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OPTIMAL TOUR PLANNING
WITH SPECIFIED NODES (*)

by Gilbert LAPORTE (*), Hélène MERCURE (*)
and Yves NOBERT (2)

Abstract. — TTiis paper considers the problem of determining the shortest circuit or cycle in a
graph containing n nodes and such thaï (i) each of k nodes (k^n) is visited exactly once; (ii) each
ofthe remaining n-k nodes is visited at most once. A branch and bound algorithm for this problem
is described. Results are presented for problems involving up to 200 nodes in the asymmetrical case
and up to 80 nodes in the symmetrical case.

Keywords: Travelling salesman problem; specified nodes; branch and bound.

Résumé. — On considère le problème consistant à déterminer le circuit ou cycle le plus court
dans un graphe contenant n nœuds et de telle sorte que (i) k nœuds (k^n) soient visités chacun une
et une seule fois; (ii) chacun des n-k nœuds restants soit visité au plus une fois. On décrit un
algorithme de « branch and bound » pour ce problème et on présente des résultats numériques pour
des problèmes asymétriques contenant jusqu'à 200 nœuds et des problèmes symétriques contenant
jusqu'à 80 nœuds.

Mots clés : Problème du voyageur de commerce; nœuds spécifiés; « branch and bound ».

1. INTRODUCTION

In its most common interprétation, the travelling salesman problem (TSP)
consists of determining the shortest route for a salesman wishing to visit each
of n cities once and only once [3]. Over the last three decades, this problem
has attracted the attention of several operational researchers and has led to
some significant developments in the O.R. field [6]. It is well known however
that in its pure form, the TSP seldom fits the routing problems really
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encountered by salesmen since in practice, some of the restrictions of the
TSP may be lifted (see for example [11]) while extra constraints may have to
be incorporated (see for example [8, 10]).

The following problem studied by Saksena and Kumar [13], Dreyfus [4]
and Ibaraki [7] applies to situations where only a subset of the n cities have
to be visited by the salesman. More specifically, let N = { 1, . . . , n} be a set
of nodes (cities), K= { 1, . . ., k } (k ̂  n) a set of "specified" nodes (i. e. those
requiring a visit) and C — (ctj) a non-negative distance matrix defined on N1.
Each pair (i, j) defines an arc from i toj.

We wish to détermine the shortest circuit passing through each node of K
exactly once; we shall refer to this problem as the STSP (TSP with specified
nodes). As was shown in [9], the difficulty of the problem dépends largely on
the nature of C and on the degree imposed on nodes in N—K:

(i) if C satisfies the triangle inequality (i. e. if Cij^cik+ckj (i,j, keN))9 the
STSP always reduces to:

— a TSP on N if the degree of nodes in N—K equals 2 (trivially) or if it
is greater than or equal to 2. This last case can be explained as follows.
Consider a node j in N—K and assume the degree of j must be greater than
or equal to 2 in the optimal solution. Any feasible solution can be represented
by a séquence of nodes in which j appears t times ( t^ l ) , i. e. it contains t
subsequences of the form (ih j , k{) where /= 1, . . ., t. AH but one of these
subsequences can be replaced by (*„ kt) since ciL/-hcJk|^ci|Jt|. Thus, ail degrees
will be equal to 2 in the optimal solution ;

— a TSP on K if the degree of nodes in N—K is less than or equal to 2
or unspecified. Indeed, all nodes ; of N—K can be eliminated by using the
same argument as above. Therefore the problem présents little interest in this
case.

(ii) if C does not satisfy the triangle inequality, three cases can be disregar-
ded:

— the case where ail nodes of N have a degree of 2 corresponds to a TSP
on N and need not be considered ;

— the case where ail nodes of N—K must have a degree at least equal
to 2 is similar to the shortest complete cycle problem treated in [11] ;

— when the degrees of nodes in N—K are left unspecified, it suffices to
solve a TSP on K where each ctj is replaced by the shortest distance between
rand j (see [4]).

The only remaining case is that where C does not satisfy the triangle
inequality and where the degrees of nodes in N—K must be at most 2. This
short note présents an efficient algorithm for the solution of this problem.

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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2. IBAR AKPS APPROACH

The problem considered by Saksena and Kumar [13], Dreyfus [4] and
Ibaraki [7] is that of determining the shortest path between a source and a
sink, passing through a set of specified nodes exactly once and through the
other nodes at most once. It can be shown that this problem is very similar
to the STSP treated in this paper.

The following formulation for the STSP can be derived from Ibaraki's
paper: let us define a binary variable xtj as follows:

(i) if Mj, xtj indicates the présence ( x o = l ) or the absence (xy = 0) of an
arc from node i to node j in the optimal solution ;

(ii) if i=7, xu indicates whether node i is used (xfl = 0) or not (xü — l) in
the optimal solution.

The problem is then to:

n n

(P) minimize £ £ ci}xij9

subject to:

n

(1) E*u=l OeN),

(2) E ^ = l (ieN),

*, JeS

(4) x ^ O or 1

In this formulation, cu is set equal to:

(i) Oif ieN-K;

(ii) an arbitrarily large number M if ieK.

This ensures that xu will be equal to zero if ieK; therefore ail nodes
belonging to K will be used in the optimal solution.

Constraints (1), (2) and (4) require no explanations. Constraints (3) are
imposed in order to eliminate illégal subtours. As in the case of the TSP [3],
illégal subtours involving | S | nodes are eliminated by specifying that there
may be at most \S\-l arcs linking nodes of S in the optimal solution. In
the STSP, illégal subtours are those which contain some but not ail nodes of
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K since the optimal tour must contain all nodes of K On the other hand, it
is not necessary to consider cases where S C\ K > 0 since it is never advanta-
geous (in tenns of the objective fonction) to produce subtours disconnected
from K Thus, the optimal solution will contain only one subtour involving
ail nodes of K and possibly some of N—K

It can be seen that:
(i) if K- 0» (i e. constraints (3) are removed), (P) reduces to an assignment

problem for which there exist efficient algorithms [1] ;
(ii) if JK> JV, this formulation is identical to that of the asymmetrical TSF

($ee [3] for example) ;
(iii) otherwise, the difficulty of the STSP should lie somewhere between

that of the assignment problem and that of the TSE
It is easy to solve (P) without resorting to the simplex method. Indeed,

the relaxed problem containing only constraints (1) and (2) is an assignment
problem. Constraints (3) and (4) can be handled by fixing some x(/s at 0
or 1 in a branch and bound tree. This is the essence of Shapiro's method for
the TSP [14] later used by Ibaraki for the STSP. It can be summarized as
follows.

(i) At each node h of the search tree, we define Ehi the set of arcs excluded
from the solution (at the first node of the tree, Eh=0). An assignment
problem constrained by Eh is solved,

(ii) Consider the subtours contained in the solution at node ft. If there is
only one subtour, it consütutes a feasible solution and a backtracking proce-
dure is applied, Otherwise, consider the subtour with the minimum number
of arcs. This subtour is characterized by a set of nodes {rl9. ..» rm} and a
set of arcs {(ru r2), > . . , (rm, r t )} . To the descendant nodes j from node h
are associated the following sets of excluded arcs:

where rm^t^rv

(iii) Branching is always made on the pending node having the least lower
bound for the problem.

(iv) The procedure ends when all branches of the tree have been explored»
according to the usual branch and bound rules.

Ibaraki reports computational results for a limited number of randomly
generated problems involving 21 and 31 nodes, on the Kyoto University
FACOM 230-60 computer. The assignment problems were solved by means
of Munkres' algorithm [12].

R.AJ tItO. Recherche opératioönelïe/Operations Research
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3. AN IMPROVED ALGORITHM FOR THE STSP

The main attraction of this algorithm lies in the fact that at each node of
the search tree, the problem solved is an assignaient problem, and therefore»
the solution remains integer during the whole process. Furthermore, when
applied to the STSP, the algorithm really exploits the fact that the problem
is a relaxation of the TSP, as fewer subtours than in the TSP need to be
branched upon«

However, Ibarakfs results can be improved by taking advantage of recent
developments in the construction of algorithms for the assignment problem
[1] and for the TSP (see for example [2]). Further, we feel that additional
computational tests are required to validate the suggested approach.

In their paper on the TSP, Carpaneto and Toth demonstrate that Shapiro*s
algorithm can be vastly improved by using a more efficient algorithm for the
assignment problem [1] and by modifying the rule for generating subproblems.
They use the partitioning scheme proposed by Garfinkel [5] to which they
add a refinement At each node h of the tree, Eh is defined as above and Ih

is the set of all arcs included ïn the solution (at the first node of the tree,
Ih^0)t Branching is made from the subtour with the minimum number of
arcs not included in Ih (as opposed to the subtour with the minimum number
of arcs as in [14] and in [5]). Ej is defined as in [14] and Ij as in [5]:

J \hU{(rr): u=lJ-l) if

The overall effect of this strategy is to drastically reduce the number of
nodes in the search tree, The authors report results for TSFs ranging from
40 to 240 nodes.

We therefore suggest applying a similar approach to the STSR i e* we use
the same relaxation as Ibaraki but the approach developed by Carpaneto
and Toth for the solution of the assignment problems and for génération of
the subproblems.

4 COMPUTATIONAL HESULTS

It is now well known that the computational performance of subtour
élimination algorithms such as tbose described by Shapiro [14] and by Carpa-
neto and Toth [2] varies greatly according to whether C is symmetrical (i.e.
% = c i * f o r a U hjeN) ot not In the first case, this type of approach is less
efficient since a large number of subtours involving only two nodes are

vol 18» n° 3, août Î984
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generated and have to bc eîimmated ; tïiis phenomenon is f ar lass frequent in
asymmetrical problème We have tested tbe algorithin GB both types of
problème

The atgorithm was filrst tested on a series of asymmetrical problems ranging
froin 80 to 200 nodes. The cM*$ fór these problems werc raîîdoiï>îy generaled
from a uniform distribution on [(MOOJ. For each value of a, t was mccçmvoly
set at n/4, n/2, 3 n/4 and ». Five probfems of each type wens solved; table I
reporta average values. AH profeScms were solvcd on the Umiverstty of
Montréal Cyber 173 computer, usîng an FTN4 compïter Memory apï>ears
to be the main factor limiting the stee of the ïargest problems which could
be soigna by the aigorithm: all problème mvolvmg no more than 200 aodss
coald be soïved withm 20 seconds; howwiy problème contaming more than
200 nodes required more than the maximum memory aiiowed
<200000a words).

For a given value n, we observe that the time required to soive the probtem
is not monotonie with respect to k: tfeere appears to be a peak at about n/2
and a trough at 3 n/4, (The p^ak was noted by ïbamki [7], but not the

R&mttxfor asymmetriad problème

™-™ —™~

n
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m

160
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Time
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Aï*
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Time
AP
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Time
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Jt^ft/4

Ï.65
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U.4
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832
24.8
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2.6

3,52
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15.4
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15,31
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: mimbcr of $ubprobfcm$ iöiölcd is tb# quciw (see
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trough*) These results were confirmed by solving several small problems
(n*20 and 30) with ail values of k from 1 to n.

The algorithm was also tested on symmetrical problems not satisfying the
triangle inequality. These were generated as in the asymmetrical case with
the additional requirement that Cy-c^. As expected, a very large aumber of
subtours involving only two nodes were observed, leading to excessive
memory requirements ; computation times were also larger than in the asym-
metrical cases but in gênerai better than those reported in an earlier paper
on the symmetrical STSP[9]. Results for problems ranging from 20 to
80 dties are reported in table IL

TABLE II

Results for symmetrical problems
[average values oo the number of successful problems out of 5 (l)J

n

20

40 <

60 ;

80

Time
APf)
Q O

Nodes (*)

Time
AP
Q

Nodes

Time
AP
Q

Nodes
Time
AP
Q

Nodes

k^n/5

0.09
6.8
4.0
3.8

0.50
18+2
10.6
10.4

191
49,6
27,2
25,4

14.8
145.2
85.6
77.0

k^ZnfS

0.19
10.2
6A
5.8

4.07
79.2
53.0
39.2

23.62
203.0
140.0
103.2

(0)

* = 3n/5

0.54
25.2
19.0
13.4

23.72
390.6
226.8
197.8

(Ö)

(0)

fc*=4»/5

1.81
77,2
45,0
38.6

21.65(4)
315.2
256.5
162.0

(0)

(0)

456
179.6
106.4
88.6

(0)

(0)

(0)

(l) Whencver the number oî successful problems is îess thon 5, Ùûs k mdicated in brackets,
{ ) AP: number of assignmcnt problems solved.
(3) Q: number of subproblems inserted in the queue (see [2]).
(4) Nodes: number of nodes explored in the branch and bound tree.
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