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MATHEMATICAL PROGRAMMING
WITHIN THE CONTEXT OF A GENERALIZED
DATA BASE MANAGEMENT SYSTEM (*) (*)

by R. BONCZEK (2), C. HOLSAPPLE (3) et A. WHINSTON (4)

Abstract. — Aspects of mathematica! programming are examined within the context oj a
generalized data base management and query system. This system is gênerai in the sense of its
ability to support applications other than mathematical programming and its independence from
the actual types of data values available. lt is shown how data for mathematical programming
may be organized into a network data structure which may be interrogated via non-procedural,
English-like guéries. Three methods are presented for interfacing math programming algorithms
with this data base. Enhanced data manipulation facilities, particular to matrices and Systems of
équations, are also introduced. Finally a method is shown whereby programs may be integrated
into a data structure, enhancing a useras ability to build alternative modelsfor data analysis.

INTRODUCTION

Data base management is a relatively new field which is currently the object
of intense investigation. It involves the organization of data into some struc-
ture and the fitting of data with models and models with data in order to
provide needed analyses. This présentation explores ways in which tools
in the field of data management can offer assistance in the solution of mathe-
matical programming problems. Designers of specialized math programming
Systems will observe a correspondence between some of the data base notions
presented hère and the ideas used in various math programming-related
data facilities. The view adopted hère pictures mathematical programming
as a problem of data management, where the data relates to constraints
and objectives. The models include linear, interger and non-linear application
routines. As such we outline a fundamentally new perspective for viewing
mathematical programming problems. It must be emphasized that we are
not hère concerned with mathematical programming algorithms per se,
but with an effective tool for implementation and utilization of such algorithms,
regardless of their special methods. Moreover, we suggest that development
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and implementation of math programming algorithms may very well profit
from future advancements in the data base management field. This would
permit development and implementation efforts to be concentrated on theore-
tical aspects and numerical techniques, removing the often onerous task
of data management (e. g. over-laying, manipulation of specialized storage
structures, etc.).

Within the context of data base management we introducé three basic
methods for effecting the interface between data and mathematical program-
ming routines. The first method consists of extracting appropriate data values
from a data base and building them into a file that can be input to the desired
application routine. In the second method, application programs are devised
such that they utilize cominands which enable direct access to the data base.
The third method incorporâtes programs into the data base itself such that
they may be executed by submission of non-procedural, English-like queries.

The spécifies of these three methods are outlined within the framework
of GPLAN (Generalized Planning System) which is under continuing deve-
lopment at Purdue University. The outstanding features of this data base
management system may be summarized as follows : utilization of a network
data base, sélective retrieval of any configuration of data from a given network
structure, and user interface with a data base and application routines via
a non-procedural, English-like query language. As indicated in the ensuing
discussion, GPLAN's extensive data management capabilities also provide
a convenient tool for the évaluation of parametric changes and various modi-
fications in problems formulation. Moreover it enables storage, retrieval
and manipulation of not only objective and constraint coefficients, but also
descriptive information about each coefficient such as its source and currency.
During the formulation of large scale problems such information is vital for
purposes of resolving conflicting constraints and rectifying the variety of
errors and inconsistencies which almost inevitably occur. The GPLAN system
provides a single, gênerai mechanism for handling specially structured matrices.
Finally, this system allows the data base to be used by other applications
(e. g., simulations, statistical packages, etc.). A cursory overview of the
GPLAN method of data management is the necessary precursor of a detailed
examination of its applicability to problems of mathematical programming.

THE GENERALIZED PLANNING SYSTEM

GPLAN [1, 2] has two primary constituents: a data management system
(GPLAN/DMS) and a query system (GPLAN/QS). The former enables
a user to access a network data base with a procédural, programming language.
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MATHEMATTCAL PROGRAMMING WITH A DATA BASE SYSTEM 119

The latter allows retrieval of data and the exécution of large application
routines as a resuit of posing non-procedural, Engüsh-like queries ; this feature
permits data base utilization by non-programmers.

Within the scope of this présentation, a data base is considered tp be defined
by two attributes : a schema and a collection of data values which are logi-
cally organized in conformity with that schema. A schema is the spécification
of a logical structure; it is a blueprint of data base contents. Notice that we
do not consider physical storage structures hère, since ail user requests of
the data base are made in terms of its logical organization. The fundamental
building blocks of a schema are data item types; for example, VARJABLE-ID,
VARIABLE-DESCRIPTION, CONSTRAINT-ID, CONSTRAINT-DES-
CRIPTION, COEFFICIENT-VALUE, COEFFICIENT-SOURCE refer to
types of data that we may désire to include in a data base. Each of these data
item types represents many occurrences of data values of that type within
the data base; the data item type VARIABLE-ID may have "XI" through
"X100" as data value occurrences. The schema also spécifies the nature of
the relationships that each data item type has with other data item types.

There are two vaneties of relationships among data item types: aggregation
and association. Data item types may be aggregated into what are termed
record types; for instance VARIABLE-ID and VARIABLE-DESCRIPTION
mây be aggregated to form the record type VARIABLE. This is illustrated
in figure 1 a, where the record type is indicated by the rectangle labeled
VARIABLE. A sample record occurrence of VARIABLE is "XI" and
"AMOUNT OF RESOURCE I TO BE USED". Alternatively, record types
(and therefore data item types) may be associated with each other by means
of a set relation, as outlined in the CODASYL Data Base Task Group (DBTG)
Report of 1971 [3]. The DBTG "set" concept should not be confused with
the mathemàtical notion of a "set", for they are not related. A set is defined
in terms of an owner record type and a member record type such that there
is a one-to-many relationship between owner and member occurrences.
That is, there may be many occurrences of the member record type associated
with each occurrence of the owner record type; but for a particular set, a
given member occurrence may be associated with no more than one occurrence
of the owner record type. Consider the record types VARIABLE and COEF-
FICIENT, the latter being an aggregation of such data item types as COEF-
FICIENT-VALUE and COEFFICIENT-SOURCE. If we define the set
HAS with VARIABLE as its owner record type and COEFFICIENT as
its member record type, then we have indicated that there may be many
coefficients associated with each variable; but a given coefficient cannot
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be associated with more than one variable. Pictorially a set is indicated by
an arrow that points from the owner record type to the member record type
(see fig. 1 b). Not only does a set furnish information about the relation among
occurrences of owner and member record types, but it also permits the member

VARIABLE

VARIABLE-ID
VARIABLE-

DESCRIPTION

VARIABLE

VARIABLE-ID
VARIABLE-

DESCRIPTION

COEFFICIENT %w

HAS

CCEFFICÏENT-
VALUE

COEFFICIENT-
SOURCE

CURRENCY

b
Figure 1. — Example of structural components of a data base.

occurrences associated with an owner occurrence to be logically ordered
according to some criterion. For instance, given an owner occurrence of
the set HAS, its member occurrences may be ordered in an ascending fashion
according to the values of their data item type COEFFICIENT-VALUE.

Data base schémas are formally defined with a Data Description Language
(DDL). Depending upon the conventions permitted by the DDL various
kinds of data structure may be defined. If the DDL allows a record type to
be declared as the owner of no more than one set and the member of at most
one set, then the data base has a strictly linear structure. This is analogous
to the "array" data structure permitted in a FORTRAN program. If the
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DDL allows a record type to be the owner of more than one set, but the member
of no more than one set, then we have a tree structure which is analogous
to the data structure permitted by the Data Division of a COBOL program.
If a record type is allowed to own many sets, as well as be a member of more
than one set, then we have a network data structure. In keeping with the
GPLAN philosophy of providing generality and flexibility, GPLAN/DMS
and GPLAN/QS support network data structures. This pro vides a compact
and powerful tool for représentation of the types of data (and their relation-
ships) involved in mathematical programming; a detailed example is provided
in a later section.

The GPLAN/DMS furnishes a Data Manipulation Language (DML)
which gives the user a means for storage, modification and extraction of data
values for a particular data structure (as defined in terms of the DDL). This
DML is utilized within the framework of a host language, e. g., FORTRAN,
COBOL. Each command in the DML consists of a call to a FORTRAN
subroutine which is a part of the data mangement system. Therefore, these
DML subroutines essentially extend the FORTRAN language to give it
complete data manipulation capability with respect to data organized into
network structures. An important feature of this DML implementation is
its high degree of machine independence; i. e., subject to a few minor modi-
fications, this DML can be used on any machine that has a FORTRAN
compiler and a random access mass storage facility.

Whereas GPLAN/DMS requires that a user write programs in a host
language with the utilization of pertinent DML commands, GPLAN/QS
does not require one to be a programmer in order to utilize the data base for
purposes of display or exécution of large application routines. The user needs
merely to specify what is to be done; there is no statement of the procedures
to be followed in order to accomplish the task. Examples of very simple
commands are:

LIST COEFFICIENT-SOURCE FOR VARIABLE-ID = "XI" AND
CONSTRAINT-ID = <*R3";

LIST VARIABLE-ID AND CONSTRAINT-ID FOR COEFFICIENT-
SOURCE = "TEST 1".

Upon receipt of such commands, the query system analyses the request, sets
up the necessary DML commands, exécutes those commands and supplies
the requested data values. The system is designed such that it permits the
sélective (or unconditional) retrieval of any data configuration. Moreover,
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122 R. BONCZEK, C. HOLSAPPLE, A. WHINSTON

it permits exécution of application routines using any desired (and germane)
data from the data base. The fondamental query syntax is

< COMMAND > < RETRIEVAL CLAUSE > < CONDITIONAL CLAUSE >

The command indicates which application routine is to be executed; in the
queries above, LIST indicates that a report generator is to be executed. In the
retrieval clause the user spécifies what data are to be used for exécution;
this retrieval is dependent on conditions specified in the conditional clause.

USER
f (interactive or batch

mode)

Query System

(GPLAN/QS)

/ A
I Schema I .«-»..

Data Manage-
ment System
(GPLAN/DMS)

Data Base
Préparation

•—•«4 Data Base! j

Application
Output^

File

Application
2

Application
N

Figure 2. — GPLAN System.

A user of the query language is allowed to present arbitrarily complex
retrieval clauses. Not only may this clause contain the names of data items
to be retrieved, but arithmetic opérations (using literals or data items) and
both single and multivariate functions may also be introduced. The condi-
tional clause is composed of a Boolean expression which may contain data
item names, literals, arithmetic operators, relational operators, logical opera-
tors, single-variable functions and multivariate functions. The query
language also permits the use of noise words, synonyms and various other
cosmetic features for the convenience of the user.

A conceptual overview of the standard GPLAN system is portrayed in
figure 2. The library of application routines is composed of two sections:
Standard routines and special routines. The standard library of applications
consists of routines to generate reports and plots and to perform linear
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régressions, statistical analyses, and data modification. The library of special
applications may include such routines as linear and non-linear optimization
programs. In the succeeding sections we elaborate on the issue of interfacing
such optimization routines with a network data base by means of the three
methods alluded to in the introduction.

MATHEMATICAL PROGRAMMING WITHIN THE GPLAN CONTEXT

We examine this issue from the standpoint of providing flexibility and
convenience, both to those who implement mathematical programming
algorithms and to those make use of such implementations. In so doing,
we utilize the distinctive GPLAN features of the network data base structure,
the language for programmer interface with a data base (DML) and the
query language that allows non-programmers to effectively use a data base
and pertinent application routines. Not only does the GPLAN framework
allow for the obvious, i. e., the solution of linear and non-linear optimization
problems; it also addresses the following considérations, which may perhaps
be more subtle, but are certainly of practical significance.

1. The resolution of erroneous formulations.

2. Treatment of coefficients which are themselves functions.

3. Situations wherein matrices contain common data.

4. Storage of sparse matrices.

5. Utilization of data to produce timely, non-routine reports other than
the report furnished by a gênerai mathematical programming routine.

6. Ability of a data base to support other varieties of application routines
(e. g., simulations, régressions, etc.) in addition to mathematical programming.

The modus operandi for effective accomodation of each of these attributes
is detailed in the course of the sections which follow; however, a brief élabo-
ration of each is presently in order. With respect to the first point, when
erroneous coefficients or improper formulation is suspected the ready availa-
bility of information with regard to coefficient sources and currency is
important. This has obvious implications for the way in which data is organized
and retrieved.

Concerning the second attribute, it is not uncommon that coefficients
are the results of functions that have been evaluated on the basis of some
other data. There may even be alternate functional forms (or alternate data
sets for evaluating a fonction) which suggests the need for a facile method
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of interfacing desired functions with the math programming routines which
depend upon them. Indeed a linear programming routine may be viewed
as a function that requires (recurring) évaluation in order to exécute a non-
linear programming routine [4]. One technique for handling this situation
involves an élimination of the distinction between data and function, with
respect to data base construction; i. e., functions are treated as data and
included in the data base structure. This point will be elucidated in a sub-
séquent section.

Attribute number three is important for cases where there is interest in
several matrices, which are not entirely distinct with respect to constraints
and variables. For example we may be investigating a problem which has
multiple plausible formulations, some pairs of which share constraints (and
therefore variables). Care must be taken to assure that updates to constraints
in one matrix are reflected in other matrices which share these constraints;
this is not a trivial matter where large volumes of data are involved.
A technique that can be used within the GPLAN framework allows us to
store a contraint only once, while at the same time specifying that it is to be
included in an arbitrary number of matrices. This avoidance of redundancy
averts the potential for inconsistenties and storage inefficiënties. An extreme
example of non-distinct matrices is the case of matricies with in matricies (e. g.
linear programming problems solvable by the décomposition principle [12]).

Many real-world applications entail the utilization of sparse matrices.
In the effort to avoid storing zéros, many schemes have been devised for
packing (and unpacking) non-zero coefficients into arrays. Under the GPLAN
concept, all matrices (sparse or otherwise) can be accomodated by a single
simple logical structure, which realizes substantial storage savings if a matrix
happens to be sparse. Only non-zero coefficients need to be stored; and storage
space is neither used nor even allocated for zéro coefficients. This provides
a single mechanism for storing specially structured matricies of all kinds;
thus a special storage and access method is not required for each type of
matrix structure.

Presumably managerial décisions are not based solely upon the output
of mathematical programming routines. The fifth considération indicates
the need for a facility to generate other reports from a data base and fre-
quently these are non-standard in terms of the types and configurations
of data that are retrieved. The GPLAN query system allows the sélective
retrieval of any configuration of data as a resuit of typing an English-like,
non-procedural query at a computer terminal. This obviâtes the crude
necessity of writing a program every time a new type of report is needed.
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MATHEMAHCAL PROGRAMMING WITH A DATA BASE SYSTEM 125

This concept can be extended to include not only retrieval, but also the
exécution of large application routines that are not of the mathematical
programming variety. Futhermore such exécutions can be accomplished
through the query language. The result is a situation wherein a network
data base can support a broad spectrum of analyses for both programmers
and non-programming users.

MATRIX

VARIABLE

COLUMNS

CONSTRAINT , ,

ROWS

HAS

COEFFICIENT

CONTAINS

Figure 3. — Fundamental network structure of matrices.

A NETWORK DATA STRUCTURE FOR LENEAR PROGRAMMING PROBLEMS

In order to illustrate the distinctive features of data storage based on a
network structure, we outline a particular structure for storage of data relating
to linear programming problems. Aspects deserving special emphasis are the
generality, compactness, convenience, and organized nature of this means
for specifying and communicating about information needs. Figure 3 depicts
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the fundamental logical structure of information contained within matrices.
Recall that each rectangle represents a record type and each arrow dénotes
a set. The record type MATRIX is the owner of two set types: COLUMNS
and ROWS. Since a set defines a one-to-many relationship between an
occurrence of the owner record type and possibly many occurrences of the
member record type, the set COLUMNS associâtes occurrences of the
VARIABLE record type with an occurrence of MATRIX. Similarly,
ROWS indicates that there are many constraints associated with a MATRIX.

Within a matrix there is a many-to-many relation between variables and
constraints. That is, a variable is contained in many constraints, but each
constraint contains many variables. This kind of relation, by définition,
cannot be represented by a single set. However, it can be represented by two
sets (HAS and CONTAINS) which have a common record type COEFFI-
CIENT as member. So an occurrence of the VARIABLE record type HAS
many COEFFICIENTS associated with it. Similarly each constraint
CONTAINS many coefficients. Recall that in the définition of a set, it was
stated that a member occurrence of a particular set can be associated with
no more than one occurrence of that set's owner record type. Thus a given
occurrence of COEFFICIENT cannot be associated with more than one
variable (via the HAS set) and one constraint (via the CONTAINS set).
In other words, if we are given an occurrence of COEFFICIENT we imme-
diately know the variable and constraint with which it is associated. Conver-
sely, if we are given an occurrence of VARIABLE and an occurrence of
CONSTRAINT then we can immediately détermine the coefficient which
they have in common. (Notice that this structure allows them to have more
than one occurrence of COEFFICIENT in common; this handles the contin-
gency where there is uncertainty as to the correct value of a coefficient, so
that alternative values rnay be stored for purposes of further analysis.)
When a coefficient is zero, no occurrence of COEFFICIENT is created so
that the corresponding variable and constraint can have no coefficient in
common.

Observe that the logical structure of figure 3 does not permit two matrices
to have a variable or constraint in common. By the définition of a set,
COLUMNS does not allow an occurrence of VARIABLE to be owned by
more than one occurrence of MATRIX; the same holds for ROWS. One
way to treat this problem is to allow redundant occurrences of the record
types VARIABLE and CONSTRAINT; but this poses problems for the
maintenance of data base integrity. However, we can extend the present
logical structure to handle the case of many-to-many relationships between
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PROBLEM OBJECTIVE-FUNCTION

PROBLEM-ID
MIN-OR-MAX

COLUMN MATRIX

VARIABLE

VI

FOR OBJ-FUN-ID

IN ROW

MATRIX-ID Cl

V2

CONSTRAINT

VARIABLE-ID
VARIABLE-

DESCRIPTION|

C2

CONSTRAINT-ID
CONSTRAINT-
DESCRIPTION

RELATION

COEFFICIENT CONTAINS

HAS COEFFICIENT-
VALUE

COEFFICIENT-
SOURCE

RIGHT-HAND-SIDE

OBJ2

CONSTANT-
VALUE

O-F-COEFFICIENT

OBJ1 O-F-COEFFICIENT
VALUE

O-F-COEFFICIENT
SOURCE

Figure 4. — Extended logïcal data structure

MATRIX and VARIABLE and between MATRIX and CONSTRAINT
without introducing redundancy. The structure is shown in figure 4 and is
analogous to that discussed for the many-to-many relation between
VARIABLE and COEFFICIENT. Figure 4 also portrays the means for
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structuring information about the objective function and shows how matri-
cies and objective fractions can be associated with one another to form a
PROBLEM. Figure 5 shows an example of this at the record occurrence
level. Each circle depicts an occurrence of the record type indicated in the

Record
Set Type

MATRIX

IN

PROBLEM

FOR

OBJECTIVE
FUNCTION

OBJ2

O-F-
COEFFIC1ENT

OBJ1

VARIABLE
—s

Figure 5.
Problem formulât on using the logical data structure of figure 4.

right margin. Arrows emanating from an occurrence point to other occurrences
that it owns by virtue of the set specified opposite the arrows in the right
margin. For instance, "Ml", "Al" and "A2" are occurrences of the record
type MATRIX. Recalling that a set defines a one-to-many relationship
between an occurrence of its owner record type and occurrences of its member
record type, we observe that "Ml" is associated with two occurrences of
the record type PROBLEM (i. e. "PI" and "P2") via the set named IN.
It can also be seen how the sets IN and FOR allow us to dénote which matrix
and which objective function constitute a problem. The problem identified
by "P4" consists of the objective function "OF2" and the matrix "A2",
but "A2" also participâtes in problem "P5" and "OF2" participâtes in
problem "P3". In the lower portion of figure 5, it can be seen how the sets
OBJ1 and OBJ2 are used to show which variables are associated with each
objective function. Note that variable "V2" is found in both "OF1" and
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"OF2"; its coefficient value is 3.0 for the former and 1.1 for the latter.
For diagrammatic clarity, not all record occurrences are shown; double
headed arrows are used to indicate ownership of several members which
are not displayed.

Set

V1

Record

Type

MATRIX

ROW

MATRIX

Figuré 6. — Record occurrence représentation non-distinct matrices.

Once again utilizing the logical data structure of figure 4, a record occurrence
représentation of non-distinct matricies is presented in figure 6. In particular
the example is that of matricies (Al5 . . . , Ar, BI, — , Br) within another
matrix (Ml). Thus the logical structure of figure 4 provides the means for
representing matricies solvable by the décomposition algorithm. The reader
should observe that the example is easily extendable, within the same structural
framework, to accomodate the situation wherein the matricies BI, . . . , B r
may themselves be of the décomposition form, and so forth. Referring to
figure 6 we see that the master matrix " M l " includes all variables, whereas
the other matricies include only a few. Observe that constraint " C l " contains
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the variables "VI", "V2", "V3" and "V4" with coefficients "1.4", "8.2",
" 1 . 1 " and "7.7" respectively; all other variables have zero coefficients (for
which no storage is allocated) with respect to this constraint. Constraint "C2"
has only two non-zero variables (i. e. "VI" and "V4" with coefficients "3.7"
and "9.3"). Finally notice that constraints are associated with appropriate
matricies via the sets "C2" and "Cl". For pictorial convenience the occurrences
of MATRIX shown at the bottom of the figure are repeats of those shown
at the top, but such occurrences are not repeated in the actual data base.
Note that "Ml" encompasses all constraints, whereas the other matricies
include only some of the constraints.

THE INTERFACE OF PROGRAMS AND DATA BASE

The first two methods described here are presently fully available to
GPLAN users; the third method is the object of current extensions to GPLAN.
The first method examined here makes use of existing programs that have
been devised independently of data base management considérations. Each
such program requires that input data be in the particular format that it can
use. Thus if the data that a linear program (LP) requires is stored according
to a data base structure like that of figure 4, then that data must be extracted
from the data base and written onto a file in the format amenable to the LP
routine. An obvious way to accomplish this is to write a program that uses
DML commands to find and extract pertinent data from the data base.
Output statements of the host language are used to transfer extracted data
to a sequential file that is formatted for use by the LP routine. This DML
extraction routine can serve to interface the LP routine with any LP problem
that résides in the data base.

Incorporation of the extraction and LP routines into the query system's
library of special applications allows us to submit queries such as

RUN LP FOR MATRIX-ID = "M27" AND OBJ-FUN-ID = «OF1'\
RUN LP FOR PROBLEM ID = "P7".

As previously mentioned, the system also furnishes flexible and broad
retrieval capabilities, exécution of statistical and régression packages from the
standard library and the ability to support a special library that may contain
routines ranging from special report generators to large scale simulations.

A second method of application-data base interface makes use of DML
commands within the mathematical programming routine proper. Thus,
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the entire formulation of the problem need not réside in the program's arrays,
nor is there any need for overlays; instead, DML is used to withdraw and
return particular coefficients (or groups of coefficients) to the data base as
needed by the algorithm. The standard DML can do little more than store,
find and extract data values. But what is a pivot opération if not a type of
data manipulation. It is therefore as a logical extension to the DML, that we
introducé a group of extended DML commands applicable to mathematical
programming. In so doing, this second method of application-data base
interface is greatly enhanced, for the programmer can issue DML commands
to perform such tasks as pivoting, finding inverses and déterminants, and even
the solution of a linear System. Such commands are predicated upon the
natural network data structure for LP problems as presented in figure 3 and 4.

For instance, the pivot command has arguments indicating the matrix,
column and row for which the pivot opération is to be executed. This command
is implemented by invoking the appropriate DML routines and performing
appropriate arithmetic opérations. The DML routines traverse the network
structure (implemented as a doubly linked list [1]), access coefficients to be
operated upon, and store the modified coefficients back into the data structure.
No overlaying is required in the implementation of the pivot command,
since it is handled automatically by the DML thereby providing a virtual
system. The pivot command may be utilized in the development of linear
programming code, leading to a single command which solves a linear system.
This LP command could be based on any of a variety of LP algorithms.
Indeed it may be désirable to devise several LP commands. For example,
LP1 may be based on the simplex or revised simplex method and LP2 could be
an implementation of the décomposition algorithm [12]. This LP2 would
repeatedly utilize the LP1 command, which repeatedly utilizes the pivot
command. In any case it should be noted that programs using this second
interface method are, of course, amenable to intégration into the special appli-
cation library of the query system.

The third method for interfacing applications with the data base consists
of treating applications as part of the data base, i. e., application routines
are accounted for in the logical structure of the data base. In order to elucidate
the concepts involved, we make use of the following example drawn from the
field of water pollution control. Previous work employing GPLAN in the
pollution control context is described in [5, 10]. This work has been largely
predicated upon continuing efforts to develop tools to assist planners in their
attempts to comply with the Fédéral Water Pollution Control Act Amend-
ments of 1972.
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Figure 7. — Overwiew of logical structure.

Briefly, each river within a basin is decomposed into reaches, each of which
describes a portion of the river in which certain state characteristics are rela-
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tively invariant and in which there is at most one pollution source (outfall)
or incrémental flow. A group of contiguous reaches which exhibit water
quality impairment may be declared to be a designated area for local planning
purposes. Water quality within a given reach dépends not only upon that
reach's state characteristics, polluter activities and pollution treatments;
but also upon the state characteristics, polluter activities and pollution
treatments of all upstream reaches. One objective, then, is to ascertain a
basin-wide treatment plan which: a) satisfies legal water quality standards;
b) is amenable to implementation from political, managerial and technical
stàndpoints, and c) minimizes the basin-wide cost of treatment. Other consi-
dérations involve the monitoring of polluter compliance with the conditions
of their discharge permits, the management of treatment facilities construction,
and area-wide coordination of water pollution control programs with other
local activities such as land use planning.

Figure 7 displays a simplified version of a logical data base structure for
area-wide water quality planning; the data item types are too numerous to
include here. As can be seen, this data base includes information about basin-
wide piping plans, state characteristics within each reach, flow characteristics
of the basin, température and effluent data for the reaches, water quality
goals and existing treatment plans. Provision is also made for permit
compliance monitoring and other planning data. More detailed descriptions
of these record types and their data item types may be found in [9],

Suppose that the cost Cj of controlling thermal effluent by means of a
cooling tower in reach g is known and stored as part of the HEADWATER
record type. Then the overall cost of controlling température in the river
can be represented as

where T* is the température of the thermal effluent in reach g (stored in the
record type POLLUTER DATA); TE is the equilibrium température of the
basin (stored in MODEL record type); Fg4 is the thermal effluent entering
reach G from upstream (part of the REACH DATA record type); and sg

is the percent of thermal effluent removed at the cooling tower in reach g.
The décision variable is sg. In order to represent the function CT in the data
base, we déclare a record type for CT (see fig. 8) which is associated with
the record types MODEL, REACH DATA, HEAD WATER and POLLUTER
DATA via set relationships named for the data item values to be extracted
from these record types. Thus we store programs (CT is a very simple program)
as occurrences of record types; e. g., if there were several ways to compute C r ,
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we would have one occurrence of the record type CT for each functional form.
Similarly, piping costs (CL), treatment plant costs (Cp), and flow augmen-

tation and reservoir costs (CR) can be computed from stored data base values
and dependent variables, and the corresponding record types can be
constructed. These three, in addition to CT, are combined to compute a total
pollution control cost:

The décision variables for TC are simply those for each of the component
costs. Observe that the component costs are effectively subroutines of the
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total cost computation. Figure 9 uses program record types portraying this
relationship. Thus we have an example of the kind of structural information
that can be indicated by the use of program record types. The data structure
reflects the subroutine flow and can be queried to furnish documentation
about the opération of stored programs*

Fg2 dg2

(fgl>Pml> tgm)

Tg4(sg)

POLLUTER
DATA

MODEL

HEADWATER

INCREMENTAL
FLOWS

(At , tgm)

REACH
DATA

SIMULATION

Figure 11. — Calculation of B°, D^ Tff°, and TIME.

The user of a data base system incorporating such program record types
can compute the cost of treatment for a given plan of treatment by specifying
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Figure 12. — Calculation of Bg, Dg, and Tg.
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Figure 13, - Water quality constraints

values for the décision variables. Furthermore, we now examine how programs
can be used to détermine a treatment plan and therefore a total cost. A method
for solving the problem:

Minimize: treatment costs;
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Figure 14. - Optimization model

Subject to: quality goals satisfied;
is outlined in [10]. The total cost function described above becomes the
objective function of a non-linear programming model. The décision variables
of the total cost function are the primai variables in the minimization.
Représentation of the flow balance équations for pollution and treatments
is shown in figure 10. The water quality goals, although complicated can also
be represented through the use of program record types; see figures 11
through 13. Notice that results of the computation of B%9 Z>°, T° and TIME
{fig. 11) are used in the calculation of Bg (biochemical oxygen demand),
Dg (dissolved oxygen deficit) and Tg (thermal effluent température) as shown
in figure 12. Flow balance constraints are combined with water quality
constraints in figure 13. Finally, the entire optimization package can be repré-
sentée as a program record type (fig, 14). This optimization program can be
executed to détermine an optimal treatment plan and can be dissected to
indicate the assumptions behind the exécution of the model. Observe that the
quality constraints can be evaluated individually with a particular set of
dependent variables, in order to détermine the effect of a particular treat-
ment plan.

The non-linear programming subroutine is available for use on two levels.
It can be used as a stand-alone program, where the objective function and
constraints are specified by the user at exécution. As evidenced by the example
just presented, it can also function as a participant in a predefined package.
In the instance where a non-linear algorithm utilizes a linear programming
algorithm, then the linear routine can either be used in a stand-alone capacity
or in conjunction with the non-linear routine. Perhaps the most outstanding
feature of this treatment of programs, beyond the facile query capability,
is the flexibility that it permits with respect to combining programs into
models. The issue of automatic interface of programs with a data base is
examined in [11].
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CONCLUSION

In this paper, we have examinée numerous aspects of mathematical pro-
gramming within the context of a generalized data base management and
query system (GPLAN). Special attention is devoted to the incorporation of
mathematical programming into a data base system that is gênerai, in the
sense of its ability to support other applications (e. g., simulations, statistical
analyses, etc.) and its independence from the actual kinds of data values
available. Organization of data values according to a network logical structure
was delineated. Three methods of data base-application interface were inves-
tigated. Enhanced data manipulation facilities (particular to matrices and
Systems of équations) were introduced. Also introduced was the concept
of treating programs as data, which has broad implications for the user's
ability to build models. This was illustrated with an application drawn from
the field of water quality planning. The objective has been to demonstrate
contributions which the data management field can make to the development
and implementation of mathematical programming algorithms. It is suggested
that future advances in data management technology may further enhance
these contributions. A topic of future investigations is that of the exécution
of math programming routines within a distributed data base environment.
Especially important in tMs regard is the décomposition form of linear pro-
gramming. As a final note, it is important to observe that the concepts
presented are not spécifie to water quality planning, but are applicable to
any situation where data is analyzed via mathematical, statistical or simu-
lation programs.
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