Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph
RAIRO - Operations Research - Recherche Opérationnelle, Tome 15 (1981) no. 3, pp. 233-239.
@article{RO_1981__15_3_233_0,
     author = {Miliotis, P. and Laporte, G. and Nobert, Y.},
     title = {Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {233--239},
     publisher = {EDP-Sciences},
     volume = {15},
     number = {3},
     year = {1981},
     mrnumber = {637194},
     zbl = {0472.90066},
     language = {en},
     url = {http://www.numdam.org/item/RO_1981__15_3_233_0/}
}
TY  - JOUR
AU  - Miliotis, P.
AU  - Laporte, G.
AU  - Nobert, Y.
TI  - Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 1981
SP  - 233
EP  - 239
VL  - 15
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/RO_1981__15_3_233_0/
LA  - en
ID  - RO_1981__15_3_233_0
ER  - 
%0 Journal Article
%A Miliotis, P.
%A Laporte, G.
%A Nobert, Y.
%T Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 1981
%P 233-239
%V 15
%N 3
%I EDP-Sciences
%U http://www.numdam.org/item/RO_1981__15_3_233_0/
%G en
%F RO_1981__15_3_233_0
Miliotis, P.; Laporte, G.; Nobert, Y. Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph. RAIRO - Operations Research - Recherche Opérationnelle, Tome 15 (1981) no. 3, pp. 233-239. http://www.numdam.org/item/RO_1981__15_3_233_0/

1. M. Bellmore and G. L. Nemhauser, The Travelling Salesman Problem; a Survey, Operations Research, Vol. 16, 1968, pp. 538-558. | MR | Zbl

2. N. Christofides, The Travelling Salesman Problem, published in "Combinatorial Optimisation" by CHRISTOFIDES et al., Wiley, 1979, pp. 131-149. | Zbl

G. B. Dantzig, D. R. Fulkerson and S. M. Johnson, Solution of a Larger Scale Traveling-Salesman Problem, Operations Research, Vol. 2, 1954, pp. 393-419. | MR | Zbl

4. J. Edmonds and E. Johnson, Matching, Euler Tours and the Chinese Postman, Mathematical Programming, Vol. 5, 1973, pp. 88-124. | MR | Zbl

5. L. Euler, Commentationes Arithmeticae Collectae, Saint-Petersbourg, 1766, pp. 337-338.

6. W. W. Hardgrave and G. L. Nemhauser, On the Relation between the TravellingSalesman Problem and the Longest Path Problem, Operations Research, Vol. 10, 1962, pp. 647-657. | MR | Zbl

7. A . H . Land and S. Powell, Fortran Codes for Mathematical Programming, Wiley, 1973. | Zbl

8. P. Miliotis, Integer Programming Approaches to the Travelling Salesman Problem, Mathematical Programming, Vol. 10, 1976, pp. 367-378. | MR | Zbl

9. P. Miliotis, Using Cutting Planes to Solve the Symmetrie Travelling SalesmanProblem, Mathematical Programming, Vol. 15, 1978, pp. 117-188. | MR | Zbl

10. J. D. Murchland, A Fixed Matrix Method for all Shortest Distances in a DirectedGraph and for the Inverse Problem, Ph. D. Dissertation, Karlsruhe, 1970. | MR