New algorithms for maximization of concave functions with box constraints
RAIRO - Operations Research - Recherche Opérationnelle, Tome 26 (1992) no. 3, pp. 209-236.
@article{RO_1992__26_3_209_0,
     author = {Friedlander, A. and Martinez, J. M.},
     title = {New algorithms for maximization of concave functions with box constraints},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {209--236},
     publisher = {EDP-Sciences},
     volume = {26},
     number = {3},
     year = {1992},
     mrnumber = {1179622},
     zbl = {0767.90081},
     language = {en},
     url = {http://www.numdam.org/item/RO_1992__26_3_209_0/}
}
TY  - JOUR
AU  - Friedlander, A.
AU  - Martinez, J. M.
TI  - New algorithms for maximization of concave functions with box constraints
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1992
SP  - 209
EP  - 236
VL  - 26
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/RO_1992__26_3_209_0/
LA  - en
ID  - RO_1992__26_3_209_0
ER  - 
%0 Journal Article
%A Friedlander, A.
%A Martinez, J. M.
%T New algorithms for maximization of concave functions with box constraints
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1992
%P 209-236
%V 26
%N 3
%I EDP-Sciences
%U http://www.numdam.org/item/RO_1992__26_3_209_0/
%G en
%F RO_1992__26_3_209_0
Friedlander, A.; Martinez, J. M. New algorithms for maximization of concave functions with box constraints. RAIRO - Operations Research - Recherche Opérationnelle, Tome 26 (1992) no. 3, pp. 209-236. http://www.numdam.org/item/RO_1992__26_3_209_0/

1. D. P. Bertsekas, Projected Newton Methods for Optimization Problems with Simple Constraints, S.I.A.M. J. Control Optim., 1982, 20, pp. 221-246. | MR | Zbl

2. M. J. Best and K. Ritter, An Effective Algorithm for Quadratic Minimization Problems, M.R.C. Tech Rep 1691, Mathematics Research Center, University of Wisconsin-Madison, 1976.

3. A. Bjorck, A Direct Method for Sparse Least-Squares Problems with Lower and Upper Bounds, Departament of Mathematics, Linköping University, Linköping, Sweden, 1987. | Zbl

4. P. H. Calamai, and J. J. Moré, Projected Gradient Methods for Linearly Constrained Problems, Math. Programming, 1987, 39, pp. 93-116. | MR | Zbl

5. J. Cea and R. Glowinski, Sur des Méthodes d'optimisation par relaxation, R.A.I.R.O., 1983, R-3, pp. 5-32. | Numdam | Zbl

6. R. S. Dembo and U. Tulowitzki, On the Minimization of Quadratic Functions Subject to Box Constraints, Working Paper Series B71, School of Organization and Management, Yale University, New Haven, 1987.

7. J. E. Dennis and R. S. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, NJ, 1983. | MR | Zbl

8. R. Fletcher, Practical Methods of Optimization, 2nd Edition, Wiley, 1987. | MR | Zbl

9. A. Friedlander, C. Lyra, H. Tavares and E. L. Medina, Optimizaton with S tair-Case Structure: an Application to Generation Scheduling, Comput. Oper. Res., 1990, 17, pp. 143-152. | MR | Zbl

10. A. Friedlander and J. M. Martinez, On the Numerical Solution of Bound Constrained Optimization Problems, R.A.I.R.O. Oper. Res., 1989, 23, pp. 319-341. | Numdam | MR | Zbl

11. P. E. Gill and W. Murray, Minimization Subject to Bounds on the Variables, N.P.L. report NAC 72, National Physical Laboratory, Teddington, 1976.

12. P. E. Gill and W. Murray, Numerically Stable Methods for Quadratic Programming, Math. Programming, 1978, 14, pp. 349-372. | MR | Zbl

13. P. E. Gill, W. Murray and M. Wright, Practical Optimization, Academic Press, London, New York, 1981. | MR | Zbl

14. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New York, 1984. | MR | Zbl

15. A. A. Goldstein, Convex Programming in Hubert Space, Bull. Amer. Math. Soc., 1964, 70, pp. 709-710. | MR | Zbl

16. H. S. Gomes and J. M. Martínez, A Numerically Stable Reduced-Gradient Type Algorithm for Solving Large-Scale Linearly Constrained Minimization Problems, Comput. Oper. Res., 1991, 18, pp. 17-31. | MR | Zbl

17. G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins, University Press, Baltimore, 1983. | MR | Zbl

18. G. T. Herman, Image Reconstruction from Projections: The Fundamental of Computerized Tomography, Academic Press, New York, 1980. | MR | Zbl

19. E. S. Levitin and B. T. Polyak, Constrained Minimization Problems, U.S.S.R. Comput. Math.-Math. Phys., 1966, 6, pp. 1-50.

20. P. Lótstedt, Solving the Minimal Least Squares Problems Subject to Bounds on the Variables, B.I.T., 1984, 24, pp. 206-224. | MR | Zbl

21. C. Lyra, A. Friedlander and J. C. Geromel, Coordenação da operação energética no médio São Francisco por um método de gradiente reduzido, Mat. Apl. Comput., 1982, 1, pp. 107-120.

22. J. J. Moré, Numerical solution of bound constrained problems, A.N.L./M.C.S.-TM-96, Math. and Comp. Sci. Div., Argonne National Laboratory, Argonne, Illinois, 1987. | MR | Zbl

23. J. J. Moré and G. Toraldo, Algorithms for Bound Constrained Quadratic Programming Problems, Numer. Math., 1989, 55, pp. 377-400. | MR | Zbl

24. J. J. Moré and G. Toraldo, On the solution of Large Quadratic Programming Problems with Bound Constraints, S.I.A.M. J. Optim., 1991, 7, pp.93-113. | MR | Zbl

25. B. A. Murtagh and M. A. Saunders, Large-Scale Linearly Constrained Optimization, Math. Programming, 1978, 14, pp. 41-72. | MR | Zbl

26. R. H. Nickel and J. W. Tolle, A Sparse Sequential Quadratic Programming Algorithm, J.O.T.A., 1989, 60, pp. 453-473. | MR | Zbl

27. D. P. O'Leary, A Generalized Conjugate Gradient Algorithm for Solving a Class of Quadratic Programming Problems, Linear Algebra Appl., 1980, 34, pp. 371-399. | MR | Zbl

28. B. T. Polyak, The Conjugate Gradient Method in Extremal Problems, U.S.S.R.Comput. Math. and Math. Phys., 1969, 9, pp. 94-112 | Zbl