@article{RO_1981__15_3_233_0, author = {Miliotis, P. and Laporte, G. and Nobert, Y.}, title = {Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {233--239}, publisher = {EDP-Sciences}, volume = {15}, number = {3}, year = {1981}, mrnumber = {637194}, zbl = {0472.90066}, language = {en}, url = {http://www.numdam.org/item/RO_1981__15_3_233_0/} }
TY - JOUR AU - Miliotis, P. AU - Laporte, G. AU - Nobert, Y. TI - Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 1981 SP - 233 EP - 239 VL - 15 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/item/RO_1981__15_3_233_0/ LA - en ID - RO_1981__15_3_233_0 ER -
%0 Journal Article %A Miliotis, P. %A Laporte, G. %A Nobert, Y. %T Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph %J RAIRO - Operations Research - Recherche Opérationnelle %D 1981 %P 233-239 %V 15 %N 3 %I EDP-Sciences %U http://www.numdam.org/item/RO_1981__15_3_233_0/ %G en %F RO_1981__15_3_233_0
Miliotis, P.; Laporte, G.; Nobert, Y. Computational comparison of two methods for finding the shortest complete cycle or circuit in a graph. RAIRO - Operations Research - Recherche Opérationnelle, Tome 15 (1981) no. 3, pp. 233-239. http://www.numdam.org/item/RO_1981__15_3_233_0/
1. The Travelling Salesman Problem; a Survey, Operations Research, Vol. 16, 1968, pp. 538-558. | MR | Zbl
and ,2. The Travelling Salesman Problem, published in "Combinatorial Optimisation" by CHRISTOFIDES et al., Wiley, 1979, pp. 131-149. | Zbl
,Solution of a Larger Scale Traveling-Salesman Problem, Operations Research, Vol. 2, 1954, pp. 393-419. | MR | Zbl
, and ,4. Matching, Euler Tours and the Chinese Postman, Mathematical Programming, Vol. 5, 1973, pp. 88-124. | MR | Zbl
and ,5. Commentationes Arithmeticae Collectae, Saint-Petersbourg, 1766, pp. 337-338.
,6. On the Relation between the TravellingSalesman Problem and the Longest Path Problem, Operations Research, Vol. 10, 1962, pp. 647-657. | MR | Zbl
and ,7. Fortran Codes for Mathematical Programming, Wiley, 1973. | Zbl
and ,8. Integer Programming Approaches to the Travelling Salesman Problem, Mathematical Programming, Vol. 10, 1976, pp. 367-378. | MR | Zbl
,9. Using Cutting Planes to Solve the Symmetrie Travelling SalesmanProblem, Mathematical Programming, Vol. 15, 1978, pp. 117-188. | MR | Zbl
,10. A Fixed Matrix Method for all Shortest Distances in a DirectedGraph and for the Inverse Problem, Ph. D. Dissertation, Karlsruhe, 1970. | MR
,