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DIRECT SOLUTIONS
OF M/G/1 PRIIORITY QUEUEDNG MODELS (*)

by T. M. O'DONOVAN (*)

Abstract. — This paper présents a gênerai methodfor deriving expected conditional response
times in priority queueing models. The method consists of applying Kleinrock's conservation
law to subsystems ofjobs with priority over all otherjobs. The method is illustrated for the fol-
lowing queue disciplines: preemptive résume shortest processing time, non-preemptive résume
shortest processing tinte and shortest remaining processing time,

Three well-known queueing models are considered in which priority is
assigned to jobs on the basis of their processing times. It is shown that the
average waiting times in these models are easily evaluated by applying a
conservation law to a subsystem ofjobs.

Mathematical models of priority queues have been widely studied (see
Jaiswal [3]). This paper is concerned with priority queues in which priority
is assigned to jobs on the basis of their processing time requirements. Of
these Systems, the Non-preemptive Shortest Processing Time system is most
widely used. In this systeme jobs are served to completion. When a job is to
be selected from among those waiting, the one with the shortest processing
time is chosen. In the Preemptive Resumé Shortest Processing Time system,
an arriving job wiil preempt the job in service if and only if the processing
time of the new arrivai is less than the total processing time of the jobthen
in service. Partially completed jobs can be remöved from the processor and
returned at a later time without waste of time or work already done. In the
Shortest Remaining Processing Time system, an arriving job will preempt
the job in service if and only if the processing time of the new arrivai is less
than the remaining processing time of the job then in service. When a job
is to be selected from among those waiting, the one with the lowest remaining
processing time is selected.

The expected conditional waiting times in M/G/1 models under these queue
disciplines were derived by Phipps [6], Cohen [1] and Conway, Maxwell
and Miller [2], respectively, by first evaluating this characteristic in models
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108 T. M. O'DONOVAN

with a finite number of priority levels and then letting the number of levels
become infinité. In the case of the last System, Schrage and Miller [7] have
given a direct dérivation of this characteristic using a complicated busy period
argument. Hère it is shown that for each of these models, this characteristic
is easily obtained directly by applying Kleinrock's Conservation Law [4]
to a subsystem of jobs.

We consider M/G/l queueing Systems in which jobs arrive at rate X and
the processing times are independently sampled from a distribution having
distribution function F(,). At each epoch, a job in the system is either waiting
for service, being served, or (under queue disciplines which permit interrupt-
ing a job in service before it is completed) in limbo (see Wolff [8]). The waiting
time of a job is the time from the epoch the job arrives until the epoch its
service begins. Let W(t) be the êxpected waiting time of a job whose
processing time requirement is t units. Let l/\i and m2 be the first and second
moments of the processing time distribution.

Define,

p = X~t F= -Xm2,
u 2

m(t) -i'F(t)
X(t)m(t).

A CONSERVATION LAW

Kleinrock [4] has proved a Conservation Law for queueing Systems subject
to the following restrictions:

1. Ail jobs remain in the system until completely serviced.
2. The single service facility is always busy if there are any jobs in the system.
3. Préemption, if it occurs, is of the preemptive-resume type.

Consider the load on such a System at a given time point, i. e. the total
processing time yet to be allocated to all the jobs in the System. It is obvious
that this load is independent of queue discipline. Thus L, the êxpected load
on the system at a random time point, is also independent of queue discipline.
The êxpected load on the system at a random time point due to the job, if
any, in service is well known to be independent of queue discipline and to
have the value:

V=^Xm2, (1)

(see Wolff [8]). This holds not only for Poisson arrivais but also for genera!
independant arrivais. Thus the êxpected load on the System due to jobs
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waiting or in limbo is also independent of queue discipline. We will evaluate
ti in a system with a First Come First Served queue discipline. If W is the
expected waiting time in such a system, it follows from Little's relation [5]
that the expected number of jobs waiting for service at a random time point
is X W and so the expected load on the system due to these jobs is X Wlf\i.
Assuming that the arrivais of jobs to the waiting line form a Poisson process,
we have W' = L.

Thus

L= p L+ V. (2)

This is Kleinrock's Conservation Law.

In this paper, we consider M/G/l queueing Systems under the following
queue disciplines:

1. Preemptive Resumé Shortest Processing Time.

2. Non-preemptive Shortest Processing Time.

3. Shortest Remaining Processing Time.

Let Wx{t) (1 S i ^ 3) be the value of the expected waiting time W(t)
under the corresponding queue discipline. We evaluate Wt (t ) as follows.
In each system, we define a different subsystem of jobs St and let L t be the
expected load on the subsystem. It is immediately obvious that in each
system Wt (t ) has two components :

a) The expected load Lt.

b) The delay caused by subséquent arrivais while this load is being cleared,
whose processing times are less than t. Such jobs arrive in a Poisson process
with rate X (t) and their expected processing time is m (t ). By delay cycle
analysis [2], it follows that:

^ (3)
l-p(0

In each system, Lt is evaluated by applying the Conservation Law (2) to the
subsystem of jobs St. This is possible because the jobs in the subsystem S(

have priority over all other jobs and so condition (ii) for the Conservation
Law is satisfled. Let Lf+Lbc the expected load on the subsystem St at a random
time point due to jobs waiting or in limbo and let Ls. be the corresponding
expected load due to jobs in service. Then:

L\. (4)
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110 T. M. O'DONOVAN

THE PREEMFITVE RESUME SHORTEST PROCESSING TIME
SYSTEM

Let St bç the subsystem of jobs whose processing times are at most t. The
arrivai rate öf such jobs is X F (t ) and the second moment of their processing

time distribution is x2 (dF(x)/F(t)). Thus by (1), we have:is
Jo

F(OJ
By the argument used in the dérivation of the Conservation Law it follows
that:

Thus from (4),

and so from (3),

(1-P(O)2

(see Cohen [1]).

THE NON-PREEMPTTVE SHORTEST PROCESSING TIME SYSTEM

Let S2 be the subsystem of jobs whose processing times are at most t plus
the job, if any, in service. Jobs whose processing times are at most t enter
this subsystem on arrivai and join the waiting line, if any. A job whose
processing time exceeds t can only enter the subsystem if there are no jobs
whose processing times are at most t in the subsystem. Such a job begins
service as soon as it enters the subsystem and thus never joins the waiting
line. From (1), it follows that:

LS
2=V.

As before, the contribution to LJ+L of jobs whose processing times are at
most / is p (/ ) L2. Jobs whose processing times exceed /, never join the waiting
line and so their contribution to LJ+L is zero. Thus from (4),

and so from (3):

(see Phipps [6] and Cohen [1]).
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THE SHORTEST REMAINING PROCESSING TIME SYSTEM

Let 5*3 be the subsystem of jobs whose remaining processing times are at
most t. Jobs whose processing times are at most t enter this subsystem on
arrivai and join the waiting line, if any. A job whose processing time exceeds t9

will only begin to be served when there are no jobs in the subsystem whose
remaining processing times are at most t. When its remaining processing
time equals t, it then enters the subsystem and continues in service unless
preempted by a subséquent arrivai. Thus such a job never joins the waiting
line. Since ail jobs in the original System eventually join the subsystem and
the time spent in service by a job in Sz is distributed as a processing time
truncated at t, we have from (1) that:

As bef ore, the contribution to Lf+L of jobs whose processing times are
at most t is p (/ ) JL3.

As shown above, jobs whose processing times exceed t never join the wait-
ing line. Since LJ+L is independent of queue discipline and when jobs in S3

are served First Come First Served, jobs whose processing times exceed t will
never enter limbo while in S3, the contribution of such jobs to L^+ L is zero.

Thus from (4),

L3 = p(OL3+i

and so from (3),

(see Schrage and Miller [7]).
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