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