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OPTIMIZATION OF
REPAIR LIMIT REPLACEMENT POLICIES

FOR ONE UNIT SYSTEMS (*)

by Mynt ZIJLSTRA C1)

Abstract. — A one unit System is considered which is repaired atfailure or at âge T. If a repair is not
compieted within a certain repair time limit S the unit is replaced. The introduced expected cost rate
function simplifies the construction and analysis of the objective function. Due to it insight is much
enlarged, as an economie interprétation can be given to the results.

Keywords: Repair limit replacement policy, expected cost rate function, discounting,
optimization.

Résumé. — On considère un système à une unité avec réparation en cas de panne ou à Vâge T. Si une
réparation n*est pas effectuée dans une certaine limite de temps S, Vunité est remplacée. La fonction
d'espérance du coût, introducée dans cet article, simplifie la construction et Vanalyse de la fonction
objective. Comme une interprétation dans une façon économique est possible, les résultats peuvent être
mieux compris.

Mots clés : Réparation et remplacement préventif, fonction d'espérance du coût, coût
escomptable, optimisation.

1. INTRODUCTION

Investigating a replacement policy one usually takes two steps. During the first
step the objective function is obtained, while during the second step properties of
the objective function are derived, e. g. concerning the existence and uniqueness
of an optimal policy. With respect to a large class of replacement policies of one
unit Systems we have shown in Zijlstra [4] that the so-called expected cost rate
function may be a helpful tooi during both steps. Due to it the construction and
analysis of the objective function are simplified and moreover insight is enlarged
as an economie interprétation can be given to the results.

In this paper we show that the expected cost rate function is useful in a similar
way when studying replacement situations with a repair phase. That kind of
replacement problems have been studied earlier by Nakagawa and Osaki [1],
and Nakagawa [2]. Our investigation generalizes and simplifies their work.

(*) Received November 1980.
C1) N. V. Philips, I.S.A.-Centre for Quantitative Methods, Eindhoven, The Netherlands.
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352 M. ZIJLSTRA

In section 2 the replacement with repair model is described and the objective
function is obtained, while some of its properties are treated in section 3. The
used optimization criterion is minimization of costs per time unit over an infinité
timespan. In section 4 we explain that the given results need only a minor
adjustment if one is minimizing the expected total discounted expènses.

2. MODEL AND OBJECTIVE FUNCTION

Model

We consider a one unit system which is repaired at failure or at âge T
whichever occurs first. A failure gives rise to an additional cost. Furthermore a
repair is stopped if it is not completed within the repair time limit S, and the unit
is then replaced by a new identical unit. It is assumed that a repaired unit is like
new. So two alternating phases can be distinguished for the system: an operating
phase 1 and a repair phase 2,

Objective function

Let A(t, T9 S) dénote the total expènses spent during the time interval [0, t),
assuming that at time t = 0 the first unit has been installed. The stochastic
process {A(t, Ty S); t^O} has a regenerative structure, that is it consists of
successive cycles at the beginning of which the process restarts itself in a
probabilistic sensé. A new cycle begins every time when a new or repaired unit
starts operating. In order to make all cycles, including the first one, identical in
the sense of costs we say that there is a replacement cost c2 at the beginning of
every cycle, while a négative cost — c2 occurs at the end of it if the repair is
completed within the time limit 5. Now we choose as objective function,
C(r, S), the total costs per unit time over an infinité timespan i.e.:

(2.1)

where the random variables: Xu total cost during phase 1 of a cycle including c2

and a possible additional cost due to a failure; X2, total cost during repair
phase 2 of a cycle including earnings in case of a successful repair; Zi5 length of
phase i of a cycle, i = 1, 2.

The latter identity in (2.1) is a well-known result from the theory about
regenerative processes, see Ross [3].
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REPAIR LIMIT REPLACEMENT POLICIES 353

Expected cost rate function

Elaborating (2.1) the concept of expected cost rate function is a useful tooi. In
order to introducé it we investigate the cost Xt during an arbitrary cycle. For
convenience we assume that phase i of that cycle starts at time u = 0.

Let now Yt(u) dénote the costs caused by that particular cycle in phase i
during the time interval [0, u), u>0. By définition Y1(0) = c2 and Y2{0) = 0.
Notice that there may be costs during [0, u) caused during the other phase or by
following cycles but they are not contained in Yt(u). With respect to Y^u) we
make the important assumption that the following limit exists for all u^O:

M „ ) = l i m «(*<•+«)Wiz.>. )
510 Ö

The conditional expectation is defined to be zero if P(Z£>u) = 0. We call ht(u)
the expected cost rate function for phase i of a cycle. Now we can state the
important

THEOREM 2 . 1 : If the limit in (2.2) exists for ail u^>0, then the expected cost
during phase i of a cycle is given by:

ht(u)Gt{u)du =EYt(0) + E(r htMduJ, (2.3)

where:

Gi(u)=P(Zi>u),

Proof: Take 5>0, then we have:

u=OJÔ,25,

A phase does not cause costs after it has ended, i. e. if Z, ̂  M then Yt (v) — Yt (u)=0
for v > u with probability 1. Hence:

EXt = EYt(0)+ Y ë
«=0,5,26, . . .
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354 M. ZIJLSTRA

Taking § j O we obtain in the usual way:

Fr om this the second identity in (2.3) can be found by a simple calculation. ®

Before applying this result to (2.1) we give some additional notation:

c25 replacement cost (price of a new unit including installation):

c1 — c2, additional cost in case of a failure. We choose this notation in order to
keep the results comparable with âge replacement without repair and a cost Cj
for an unplanned replacement;

f. (u) = P (Wt;S «), i = 1,2, with Wx and W2, respectively , the lifelength and the
repair time of a unit;

ri {u)—j\ (u)/F1{u), ihe faiiure rate function;

r2(u)=f2(u)/F2{u), the repair rate function;

It is assumed th&t fi(u) = dFi(u)/du exists.

kj (u), operating cost intensity of a unit at age u; one may think of maintenance
cost, but also of returns. In that case k1 (u) is négative.

k2 (M), repair cost intensity at repair age u, possibly including non-availability
costs.

It is easily seen that:

1 if

and:

if ^

Using the theorem given above and knowing that for a nonnegative random

f
variable Z with distribution function G one has EZ= [1-G(w)]dw we

J o
R.A.LR.O. Recherche opérationnelle/Opérations Research



REPAIR LIMIT REPLACEMENT POLICIES 355

rewrite (2.1) as:

c2+ h1{u)¥1{u)du+ h2{u)~F2{u)du
L J o (2.4)

F1(u)du+ F2(u)du
J o J o

The expected cost rate functions in this basic expression for the objective
function can be written down directly:

and: (2.5)

h2{u) = k2{u)-c2r2(u).

3. ANALYSIS OF THE OBJECTIVE FUNCTION

In the analysis of the objective function an important role is played by a
function having the foliowing form:

7
a(u)du

7
5+ b(u)du

J o

with v>0, 5>0 and b(u)>09 u^O.
Observe that C (T9 S) in (2.4) has this form as a function of T with S fixed and

as a function of S with T fixed. In this section we state a few results concerning
C (v) as given in (3.1 ) and next we apply them to C (T, S) in (2.4). Consider C (i>)
on an open interval / c (0, oo ) and suppose that a and b are continuous for u ̂  0.
Furthermore let D(u) be defined by:

vol. 15, n°4, novembre 1981



356 M. ZIJLSTRA

After some elementary calculations we find:

dC (v) b (v) D (v) a(v)-C (v) b (i?)

J5+ r6(M)A«l 5+ r b(u)du
(3.2)

From (3.2) it follows that:

-0 . » « - . - CW-ïW. ,3.3,

•THEOREM 3.1: Ifa (u)/b (u) is increasing (decreasing) on an open interval I, then
C(v) has at most one extreme on I and, if it exists, the extreme is a minimum
(maximum).

Proof: For v\ vel with vf>v we have:

D(V))

This expression shows that D (v) is monotone on I ïfa(u)/b (u) is monotone on I.
Hence D (v) will cross the u-axis on I [i. e. D (v) = 0] at most once and soC(v) will
have at most one extreme fi.e. dC(v)/dv=^0] because of (3.3). If a(u)/b(u) is
increasing (decreasing) the crossing will be from below (above), implying a
minimum (maximum). (g>

CoROLLARY 3.2: Ifa(u)/b(u) is increasing on [0, oo) then:

implies that C(v) has no extreme for v>vf and

implies that C(v) has no extreme for v^v".

R.A.I.R.O. Recherche opérationnelle/Opérations Research



REPAIR LIMIT REPLACEMENT POLICIES 357

COROLLARY 3.3: Ifa(u)/b(u) is increasing on [0, oo) then C(v) has no extreme
on (0, oo ) ifat least one of the following conditions holds:

(i)

(ü)

(iii)

with C(0)=limC(t>);

for

Ifneither (i), nor (ii), nor (iii) /io/ds C(v) has a unique minimum on (0, oo).

In order to illustrate the given results a number of possible courses of C and
increasing a/b have been drawn in the figure below.

C, a/b

a/b

C, a/b

C, a/b

Possible courses of C with a/b increasing.
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358 M, ZIJLSTRA

Now we apply the results given above to the objective function C(Tf S) as
defined in (2,4)5 assuming that ht and Fi3 Ï = 1, 2 are continuous on [0, oo). If
C(T9 S) has an extreme in a point of the set PF= {(T, S) :
0 < T< oo, 0 < S < oo}, then its partial derivatives are equal to zero in that point.
Together with (3.3) this considération leads to the statement that:

is a necessary condition for an extreme in point (T, S) e W.

Economie interprétation

Relation (3.4) says that in the optimal situation (i.e, Tand S are chosen in
such a way that C is minimal) phase i should be stopped at the moment when its
expected cost rate ht becomes equal to the o ver-all cost per time unit, i = 1, 2.
From theorem 3.1 it follows that such a time point will be reached at most once
in the case of an increasing expected cost rate function. We observe that the
expected cost rate fonctions have a rncaning similar tö that of marginal cost
fonctions in Economies when one is concerned with non-failing, deteriorating
equipment. This economie considération makes many results concerning the
behaviour of the objective function much more transparent.

In the search of an optimal policy the course of the expected cost rate function
plays an essential role, as will be illustrated also by the next theorem.

THEOREM 3.4: (i) Ifhx is increasing and h2 is decreasing on [0, oo), then one has;

— no extrêmes on W;

— no maximum and at most one minimum on {(T9 S) : 0 < T< oo, 5 = 0} ;
— no maximum and at most one minimum on {(T9 S) : 0 < T< oo, S = oo } ;

— wo minimum and at most one maximum on {(T, S) : T= oo5 0<S< oo } .

(ii) If ht and h2 are increasing on [0, oo)5 then one has:
— at most one extreme, a minimum, on W;

— the minimum is assumed on V= {(JT, S) : ht (T) = h2(S)} ;

— a necessary and sufficient condition for such a minimum is that:

C(T-,S-)£ht(T-) and C(T +, S + )^hx(T
 + l

with;
T - = M(T) and T+ = sup (T)

V V

and S~, S+ defined in a similar way.

R.A.LR.O, Recherche opérationnelle/Opérations Research
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REMARK 1: If T+ = ao (or S+ = oo) and ht(T
 + ) = C(T +

 9 S
 + ) then

, S + )^hï(T
 + ) in the theorem above has to be replacée! by

C(T, S)-fc!(r)T0 taking T-+ T+ along the line F3 cf. corollary 3.3.

REMARK 2: Similar statements can be made about the behaviour of C (T, S) in
the case of h1 decreasing and h2 increasing or hx and h2 both decreasing. lïh1 and
h2 are monotone only on certain intervals, statements as above can be restricted
to those intervals, cf. theorem 3.1. We give no details, Theorem 3,4 illustrâtes
suffidently how to use theorem 3.1 in such spécifie situations.

The results of theorem 3,4 are direct conséquences of theorem 3.1? its
corollaries and (3.4). Therefore its proof is omitted. We give only some
additional comment. In case (i) it is possible that (3.4) is fulfüled for a point
of W. In that point C has a minimum as a fonction of T and a maximum as a
fonction of S due to theorem 3.1 and (3.3), i, e. the point is a saddle-point. For
the cases with S=0, S = oo, . . . corollary 3.3 may be helpful in the search of an
optimum.

As hx and h2 are increasing in case (ii) extrêmes must be minima due to
theorem 3.1. But C is continuous, so there can be at most one minimum.

Earlier work

Nakagawa and ösaki [1], and Nakagawa [2] consider the model given above
for the special cases with no planned repair, that is T is assumed to be infinité,
and with no planned replacement that is S = oo » Their results, for instance those
derived for some particular repair cost fonctions fe2 in the case !F= oo, are direct
conséquences of the theorems treated above. When using the concept of expected
cost rate fonction these results can be found very easily and more insight is
obtained into their meaning. In this context the follöwing oversight in
Nakagawa and Osaki [1], page 313 is detected directly: it is asserted that the
optimum policy is no replacement (S = oo ) in the case T= oo, with k2 (u) — p wa,
p>0, - l < a < 0 and arbitrary F2. Using (2.4), (2.5) and corollary 3.3 it is
easy to choose F2 and c2 in such a way that for instance S=ö is the optimal
policy.

4. DÏSCOUNTING

Minimization of the expectation of the sum of discounted expenses over an
infinité horizon is often used as optimization criterion. Applying this criterion to
our repair and replacement model the expected cost rate fonction may again be a
helpful tooi. We explain this briefly,

vol. 15, n°4, novembre 198I



360 M. ZIJLSTRA

Let a > 0 be the discount rate and let XU) dénote the costs during the j-th cycle
discounted to the beginning of that cycle, 7 = 1, 2, . . . Moreover let Z o ) be the
length of the j-th cycle, then we have for the expected total expenses discounted
to f = 0(takeZ(0) = 0);

C{T,S) = E\ £ X°' )exp(-oc(Z (1 )+...

l - £ ( e x p ( - a Z 1 - a Z 2 ) ) ' ( * '

with X{P the cost during phase i of the first cycle discounted to the beginning of
that phase, i = l, 2.

Let now h^u) be the expected cost rate fonction as defined in (2.2) (not
discounted), then one can find in a way similar to the one used in theorem 2.1
that:

and:

Ç 00 _

I hAu)e~auGAu)du
J o

= \"h2(u)
J o

(4.2)

4)e-auG2(u)du.
J o

Observing that:

£(exp( — aZi)) = l— a e"a"Gj(M)^w, i = l , 2

we get from (4.1) and (4.2):

C(T,S)

h1(w)e"ŒUjp1(w)^ + E(exp(-aZ1))
J o J

h2(u)e~au F2(u)du
o

e-*uF2{u)du
o

J
2)) |

J o
l-£(exp(-aZ2))-hE(exp(-aZ2)
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REPAIR LIMIT REPLACEMENT POLICIES 361

We see that C(T, S) has the familiar form (3.1) as a function of S and as a
function of T. So the results of section 3 are applicable. From (3.3) we obtain
that for the optimal S* and T*:

a
and:

r h2(u)
J o

S*)£(exp(-otZ2))+ | h2{u)e'auF2{u)du

The first identity shows that a planned replacement should be carried out at a
moment at which the expected cost rate becomes equal to the total expected
discounted costs per discounted time unit. The second identity leads to a similar
interprétation with respect to a planned repair, if one assumes that at time t = 0
one is starting with a repair phase.
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