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ON THE APPLICATION OF PARALLEL ARCHITECTURES
TO A CLASS OF OPERATIONS RESEARCH PROBLEMS (*)

by Amitava DUTTA (*), Howard J. SIEGEL (2) and Andrew B. WHINSTON (3) (+)

Abstract. — There has been considérable interest in developing efficient algorithmsfor Opérations
Research problems. While the efficiency of the algorithm is an important variable in the efficient use of
the algorithm, another equally important variable, in our opinion, is the machine architecture on which
the algorithm is implemented. Benefits of special architectures have already been recognized in other

functional areas. More importantly, these architectures are now technologicallyfeasible. In this paper,
a special architecture is developedfor a class of Opérations Research problems. The objective is to
demonstrate thefeasibility and po tential benefits ofsuch an endeavor, rather than présentation ofafully
detailed design for évaluation. To this end, the building blocks used to design the system are well
established ones. Estimâtes of improvement in performance over traditional uniprocessor Systems are
presented. Close interaction between specialists in the area of Opérations Research and computer
architecture will be requiredfor efficient implementation of such architectures.

Keywords: Parallel Processing; Décomposition Algorithms; Interconnection Network; and
SIMD Machine.

Résumé. — On s'est toujours attaché à développer des algorithmes efficaces pour la Recherche
Opérationnelle. L'efficacité d'un algorithme est, bien entendu, un critère important; il est un autre
critère qui est, à notre avis, aussi important que le précédent : il s'agit de V architecture de la machine sur
laquelle l'algorithme est implanté. Les avantages dus à des architectures spéciales ont déjà été reconnus
dans d'autres domaines. Plus important encore, ces architectures sont maintenant techniquement
réalisables. Dans cet article, nous développons une architecture spéciale pour une classe de problèmes de
Recherche Opérationnelle. Notre objectif est de démontrer la faisabilité et les avantages dune telle
entreprise plutôt que de présenter unprojet détaillé en vue dune évaluation. A cettefin, les blocs utilisés
pour construire le système sont des blocs bien établis. Nous présentons des estimations de Vamélioration
des performances par rapport à des monoprocesseurs traditionnels. Vimplémentation efficace de ce type
d'architecture requerra une étroite collaboration entre spécialistes de la Recherche Opérationnelle et
spécialistes de l'architecture des ordinateurs.

1. INTRODUCTION

The discipline of Opérations Research has. long been concerned with the
development of various mathematical models and efficient algorithms for their
satisfactory solution. A substantial number of these algorithms are
computationally feasible today simply because of the availability of high speed
digital computers. For example, a lot of algorithms that employ branch and
bound techniques, or dynamic programming techniques would be practically
unusable were it not for digital computers. An important aspect of the efficient
implementation of such algorithms is the efficiency of the algorithm itself. This
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318 A. DUTTA, H. J. SIEGEL, A. B. WHINSTON

concern is amply evident in the continuous efforts of researchers to deveîop
better algorithms. An equally important aspect, in our opinion, is the
architecture of the machine on which the algorithm is implemented. While the
gênerai purpose machine (uniprocessor) may be capable of executing the
algorithm, alternative architectures may offer substantial improvements in
performance. This fact has already been recognized in certain application areas,
as for example, in the area of image processing [16, 22] and missile tracking [6].

There appears to be little work done on special architectures suited to
opérations research problems. We hope to call attention to the interesting
possibilités offered by special architectures by developing one for a class of
opérations research problems. Before proceeding with the development, a few
words regarding the gênerai objectives of the paper are in order.

Our immédiate objective is to expose the benefits of a special architecture to a
class of opérations research problems. The long term objective of course is to
stimulate the development of special architectures for other classes of problems
in thefield. No attempt has been made to "fine tune" the architecture to exploit
intricate properties of problems in the class we have investigated. Such an effort
needs considérable interaction between hardware specialists and experts in the
opérations research area. Thus, in reading the paper, it should be kept in mind
that we are not presenting a fully developed System for évaluation. However, the
potential for special architectures in this area should strike the reader.
Refmements to the system will be the subject of further work.

2. THE LINEAR PROGRAMMING PROBLEM

We have chosen probably one of the simplest and most widely used models in
opérations research —namely linear programming(LP). It has been in use for a
long time and there are well established techniques, most notably the Simplex
method, for its solution. Since the LP problem is being used only as an example
of a target applications area that could profit from special architectures, the
discussion in this section is tutorial in nature. Any elaborate treatment of the
LP problem here would probably be of interest only to linear programming
specialists. The basic problem may be stated as:

maximize cx xx + c2 x2 + , . . . , -f cn xn,

subject to axix1+a12x2+ . . . +alnxn^bl9

a21xx+a22x2 + • • • +a2nxn^b2,

xl9x29 . . . , xn^0.
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PARALLEL ARCHITECTURES AND OPERATIONS RESEARCH 319

Using the more compact vector and matrix notations, the problem may be
written as:

maximize c'x,

subject to

where:

— \ cl> C2> X =

— X

- : M J :
Lamlam2...amnJ [_b J

The simplex method for solving this problem is well known and will not be
repeated hère. For details see[$\. A program for executing the simplex method
on a parallel processor will be developed later in the paper. The marked
improvement in solution time will then be readily seen.

Consider a class of LP problems that exhibit a special structure.

The practical problems in this class are typically very large, i. e., a large
number of variables, and a large number of constraints. The constraint matrix
has a few, so called, coupling constraints. The rest of the matrix displays a block
angular structure.

The problem assumes the following form:

maximize clxl+c1x2 +, . . . , +cnxni

subject to flii*i +

api*i

+ <*!«*« m Few
coupling
constraints

B2x2

'p+i

K J
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320 A. DUTTA, H. J. SIEGEL, A. B. WHINSTON

Partitioning the vectors cs x, bs and the coupling constraints appropriately, the
above problem can be rewritten in gênerai, in matrix notation as follows:

maxnmze c1x1 + c2x2 + c3x3+ . . . + cpxpi

subject to A1x1+A2x2 + A3x3-\- . . .

x3, . . . , xp}, b= 01
Matrices Au A2, A$, A4 ail have the same number of rows, this number being

equal to the number of coupling constraints. The number of columns in the
matrices will not necessarily be the same, depending on how the variables have
been partitioned to match the block angular structure. Of course, this notation
can easily be extended to the case withp blocks in the block angular structure.

At first glance, this structure appears to be special enough not to appear
frequently in practice. However, many transportation problems have this
forai [29]. More importantly, this form of the LP problem arises when several
departments are independently trying to optimize that portion of the objective
function relevant to itself while using resources that are also needed by other
departments. A central authority would like to impute certain prices to these
shared resources so that the departments use the shared resources in quantities
that maximize the total objective of the firm as a whole [10, 13].

The coupling constraints represent the constraint relations pertaining to
shared resources. The matrices Bt and vectors bh 1 ̂ / ^ p , represent constraints
that affect only one particular department. The décision variables for the *'-th
department are contained in the vector xt.

This LP problem in block angular form can be solved by the well known
Dantzig-Wolfe décomposition aigorithm [9], and the reader is referred to [11],
pp. 148-152 for mathematical details. Hère, we choose to describe informally,
the nature of the aigorithm, to see how it could benefit from parallelism. The
aigorithm is two level with a "master program*9 at the second level and
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PARALLEL ARCHITECTURES AND OPERATIONS RESEARCH 321

subproblems at the first. Each subproblem is of the form (see preceding
formulation):

Minimize {ci — %lA^)xï.

Such that Btx~Si9

where %i is a vector of imputed prices handed down to each subproblem by the
master problem, Each subproblem arrives at optimal values for its décision
variables Xi(nx) and objective function z?s and returns these values to the master
problem. At this stage, the master problem checks appropriate criteria (again,
see [11]) to see if has an optimal solution, ötherwise a new vector of imputed
prices is computed and returned to the subproblems. The process repeats itself,
and, if the master program is not degenerate, the décomposition principle will
fmd the optimum in a fmite number of itérations.

The subproblems to be solved are independent in that they do not need any
information from each other, Hence their solution could logically proceed in
parallel This parallelism in itself would cause an improvement in the solution
time. Each subproblem is an LP. It was mentioned sometime earlier that the
ordinary LP problem could be solved on a parallel processor with improvement
in solution time. Thus, in addition to solving the subproblems in parallel, each
subproblem is solved on a parallel processor with attendant time savings. Thus
the basic strategy is to solve the subproblems in parallel and parallelize the
solution of each subproblem as much as possible. In the next section, a brief
introduction to a class of parallel processors is presented. An architecture of a
parallel processor which facilitâtes solution of the problem follows. Estimâtes of
improvements in solution time are presented.

3. PARALLEL PROCESSING

A class of parallel processing machines is the SIMD {Single Instruction
Stream Multiple Data Stream) machines [2, 4]. A genera! SIMD architecture is
shown in Fig. 3.1.

The PE's stand for processing éléments. There are P> 1 processing éléments.
Each PE has arithmetic and logical capabilities, Proci3 and has its own memory
Mem£ (Processing Element Memory). All PE*s are identical. The control unit
(CU) drives the PE's in a synchronous fashion by feeding all PE's the same
instruction at one time. The enabled PE's apply that instruction to their
individual data streams. There are masking schemes to disable particular
processors as and when necessary, The interconnection network allows PE's to
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322 A. DUTTA, H. J. SIEGEL, A. B. WHINSTON

transfer data among themselves. Each PE transfers data through its data transfer
register (DTR). Various interconnections networks have been proposed. For
detailed analysis of their relative capabilities, see [17, 18, 19].

Single
Instruction N
Stream j

CONTROL
UNÎT

Multiple
Data Stream

PE,

Proco

Mem0

Proc!

Menij MemP_i

INTERCONNECTION NETWORK

Fig. 3 . 1 . - Architecture of an S1MD machine

The ILLIAC machine [2, 5] is an example of an SIMD machine. PEPE [7] is
another. SIMD machines, in fact any parallel processor, involve considérable
hardware and development costs. Adequate applications must be found to make
these machines economically viable. PEPE is designed for missile tracking
applications [6], and ILLIAC for weather forecasting. Architectures for image
processing applications have been proposed in [16, 22].

3 .1 . Skewed storage

A technique for storing matrices in such SIMD machines that is of particular
importance to us is the skewed storage technique. Consider an 8 by 8 matrix. In
skewed storage format, the matrix would be stored as shown in the memory map
of Fig. 3.2. In Fig. 3.2, each column is the memory associated with the PE
marked above it. Each cell corresponds to a memory unit (word, byte, etc.).

rowo

PE0

0,0

2,6
3,5
4,4
5,3
6J
7,1

PE,

0.1
1,0
2,7
3,6
4,5
5,4
6,3
7,2

PE2

0,2
1.1
2,0
3,7
4,6
5,5
6,4
7,3

PE3

0,3
1,2
2,1
3,0
4,7
5,6
6,5
7,4

PE4

0,4
1,3
2.2
3,1
4,0
5,7
6,6
7,5

PE5

0,5
1,4
2,3
3,2
4,1
5,0
6,7
7,6

PE6

0,6
1,5
2,4
3,3
4,2
5,1
6,0
7,7

PE7

0,7
1,6
2,5
3,4
4,3
5,2
6,1
7,0 row7

Fig. 3.2. - An 8 by 8 Matrix in Skewed Storage.
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With this storage technique, any row and any column of the matrix can be
loaded into the eight processors in parallel. Entry (i,j) in a cell in Fig. 3.2
signifies that the value corresponding to row^ and column^ of the matrix is stored
in that cell.

E. g., (i) To load row 3 (note that rows are numbered starting from zero)., PEfc

loads cell 3 into its DTR (the memory cells of each PE are also numbered from
zero to seven). Then each PEfc transfers the contents of its DTR to PE(/fc_3)ModP

where P is the number of processors. This is a uniform inter PE shift and is
discussed in more detail in section 6.4. In gênerai, to load row r, each PEk loads
its r-th cell and shifts its data to PE(fc„r)ModP.

(ii) To load column 4, PEk loads cell (A; + 4)Mod P into its DTR. It then
transfers the contents of its DTR to PEu_4)ModP. In gênerai, to load column c,
PEk loads cell (A:+c)Mod P into its DTR and then transfers that data to
PE(*-c) Mod p. For a gênerai description see [26]. It is important to point out that
the transfer from PE* to PE(k_c)ModP is done in parallel (simultaneously) for
t = 0, 1 P-l. This should become clear in section 6.4.

3.2. Recursive doubling

Another useful technique used often with SIMD machines is recursive
doubling. Consider finding the minimum of N numbers. On a uniprocessor, one
would exécute JV— 1 paired comparisons, retaining the smallest number at each
stage and obtain the smallest of the N numbers. Assuming each comparison

PE

PE

PE

PE

Step 1 Step 2

Figure 3.3. - Recursive Doubling.
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324 A. DUTTA, H. J. SIEGEL, A. B. WHINSTON

takes one time unit, the sequential process takes IV — 1 time units. The recursive
doubling can be best described by an example. Consider fmding the minimum of
8 numbers. Figure 3.3 describes the process graphicaliy.

In Step 1, the following pairs of PE's simultaneously make comparisons
-[{0, 1}, {2, 3}, {4, 5}, {6, 7}]. PE's {0s 2, 4, 6} contain the minimum
values of the respective comparisons.

In Step 2 the following pairs make comparisons [{0, 2} {4S 6}].
Subsequently, at the end of step 35 PE0 contains the minimum of the eight
numbers. Thus, recursive doubling required three time units. In gênerai, for N
number s, [log2 N] time units are required as compared to N — 1 time units using
the sequential technique. If N is not a power of two, some dummy numbers can
be 'padded up' to obtain a power of two as needed by recursive doubling. As N
increases to practical values (say 100) the savings in the number of steps is
substantial. (For N=100, 7 steps are needed with recursive doubling as
compared to 99 steps sequentially.) The recursive doubling technique also
requires some data transfers which dégrades performance somewhat. However,
many existing and proposed interconnection networks can do the data transfers
required at each step of the recursive doubling process in one move [3, 12, 15].

4. EXECUTING THE SIMPLEX METHOD ON AN SIMD MACHINE

A standard form of the simplex tableau is shown in Figure 4.1. There are
several variants of this tableau. This method was chosen simply for expository
purposes.

coL

C B - C É B " 1 B

B ' B

N -
columns

M rows

•rowo

Figure 4 . 1 . - The Simplex Tableau.

Starting with an initial feasible solution, the solution is obtained as a séquence
of pivot opérations. The tableau is assumed stored in the PE's of the SIMD
machine in skewed storage format [26]. Skewed storage allows the retrieval of an
entire row or an en tire column of the tableau in parallel. The architecture of
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Figure 3.1 is assumed. Assume for the moment that the number of colums in the
tableau is less than or equal to the number of PE's. Techniques for wrapping
around' the tableau do exist for the not unlikely case of the number of columns
being greater than the number of PE's,

In Figure 4.1, row0 of the tableau contains the current value of the objective
function and the reduced costs. Column0 includes the objective fonction value
CBB~"lb and the values of basic variables (£"1 b). A flow chart of the simplex
procedure is given for convenience in Figure 4.2.

Start with
initia! feasibte

solution

check aM reduced
costs in rowQ and find

min, reduced cost

choosecolumn j '
correspondmg to most
négative reduced cost

compute ratios ot éléments
of B b and column j * .

choose i * the row with
Ie ast positive ratio

pivot about that element
& update Tableau

Fig. 4*2. - Flowhart of the Simplex Method.

In-Figure 4.2, the opération of pivoting brings column j* into the basis,
A high level "program" for running this on an SIMD machine h given in the

next section.

4 . 1 . A Parallel program for the simplex method

An explanation of the symbols used in the program follows, The symbols have
been divided into three groups. The first group refers to hardware components of
the parallel processor. The second group describes variables and the third group
explains the opérations. It must be emphasised that we are not attempting to list
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326 A. DUTTA, H. J. SIEGEL, A. B. WHINSTON

ail hardware components or thefull repertoire of instructions of a typical parallel
processor. The descriptions are intended only as an aid to following the
subséquent procedure.

(i) Hardware components:

PE : A processing element, consisting of a processor and its associated
memory. Each PE has, among other components, the following three
components of interest for our purposes.

DTR : Data transfer register. This register is the only one linked to the
interconnection network. To transfer data to/from a PE, the data item must be
in the DTR of the PE.

A : A privileged register. Most arithmetic opérations incolve this register.
Further, any data loaded from a PE's memory must be loaded first into A.

B : A genera! purpose register.

(ii) Variables :
Variables in an SIMD machine can be of two types. One is the PE variable. lts

value is local to every PE. The other is a CU (Control Unit) variable. This
variable résides in the CU and may be broadcast to all PE's in parallel. This is the
usual method of transmitting constant values to PE's.

PEN : PE number. This is the address of a PE. If there are P processors, they
are numbered 0 to P — 1.

DIV, JSTAR, ISTAR SCALE, MIN :
These are CU variables. DIV holds the value of the pivot element; JSTAR,

ISTAR are the column and row number, respectively, of the pivot element. MIN
holds the minimum value of some comparisons.

SCALE holds a common multiplier used in updating the coefficient matrix
using the pivot element.

(iii) Opérations:

«- : Assignment. The quantity on the right is assigned to the variable to the
left of the arrow. Recall that every opération is done in parallel by each PE unless
otherwise modified by a mask as described below.

[Mask] : Normally, all PE's exécute any instruction handed down by the CU.
The masking opération sélects some PE's to perform an opération. Such PE's
are said to be active. Theoretically, every opération could be accompanied by a
mask. There are various représentations of masks [17]. When an opération is
accompanied by a mask, only PE's whose address (PEN) matches the mask will
exécute that instruction.

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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x Mod P : x modulo P = x-P*\ — .

Shiftx : This is an inter PE data transfer between the A registers via the DTR's
and interconnection network. This opération causes PEf to transfer its data to
PE(i + Jc)ModF where P is the numberofprocessors.lt must be emphasized that all
PE's can do this at the same time due to the nature of the interconnexion
network. This should be evident in section 6.
WHERE (Logical expression) DO;

END;
: This is a data conditional opération. Initially, all active PE's evaluate the

logical expression using their individual data streams. Those PE's among this
active set, where the expression évaluâtes to false, are deactivated. Only the
remaining active PE's exécute the subséquent DO; . . . END; block. This is a
standard construction in languages for parallel processors [1, 25].

R,D. Comp itoj : PE's i' tojperform recursive doubling as described in section
3.2. The numbers to be compared, réside in the A registers of PE's / to ƒ The
minimum value appearing as a resuit of the recursive doubling process is
contained in the DTR of PE .̂ It is assumed that ij and.that7 — i +1 is a power of
two or the data is padded up.

IF (Logical expression) THEN...;:
The control unit évaluâtes the expression. If it évaluâtes to true, the THEN

block is broadcast to the PE's. This is a standard IF-THEN statement.
/*Comment */ : Explanatory comments explaining particular steps.

Referring to Figure 4.1, there are N + 1 coiumns and M +1 rows in the tableau.
Assume N+1 > M + 1 and further that N+1 is a power of two. Should N +1
not be a power of two, assume that there are 2r PE's where 2r~1 <N +1 <2r.
These assumptions are made in the interest of simplicity. Section 4.2 discusses
the realistic possibility of having too big a tableau. The parallel program now
follows. Since by assumption, P (the number of processors) = iV+ 1, they are
numbered O to N.

/* Step 1. Find the minimum reduced cost */.
A <- ro w0 [PE's O to N] ; / * Each PE loads its element of row0 into its register A*/
R.D. Comp [1 to N];/* Find the minimum Value */.
B <- DTRfPEJ; /* Save the minimum Value */
IF (B£0) [PEJ THEN STOP;

/* All reduced costs are non négative. So stop */
MINv-DTR[PEJ;
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WHERE 04 = MIN) DO [PE 1 to N]; /* fmd the PE in which */
JSTAR <r- PEN; /* the lowest number */

END; /* résides */

/* Step 2. Compute ratios of xi/ai}STAR

A <- col0 [PE's 0 to M]; /* All PE's load column zero */
B 4- A [PE's 0 to M], /* Save column 0 */
A*-colJSTAR [PE's JSTAR to (JSTAR + M + l ) M o d P]; /* P = N + 1 */
Shift_JSTAR [PE's JSTAR to (JSTAR + M + l ) M o d P];
A «- B/A [PE's 1 to M]; /* Each PE divides the contents of its B and A register

and stores resuit back in its A register */

WHERE (A<0) DO [PE's 1 to M]; /* A setup for following */
A «- INF; /* recursive doubling */

/* opération, INF is an */
/* arbitrarily high positive number */

R.D. Comp [1 to M]; /* fmd the minimum quotient */
MIN<~DTR[PEJ ;
WHERE (,4 = MIN) DO [PE's 1 to M]; /* find the row */

ISTAR <- PEN; /* with the lowest */
END; /* ratio */

/* Step 3. Now perform the pivot opération */

(a)

DIV <- A [PE(ISTAR+JSTAR)modP];
A 4- rowISTAR [PE's 0 to N];
^ 4 - A / D I V [ P E ' s 0 to N];
£4-A[PE's0 toN];
Store A [PE's 0 to N];

/* Skewed storage */
For; = 0 to M DO; /* Update ail other rows */

IF OV ISTAR) THEN DO;

(b)

,4<-B[PE's 0 toN];
Shift_0_ISTAR)[PE's0toN];
,4 4-row,. [PE's 0 toN];
SCALE-A[PE0>JSTAR)];
A 4- A-B* SCALE [PE's 0 to N];
Store A [PE's 0 to N];

END;
END;
Go to Step 1.

FLA.I.R.O. Recherche opérationnelle/Opérations Research
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The purpose of this procedure is to show how the simplex method can be
executed on an SIMD machine. Estimâtes of improvement in solution time over
the uniprocessor case follows in section 4.3. Note that the test WHERE
(A = MIN)... may result in nonunique PE numbers. In such cases, any one of the
PEN's holding the minimum value could be arbitrarily assigned to JSTAR (or
ISTAR). This does not affect the algorithm.

4.2. Wraparound

It could very well happen that the number of columns/rows in the tableau is
greater than the number of PE's. In such case, the strategy of wrapping the
matrix around the PE's is followed. One or more PE's will then have more than
one row/column. Opération on these rows/columns must proceed sequentially
and this dégrades performance. As an example of wrap around, consider an 8 by
12 matrix and only 8 PE's. The matrix stored in wraparound format will look as
shown in Figure 4.3.

PE 0

0,0
U
2,6
3,5
4,4
5,3
6,2
7,1
0,8

—
-

PE,

0,1
1,0

. 2,7
3,6
4,5
5,4
6,3
7,2
0,9
1,8
-
—
-

PE2

0,2
1,1
2,0
3,7
4,6
5,5
6,4
7,3
0,10
1,9
2,8
-
-

PE3

0,3
1,2
2,1
3,0
4,7
5,6
6,5
7,4
0,11
1,10
2,9

PE4

0,4
1,3
2,2
3,1
4,0
5,7
6,6
7,5

-
1,11
2,10
etc.
—

PE5

0,5
1,4
2,3
3,2
4,1
A0
6,7
7,6

-
-

2,11
-
-

0,6
1,5
2,4
3,3
4,2
5,1
6,0
IJ
-
-
-
—
-

PE7

0,7
1,6

• 2 ,5
3,4
4,3
5,2
6,1
7,0
-

-
—
-

Figure 4 .3 . — Example of 'Wraparound'.

The result of this wraparound is that we will have part parallel and part
sequential opération. The degree of sequential opérations dépends on how many
wraps we have. For example, with the present set up, any opération on the first
eight columns could be done in parallel. Opérations involving columns 1 to 10
say will take two steps since PE0, PEj and PE2 will have to operate sequentially.
In the degenerate case of only one PE, all cells of the array are stored
continuously and purely sequential opération results.
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Example : If there was only one PE, the matrix wouîd be stored as follows:

PF
r c o
0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

1.0

1,1

1,2

The same storage
scheme as in a
uniprocessor machine

Let w represent the number of wraps for columns and w* the number of wraps for
rows. These two numbers need not be the same when the matrix is non-square
and skewed storage format is followed. Therefore:

W*z=\
a n d *~

4 • 3. Estimâtes of improvement îo solution time

The simplex tableau on which the estimâtes are based is shown again for
convenience below in Figure 4,4.

row0

!
¥i

dB"»

B b

a-QB-B

B * B

(0,-CiB-N)

B *N

Coio - N -

Figure 4 .4 . The Simplex Tableau.

Row0 contains reduced costs, and column zero the solution vector. C'BB~1b
is the value of the objective fonction.
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If the simplex algorithm of Figure 4.2 is executed on a uniprocessor, the
analysis of the number of steps is as follows:

Stepl: Find the lowest reduced cost. There are JV values for reduced costs that
must be examined for the minimum. This will take JV —1 comparisons.

Step 2: Is the minimum reduced cost ^ 0 ? This is one compare opération.

Step 3: Find the row with minimum ratio of xja^ij* is the column
corresponding to the minimum reduced cost). This requires M division
opérations and M—l comparisons (to find the minimum).

Step 4: Pivot opérations assume at*f is the pivot, i* is the row with the lowest
ratio in step 3. Row?* will require JV + 1 divisions. Every other row will require
JV+1 multiplications and JV+1 subtractions.

Eg-,:

. ai* N •>

pivot
divide a^_ a^ ^ a^
by û l V * aiV* ' a?r ' ' a?r '

rowr : ar0, arl9 . . . , arf9 . . -, arN,

opération on: û r 0 - a r J ^ - L . . ., 0, arN-arf\ —
row r L w J L IJ J

1 subtraction

Hence for a total of M + 1 rows we need:
N + l divisions for row i*
(JV +1) M Multiplications
,mT _ , , t . /for the other M rows.
(JV +1) M subtractions
Hence one itération of simplex requires (N + M— 1) comparisons, (M + JV+1)
divisions, (JVH-l)JVf multiplications, and ( N + l ) M subtractions.
Now if the same itération were carried out on an SIMD machine, the analysis of
the number of steps would run as follows. Assume w wraps for columns and w'
wraps for rows as beforê.

Step 1 : The recursive doubling takes log2 JV compares and log2 JV shifts. Such
shifts can be done in one move (see Section 6.4). In gênerai, at most K/ + log2JV
compares and log? JV shifts are needed. The step to test if the minimum reduced
cost is nonnegative also requires one comparison, as in the uniprocessor. (Note
w' compares are done within each Pe.)
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Step 2 : Finding the row with the minimum ratio of x^a^**.

This requires one shift (Shift_JSTAR) opération and one divide opération. The
recursive doubling to fïnd the minimum element needs log2 M compares and
iog2 M shifts* In gênerai, at most Qa-HogaM) shifts and w dîvides and
ig+log2 M compares are needed.

Step 3 : Pivot Opération,
For row1STÂR) one division is needed, or in genera!» at most w' divisions, Now,

each itération involves at most,

2w' shifts» w' multiplies, and w' subtractions.
Since we go through the loop M times, we have a total of (M w') shifts, w*
divisions, Mw' multiplies, and Mwf subtractions,

So in terms of shifts and arithmetic opérations, one itération of the Simplex
Method on the SÏMD machine takes, at most, (uîf-hlog2iV + tt) + log2M)
compares, (log2 N + w+log2 M + wf M) shifts, (w+wf) divides, M wf multiplies,
Mwf subtractions.

To get an estimate for comparative time performance overall, let us make the
following realîstic assumptions about time for opérations:

subtraction : i time unit;
multiply : 5 time units;
divide : 8 time units;
comparisons : 3 time units;
shift̂  : 4 time units. (Recali from Section 4.1, that this is an in ter PE data

transfer,)
(The entries in the following table are time units per itération of the simplex
procedure.)

Machine

IV = 30 M=s20

Uniprocessor

4275
(P-I)

3,019,505

SIMD

290
(F «32)

5153
(P-1024)

SIMD
w s= w* — 2

516
(F-16)
10179

SÏMD

742

i5 205
(P = 2S6)

For the SÏMD machine, the critical factor is the inter PE data transfer time (shift-
time) since there are so many of them. A slight change in data transfer time can
substantially improve the SIMD performance, It is assumed that a uniprocessor
and a processor in an SIMD machine performs an arithmetic/logic opération in
the same time.
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5. AN ARCHITECTURE FOR PARALLEL IMPLEMENTAL OF THE DANTZIG-WOLFE

ALGORITHM

The previous sections exposed the parallelism that could be exploited when
solving a regular LP problem using the simplex method. This section discusses
the architecture of a parallel processing machine that is suited for the class of
LP problems that have the block angular structure as described before.

MASTER
CONTROL

PROCESSOR (MCP)

MCPM( Memory)

D R I V E R N E T W O R K

%
cu 1

t
cu2 cu3

f
cu4

1
cu5

1
C H A N N E L I N G N E T W O R K [

PE
P-1

ProcQ

MenriQ

Proc-|

Mem-)

I
Proc

P-1

Mem
P-1

I N T E R C O N N E C T I O N N E T W O R K

Fig. 5 . 1 . - Parallel Architecture for D - W .

The architecture presented in Figure 5.1 is different from the regular SIMD
architecture presented in Figure 3.1 in two major ways. First, there are two
levels of controL As before, there are P PE's and they perform the bulk of the
computation. Also as in Figure 3.1, there is an interconnection network for the
PE's to communicate with each other. However, in Figure 5.1, the
interconnection network is also partitionable in the sensé to be described
presently. Our machine has several CU's as opposed to one in the gênerai SIMD
machine. (There are five CU's in the diagram only as an example.) The number of
CU's is fixed at the time of design. One CU together with a set of PE's constitutes
an SIMD machine. Figure 5.1 in effect represents an architecture for several
cooperating SIMD machines. The idea of having several SIMD machines
(a multiple SIMD or MSIMD system) was also envisioned in the design of the
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ILLIAC[2]. Other Systems using a similar concept are described in [143 21].
There is a master control processor (MCP) that is a small processor in its own
right and co-ordinates the ClFs. MCP communicates with the CIPs through the
driver network and the CU's communicate with the PE's through the channeling
network that also happens to be partitioaable.

Execution of the Dantzig-Wolfe (D — W) procedure occurs in the following
manner. The MCP will be in charge of handling the master problem of (D — W),
and co-ordinating the CU's. Each CU handles one or more subproblems. This is
where the ability to partition the machine structure becomes crucial. The sizes of
subproblems (i e., number of constraints and/or variables) will vary from
problem to problem. Recall from earlier sections that each subproblem in D — W
is an LP problem and that an LP problem could be executed efFiciently using
the parallelism inherent in an SIMD machine, As such, the architecture must
permit the flexibility of assigning a variable number of PE's to each CU,
depending on the size of the subproblems. This will make maximum use of the
Computing resources. À collection of PE's together with the CU to which they
are assigned, solves one subproblem. Such a CU-PE collection unit functions as
an SIMD machine. It is thus apparent why partitioning capability in the
interconnection network and in the channeling network is needed. Each
partition of these two networks wiil serve a group of PE's that are working on the
same subproblem. The next section discusses details of the various components
of the machine.

Most parallel processing machines function as special purpose processors in
conjunction with some larger gênerai purpose computer. The ILLIAC has a
B 6500 as a host for example [5]. The function of the gênerai purpose machine is
to perform I/O fonctions and set up data in the respective PE's, handle
interrupts, etc. The reader may also refer to[28]5 for descriptions of such total
Systems,

6. SYSTEM DETAILS

We now elaborate on the different structural components in the architecture of
the parallel processor presented in Figure 5.1. Since implementation issues are
beyond the scope of this paper, unnecessary detail has been omitted. However, it
should be clear that the structural components are relatively simple.

6.1. The processing element

The internai structure of a processing element is shown in Figure 6. L
The A register is the accumulator; registers B and C hold operands for binary

opérations, Any data transfers to and from other PE's is done via the DTR.
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Status
Control

Instruction

To Interconnection Network

Fig. 6.1. — The Processing Element.

The X register is an index register and D a status register. Each PE has Unes to its
control unit for transmission of status and for reception of common data and for
instruction exécution control.

6.2. The control units (CU)

The CU's drive the PE's. Figure 6.2 contains the details of the components
making up a typical CU. The basic opération performed by any CU is
instruction decoding and génération of the associated proper séquence of

ADB

:

MALL CU MEM.

Registers

Simple
ALU

I 1 I jt
To/From MCP
via driver

Network

Results
Data
Bus.

Common
Data
Bus.

Status
lines.

Instruction and
Controi lines.

Fig. 6.2. - Control Unit Details.

opérations to drive the PE's. Any data that is common to all PE's, say a common
multiplier, is transmitted to all PE's in parallel through the Common Data Bus.
Recall from the program in section 4, that particular PE's had to be deactivated
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during certain opération. Thus, while the same instruction is broadcast to ail
PE's, only the active ones exécute it. The status unes are used to transmit this
information to PE's.

The accumulators and ALU are the registers and arithmetic/logic unit within
the control unit. They are necessary for instruction decoding and other simple
arithmetic opérations the CU may have to perform.

The CU memory would be typically much smaller that the PE memories. The
program to be executed is stored in the CU memory. Reserved areas of this
memory can be written to by PE's using the Results data bus and read by the
MCP. As in the ILLIAC [5], the ADB(advanced Data Buffer) is just a high speed
scrath pad memory. The internai structure of this CU reflects the needs of the
application. For example, the Results data bus, and the bus leading to the MCP
are necessary to receive and transmit subproblem results to the master control
processor.

6.3. Channeling network

A muitiplexor arrangement is proposedfor the channeiing network, with the
requirement of partitionability in mind.

cu1 I cu2 cu3 cu4 cu5

I I I
i II i

MUX # ik *
CONTROL

Fig. 6.3, - The Channeling Network.

Each PE gets its instruction stream from our particular CUS depending on its
MUX CONTROL. The MUX CONTROL is set by the MCP for a particular
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assignment of PE's to CU's. This multiplexor arrangement enables us to assign a
variable number of processors to a CU depending on the size of subproblems.
This is in effect a cross-bar switch as used, in the MAP, MSIMD system [14].

6 .4 . Interconnection network

The interconnection network allows PE's to transfer data among themselves.
There are various propositions for interconnection networks each with its own
advantages, as mentioned in section 3. The interconnection can be viewed as a
blackbox as shown in Figure 6.4.

From PE0 .

PE, . .

PEp.! ».

INTERCONNECTION

NETWORK

— ^ To PE0

—-PEj

Fig. 6 .4 . — Interconnection Network as a Blackbox.

Data from each PE can be routed to other PE's through the network. The
network we wish to use is called the multistage cube network. As mentioned in
section 5 in connection with the analysis, inter PE data transfers are a major
overhead with SIMD machine. Hence it would be to our advantage to design the
network to reduce the number of transfers required for the class of applications
envisioned. One of the major transfer opérations performed for the D—W
algorithm is during loading of rows and columns from skewed storage. This has
to be done very frequently. The other requirement that must be satisfied is that
the network be partitionable; i.e., the various subnetworks arising out of the
partition should have the same data transfer capabilities as the whole network.
Recall that PE's are assigned to certain CU's. It is undesirable that PE's working
on one subproblem transfer data to/from another set of PE's working on
another subproblem.

The multistage cube network [18] succeeds on both counts. Its configuration
for the case of eight processors is shown in Figure 6.5.
At every stage /, input lines that differ in the z-th bit of the binary représentation
of their number, are paired together. The boxes are known as interchange boxes
and they can either pass their two inputs striaght through or switch them as
shown by dotted lines in Figure 6.5.
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INPUTS PE 2 —j-

PE4

PE7

-

0

1

3

0'

2

3

0

2

\
1 \

0

4 .

/
/ 1

\ 5>

Stage 0 Stage 1 Stage 2

Fig. 6.5. - The Multistage Cube Network.

PE2 OUTPUTS

A uniform shift of x occurs when ever PE[Ï] transfers data to
PE[(ï-hx) ModP] where P is the number of processors. The multistage cube
network can perform uniform shifts in a single pass through the network. This
has been proved [12]. Each interchange box is independently controllable.

PE 1 ^ - - • ' ^ ^ • • • r t 7

I Stage 0 s i ^9£ 1 Stage 2 |

Fig. 6.6. - A Uniform Shift of Three.

One routing scheme employs destination tags. Each data item is tagged with
the PEN of its destination PE. For example, for a uniform shift of 3, PE0 would
tag it data item with 011 (binary représentation of 3, the destination PE), PE4

would attach a tag of 111. At stage i9 if the i-th bit of the sending PE is a 0 then
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the upper box ouput is taken, if it is a 1 the lower box output is taken. Consider
the uniform shift of 3. The switching pattern of the boxes is shown in Figure 6 . 6,

The multistage cube network can also be partitioned into smaller networks,
each of which is in itseM* a multistage cube network. For example, setting all the
boxes in stage 2 to "straight" produces two subnetworks» — { 0, 1, 25 3} and
{4, 5, 6, 7}. Each of these is in itself a multistage cube network. For details,
see[20, 23]. The reader will have noticed that partitions are powers of two. For
example,-1024 processors, can be partitioned into subgroups of 64,645128,256,
512 or 128, 128, 256, 512, etc.

6 . 5* The master control processor and driver network

The Master Control Processor (MCP) is in charge of handling the master
problem. ït is also charged with setting the multiplexor in the channelling
network; L e,, it controls the assignment of certain PE*s to ClFs. The CU's co-
ordinate solutions to subproblems in turn. Steps 2 and 3 in D — PF(Section 2) are
associated with the Master problem. The internai structure of MCP is much the
same as that of a CU except that it has more sophisticated arithmetic/logic
capabilities than the CU. This is necessary because in addition to instruction
decoding, it has to perform the arithmetic/logic demanded by steps 2 and 3
of D-W.

*
•

V//////X

c

To/From Cu's tkrough
Driver Network

Channelling
Network Contro!

Fig. 6.7. - The Master Control Processor.

It is quite likely that the number of subproblems will be much smaller than the
number of rows or columns of the constraint matrix, Hence, it seems practical to
perform the summation of £ Z( in Step 2 of D - JF(Section 2) sequentially. The
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hatched portion of MCPM is a reserved area in which the CU's deposit their
values of Zis and décision variables. Recall that simplex multipliers from the
master problem must be transmitted to the CU's for use in subproblem solving.
This is accomplished through the DTR (Data Transfer Register) in Figure 6.7.
In other respects, the MCP is just like a control unit. It has an ALU and some
gênerai purpose registers.

7. SUMMARY

An architecture of a parallel processor that is specially suitedfor solving a class
of opérations research problems has been presented. We recognize the existence
of many techniques for efficiently solving large scale Systems optimization
problems. In our opinion, parallel processors are an interesting class of machines
which could be profitably used in the efficient solution of large scale optimization
problems. With the émergence of powerful low cost microprocessors, the
viability of ha ving a very large number of processors in one machine is hardly in
doubt. However, the successful application of such machines to the optimization
area will require the close co-operation of both hardware specialists and
opérations research specialists. Such joint efforts are already underway in other
areas of application [24, 27].
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