@article{RO_1988__22_1_27_0, author = {Campello, Ruy E. and Maculan, Nelson}, title = {An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {27--32}, publisher = {EDP-Sciences}, volume = {22}, number = {1}, year = {1988}, mrnumber = {943104}, zbl = {0662.90052}, language = {en}, url = {http://www.numdam.org/item/RO_1988__22_1_27_0/} }
TY - JOUR AU - Campello, Ruy E. AU - Maculan, Nelson TI - An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 1988 SP - 27 EP - 32 VL - 22 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/item/RO_1988__22_1_27_0/ LA - en ID - RO_1988__22_1_27_0 ER -
%0 Journal Article %A Campello, Ruy E. %A Maculan, Nelson %T An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints %J RAIRO - Operations Research - Recherche Opérationnelle %D 1988 %P 27-32 %V 22 %N 1 %I EDP-Sciences %U http://www.numdam.org/item/RO_1988__22_1_27_0/ %G en %F RO_1988__22_1_27_0
Campello, Ruy E.; Maculan, Nelson. An $0 (n^3)$ worst case bounded special $LP$ knapsack $(0-1)$ with two constraints. RAIRO - Operations Research - Recherche Opérationnelle, Tome 22 (1988) no. 1, pp. 27-32. http://www.numdam.org/item/RO_1988__22_1_27_0/
1. A Lower Bound to the Set Partitioning Problem with Side Constraints, DRC-70-20-3, Design Research Center Report Series, Carnegie-Mellon University, Pittsburg, Pennylvania, 15213, U.S.A., 1983.
and ,2. Exact Methods for the Knapsack Problem and its Generalizations, European Journal of Operational Research (EJOR), Vol. 28, No. 1, 1987, pp. 3-21. | MR | Zbl
and ,3. A Geometric Approach to Two-Constraint Linear Programs with Generalized Upper Bounds, Advances in Computing Research, Vol. 1, 1983, pp. 79-90, JAI Press.
,4. An O (n) Algorithm for the Multiple-Choice Knapsack Linear Program, Mathematical Programming, Vol. 29, No. 1, 1984, pp. 57-63. | MR | Zbl
,5. A Note on the Knapsack Problem with Special Ordered Sets, Operations Research Letters, Vol 1, No. 1, 1981, pp. 18-22. | MR | Zbl
and ,6. Finding the Intersection of Two Convex Polyhedra, Theoretical Computer Sciences, Vol. 7, 1978, pp. 217-238. | MR | Zbl
and ,7. Convex Analysis, Princeton University Press, Princeton, N.J., U.S.A., 1970. | MR | Zbl
,8. The Linear Multiple Choice Knapsack Problem, Operations Research, Vol. 28, No. 6, November-December, 1980, pp. 1412-1423. | MR | Zbl
,