The all-to-all alternative route problem
RAIRO - Operations Research - Recherche Opérationnelle, Tome 27 (1993) no. 4, pp. 375-387.
@article{RO_1993__27_4_375_0,
     author = {Boffey, Brian},
     title = {The all-to-all alternative route problem},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {375--387},
     publisher = {EDP-Sciences},
     volume = {27},
     number = {4},
     year = {1993},
     mrnumber = {1250363},
     zbl = {0789.90030},
     language = {en},
     url = {http://www.numdam.org/item/RO_1993__27_4_375_0/}
}
TY  - JOUR
AU  - Boffey, Brian
TI  - The all-to-all alternative route problem
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1993
SP  - 375
EP  - 387
VL  - 27
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/RO_1993__27_4_375_0/
LA  - en
ID  - RO_1993__27_4_375_0
ER  - 
%0 Journal Article
%A Boffey, Brian
%T The all-to-all alternative route problem
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1993
%P 375-387
%V 27
%N 4
%I EDP-Sciences
%U http://www.numdam.org/item/RO_1993__27_4_375_0/
%G en
%F RO_1993__27_4_375_0
Boffey, Brian. The all-to-all alternative route problem. RAIRO - Operations Research - Recherche Opérationnelle, Tome 27 (1993) no. 4, pp. 375-387. http://www.numdam.org/item/RO_1993__27_4_375_0/

1. M. Ben-Akiva, A. D. Palma and I. Kaysi, Dynamic Network Models and Driver Information Systems, Transpn. Res. A., 1991, 25A, pp. 251-266.

2. D. R Bertsekas and R. Gallager, Data Network, 1987, Prentice-Hall, Englewood Cliffs, NJ. | Zbl

3. T. B. Boffey, Distributed Computing: Associated Combinatorial Problems, 1992, Blackwell Scientific Publications, Oxford.

4. M. Florian, S. Nguyen and S. Pallottino, A Dual Simplex Algorithm for Finding all Shortest Paths, Networks, 1981, 11, pp. 367-378. | MR | Zbl

5. G. Gallo and S. Pallottino, Shortest Path Methods: a Unifying Approach, Math. Prog. Study, 1986, 26, pp. 38-64. | MR | Zbl

6. P. Hart, N. Nilsson and B. Raphael, A Formal Basis for the Heuristic Determination of Minimum Cost Paths, IEEE Trans. Syst. Man Cybernet., 1968, 4, pp. 100-107.

7. G. J. Horne, Finding the K Least Cost Paths in an Acyclic Activity Network, J. Opl Res. Soc. 1980, 31, pp. 443-448.

8. C. L. Monma and D. F. Shallcross, Methods for Designing Communications Networks with Two-Connected Survivability Constraints, Oper. Res., 1989, 37, pp. 531-541.

9. G. L. Nemhauser, A Generalized Permanent Label Setting Algorithm for the Shortest Path Between all Nodes J. Math. Analysis & Applic, 1972, 38, pp. 328-334. | MR | Zbl

10. N. J. Nilsson, Problem Solving Methods in Artificial Intelligence, 1971, McGraw-Hill, New York.

11. A. Perko, A Representation of Disjoint Sets with Fast Initialization, Information Processing Lett., 1983, 16, p. 21

12. A. Perko, Implementation of Algorithms for K Shortest Loopless Paths, Networks, 1986, pp. 149-160. | MR | Zbl

13. H. Rudin, On Routing and Delta Routing: a Taxonomy and Performance Comparison of Techniques for Packet-Switched Networks, IEEE Trans. Commun., 1976, COM-24, pp. 43-59.

14. D. M. Topkis, A k Shortest Path Algorithm for Adaptive Routing in Communication Networks, IEEE Trans. Commun., 1988, COM-36, pp. 855-859. | MR | Zbl