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ARRIVAL AND DEPARTURE PROGESSES
IN QUEUES.

POLLACZEK-KHINTCHINE FORMULAS
FOR BULK ARRIVALS AND BOUNDED SYSTEMS

par M. KKAKOWSKÏ

Abstract. — This paper dérives several relations among the probabilities of queue size
at instances of arrivai, departure, and random obsevation. This is done for G/G/c, M/G/c
without or with bulk arrivais, G/M/c, bounded M/G/c, and birth-and-death Systems,

In the Supplement the Pollaczek-Khintchine formula is extended to bounded Mj'Gj1 and
to M/G/l with bulk arrivais.

Several equalities and inequalities relate the expected queue sizes to the sizes expected
by an arrivât

In the theory and practice of queuing Systems it is often necessary to
distinguish among the following distribution functions.

P(n, t) = probability of « customers being in the System at time t;
p(n, t) = probability of n customers being in the queue at time t;
Q(n, t) = probability that a new arrivai at time t finds n other customers

in the System; cf (A3)
Q*(n, t) = probability that a departing customer (serviced or reneging) at

time t leaves behind n other customers in the System; cf. (AA)
q(n, t) = probability that a new arrivai at time t finds n other customers

in the queue;
q*(n, t) = probability that a customer leaving the queue (entering the

service booth or reneging) at time t leaves behind n other customers in the
queue.

Note that the term «queue» dénotes the waiting line for service only;
the term « queuing system » includes both the waiting customers and those
being serviced.
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46 M. KRAKOWSKI

When the time / does not enter explicitly in the distribution functions,
as in the stationary case, the variable / will be omitted and the variable n will
be lowered into the subscript level. Thus P(n, t) becomes PB, etc.

Notation for tltie statîoaary regime
00

L — expected number of customers in the queuing system = £] nPn ;
î

00

/ = expected number of customers in the queue = ^nPn+l ;

ô = expected number of (other) customers found in the system by a
new arrivai;

Ô* = expected number of customers left behind in the system by a depar-
ting customer (serviced or reneging);

q — expected number of (other) customers found in the queue by a new
arrivai;

q* = expected number of customers left behind in the queue by a customer
leaving the queue (entering the booth or reneging);

c = number of channels;
X = frequency of arrivais; if this frequency dépends on the state of the

system n it will be shown as X„;
(jL — frequency of departures for a channel under full-load conditions,

i. e. l/[L == average servicing time; when this frequency dépends on the state
of the system n it will be shown as [x„;

P =

In the notation GfG/c9 MjGjc, M/M/c> etc. the first letter refers to the
input, the second to the service times and the third to the number of channels.
«]M » dénotes Markovian, that is either Poissonian input or negative-exponen-
tial times; « G » stands for gênerai, independent interarrivai or service intervals.

The following Theorems, A through E, appear to be little known, excepting
Theorem B for the case or a single channel. It is the object of this communi-
cation to provide simple proofs of these statements, all referring to stationary
conditions.

Equations relating L to Q and l to q are given for G/Mfc and MfGfc.
In the Supplement, Section 2, an inequality between / ansd q is derived for G/G/L
In section 3 the Pollaczek-Khintchine formula is extended, using theorems B
and A to bounded M f G/l. With the help of scholion to theorem B, it is extended
to M/G/X with bulked arrivais in Section 4.

The proof of theorem E has an example of two processes with pairwise
identical state probabilities Pn but with pairwise different encounter proba-
bilities Qn.
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ARRIVÂL AND DEPARTURE PROCESSES IN QUEUES 4 7

The proofs are not rigorous — we stress the perceptible and intuitive
— and may be treated as plausibility arguments.

Theorem A

Under very wide conditions, in particular for GfGfc where, ccan bea ran-
dom variable, and for the birth-and-death process we have

(A.1) Ô, = Ô*«» andhence 0 = 0*,

and

(A.2) qn^q*m andthus q = q*.

Accordingto (A.l)the probabilitythat a newcomer (abonafide customer,
not an outside observer) finds n other customers in the System equals the
probability that a departing customer leaves behind n others in the systenou
The expected size Q is the size expected just prior to an arrivai and just after a
departure.

(A.2) makes similar statements about the queue (system minus service
stations). Departures, in both (A.l) and in (A,2) can be due to completed
service or to reneging of customers,

Moreover, the system may be bounded and the number of servers may
be a random variable. It is, however assumed in theorem A that no bulking
takes place, i, e, that the probability of the simultaneous occurence of two or
more events is zero (or that the probability of two or more events during dt
is of the order d*2); an e vent is an arrivai or a departure of a customer, possibly
by reneging. If bulking does take place the theorem has to be modified but
we shall not do it hère. (For some purposes a strategem such as resolving a
multiple event artificially into a séquence of single events may restore thé
applicability of theorem A in its stated form.) Note, however, the Scholion
to theorem B and our second extension of the Pollaczek-Khinchine Theorem
which deal with bulked arrivais.

Scholion, If there are several classes of customers, each class with its own
interarrivai and service distribution functions, then theorem A applies separa-
tely to each class of customers.

Theorem B

For a system M/Gfc, where the number of channels, c, may bé a random
variable and where reneging may take place, we have

(B.l) Pn = Qn^Q\ and L = Q - g*.

Similarly

(B.2) Pn^qn^Q*n and l^q^q*.
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48 M. KRAKOWSKI

(B.l) means that for the oft treated System M/Gfc the probability of finding
n other customers in the System by a (bonafide) new customer equals the
probability of finding n customers by an outside observer at a random instant
of time ; and the two probabilities equal the probability that a departing
customer leaves behind n other customers. The three corresponding average
System sizes are ail equal.

Scholion. Consider now bulked arrivais, where the multiple arrivai events
form a Poisson process, and the number within the incoming group may be a
random variable. Then the probability that an arriving group finds n custo-
mers within the System (queue) equals Pn (pn) i.e. the probability that a random
observation will find n customers in the System (queue). This generalizes the
équation Pn = Qn and the équation pn = qn. The relations Z, = Q and /= q
also hold for the bulked Poisson input. Note that in this extension we make
no statements about the size of the System at departure instants.

If there are several classes of customers then (B. 1), (B. 2) and the Scholion
apply to each class separately.

Theorem C

For G/Mfc we have

(CI) PÔ» = min[c;n + l]Pn+1

(C.2) cL = p(Ô + !) + £ * ( * - k)Pk.
î

When c = 1, i.e. for a System G/M/l, we have

(C3) pQn = Pn+l

and

(C.4) L = p(Q + l) and / - PQ.

Theorem D

If the System M/G/c is limited to N customers (that is in state Nthe arrivais
drop out without repeating their attemps; or the frequency of arrivais is zero
when the System is full and is X otherwise) then

(D.l) Qn = PJ(l-PN) , qn=pJ(\—Ps) ; Ù<n<N-l\

(D.2) Ô = LUI — PN) and g - 1/(1 - PN).

(D.l) States that the (successful) probabilities of encounter, Qn9 where
0 < n < N—1, are obtained by normalizing the state probabilities Pn

to add up to one. (D. 2) follows from (D. 1).
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ARRIVAL AND DEPARTÜRE PROCESSES IN QUEUES 4 9

QN = 0, but PN # 0, of course. Thus,

for ft and m ranging from 0 to N— 1,
and

i V - l

Zö„ = l and %
o

When étends to ïnfinity (D.l) and (D.2) become (B.l) and (B.2), respec-
ively*

As in theorem 2?, the relation proved in theorem A9 namely Qn = g*„
still holds, of course.

Theorem E

For the bïrth-and-death process let X„d/ and pndt be the probabilities of
an arrivai and of a departure, respectively, within the time dt9 when the system
is in state n; then

(E.1) Ö„ - KPJK where •% - £ \Pa
o

and

Moreover,

(E.3) on — Pn if» and only if, Xfl = X.

As shown by an example in the propf, two birth-and-death processes may
have identical sets of state probabilities, Pnt and different sets of encounter
probabilities Q„.

Proof of Theorem A

The formai définitions of Q(n91) and of Q*(ri91) are,

• A ̂  *, \ f. n t. \n customers I new arrivai 1(A.3) ö(«> t) = hm Prob I 4 4, ,A, • . . . xv y " v J
 d,^0 [ at time/ | within (t91 + df)J

_ .. Prob [« at t & an arrivai within (t, t + d/)]
Pr°t> [a nèw arrivai within (f, /' + dr)]

(A.4) Q*(n91) == lim Prob [n + 1 at t \ a. departure within (/, / + d/)]
dt**Q

_ .. Prob [n + 1 at / & a departure within (/, t -f di)]
" d /^0 Prob [a departure within (f, / + di)]
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50 M. KRAXOWSKJ

Under stationary regime and no bulking the numerators in (A. 3) and (A. 4)
must be equal since the probability of a transition from state n to the state
n + 1 during dt equals the probability of a transition from state n + 1 to
the state n during dt; this is the same as saying that tke frequency of transi-
tions from n to n + 1 must equal to the frequency of transitions from n + 1
to n under stationary conditions.

The denominators in (A. 3) and in (A. 4) must also be equal under stationary
conditions since the frequency of arrivais into the System must equal the
frequency of departures.

(In the Scholion to theorem B (A. 3) is adapted to bulked arrivais.)

Therefore

(A.l) Qn-Q\ and Ö = Ö*

as was to be shown. The proof qf (A.2) is quite similar to that of (A.1) and
wili be omitted.

Notice that in the above considérations it was immaterial whether a
departure was a resuit of completed service or of renèging. In view of the
simplicity of the assumptioiis, stationarity of opération and no multiple events,
it is clear why the theorem A holds under such wide conditions.

The proof of the Scholion to tneorem A is virtually a rephrasing of the
proof above for a single type of custómers.

Alternate Proof of Theorem A

Consider an enclosuré, e.g. a waiting room, with people moving in and
out, singtyj uridèr stationàr^ regime. Thé event « an arrivai enëoünters n other
people » and the event « a departer leaves behind n people » must alternate.
Hence their frequencies Qn and ô* a r e equal.

This scenario includes the queuing System, or the queue only, of GjGjc
with random or programmed )c,:reneging custoners and servers, and dependent
inter-event intervais. Coincidence of two events is assumed of probability
zero.

The nature of the argument shows that the System need be stationary in a
very weak sensé. The inside of a scheduled airplane is stationary enough.

(If bulked arrivais orndepartures take place then the event «an arrivai
group increases the System size to more than n » and the event « a departure
group decreases the size öf thé system to less than n + 1 » inust alternate.
This is clear geometrically also. A eut separating the systein sizes « n or less »
from the system sizes «;more than n» is crossed as frequently upwards as
downwards in the course of its history.)
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ARRIVAL AND DEPARTURE PROCËSSÉS IN QUEUES 51

Proof of Theorem B

For MjGfc the nümerator in (A3) above is, under stationary conditions*
Pn*\*dt; the denominator is X»d*- Hence, Qn = Pm and using the result
of theorem A we get Qn == Q*n == Pn. It follows therefore that also
g = g* = £,. This complètes the proof of (B.l). The proof of (B.2) is quite
similar and will be omitted here.

The result Qn = Ptt is intuitiyely plausible. A poissonian arrivai is
« random » and can be thought of as the investigator's probing instant. The
Poisson arrivai process of intensity X can be thought of as composed of two
independent Poisson processes with intensities dX and X — dX. The first
process dX, will be used only as the surveyor's timing process which he uses
the way a statistician uses a table of random numbers.. The observations are
made at the instances of, the events of the process dX, without any « customers »
joining then the queuing system. When dX tends tö zero the observations tend
to become successively independent, while X — dX tends to the original pro-
cess X, yielding in the limit the state probabilities PB. (The sâme rêasoning does
*not apply to a gênerai arrivai process because this process cannot, generally,
be represented as a sum of two stochastically independent processes dX and
X — dX, where dX is poissonian.)

To prove the Scholion to theorem B notice that if in (A.3) the word « arrivai »
is replaced by » group of arrivais » the eqüalïty Pn = Qn rémains valid.

The proof that theorem B applies to each class of customers separately,
when there are several classes of them, is obtained by applying the above
rêasoning to each class separately and using the Scholion to theorem A.

Proof of Theorem C

The numerator in (A. 3) is the expected number of transitions from state
n to state n + 1 during d*. Under stationary regime this equals the expected
number of transitions from state n + 1 to state n which for G/M/c is

Pn+1y.mm[c;n + l]dL

The denominator is Xd*s since the overall arrivai rate is equal to the overall
departure rate. Therefore,

pQn = Pn min [c; n + ll

Multiplying both sides of the above equality by n + 1 and summing
from n == 0 to infinity we get

(Ô + l)p = cL — 2 , k(c — k)Pk.
1

When c = l w e have L = (g + l)/>#

jaavier 1974, V-L



5 2 M. KRAKOWSKI

Proof of Theorem D

The numerator in (A.3) is now (the system being M/G/c and limited to N
customers, where N p c), under stationary conditions,

PBXd/ when n < JV— 1, and equal to zero when n = JV.

The denominator in (A.3) is, counting successful arrivais only,

X[l — P(N)]dt,

since only when n = N are new arrivais barred from the system. Hence,

Qn = PJ[l - Ps]9 and QJQn -

the integers m and n range from 0 to N'— 1 and £ ô* = £ P* = 1.
o o

Proof of Theorem E
The probability of an arrivai during dt is \dt when the system is in state n9

and the probability of departure is then jxBd/.
The numerator in (A.3) is P„\,d/ and the denominator

0 0

is J ] Pn\ = X, the average overall arrivai rate.

Therefore

(E.1) QH - W/X,

and Ôn+i/Ô» = \+iP„+i/\P„.

Since transitions from state « to n + 1 are as frequent as those from state
n + 1 to «, we have

(E.2) P A -

and it follows from the last two équations that

In view of theorem A Q„ = Q*n.
Remarkably, it follows that two birth-and-death processes may have

identical state probàbilities PB*and different encounter probabilitieà Qn. If
process # 1 has \ , \iH while process # 2 has Xn = a, $„ = a^/X,,.!, where a
is a constant frequency, then Prt = PB since jïn+1/XB = txn+1/Xll in (E.2).

Furthermore gB == PB as follows from (E.l), but Qtt is different from
P B whenX n #Xin(E. l ) .
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ARRIVAI AND DEPARTURE PROCESSES IN QUEUES 53

Supplement : Dérivation of the Pollaczek-Khintchine Formula for Expected
Queue Sizes and Extensions

Section 1

For a new arrivai in a G/G/l system the expected waiting time for the
beginning of service is composed of :

a) the expected remaining service time of the station occupant» if the
system is not empty, and

b) the expected servicing time of the queue encountered by the newcomer.

The duration a) is (1 — Öo)^ where the factor (1 — Qo) is the probability
that the arrivai encounters a busy service station, and R is defined as the
expected remaining service time of the booth occupant at the instant of an
arrivai, conditional upon the system being non-empty. The duration b) is q/p,
of course. Therefore, the waiting time, w, for service is

1

Since, as well known (cf. réf. 1, section 2, or réf. 2)

(5.2) / = \w

we get from (S.l) and (S.2)

(5.3) / = pg + X(l-Ôo)*. t

Speeializing the system G/G/l to M/Gfl we have, as stated in theorem B

q = l (cf.B.2)
and

Qo^Po (cf.B;l).

Furthermore, with a Poisson input, the remaining service time R becomes
a characteristic of the service time distribution only. It is tlien the expected
remaining service time at a «random» instant, or in a démographie inter-
prétation, the average remaining lifetimé (or average « âge », by symmetry)
in a stationary population of occupants of service stations. Therefore, recalling
that for G/G/l 1 — Po = p, we get for M/G/l

(SA) l = pi + XpJR

and

(S.5) /

n° janvier 1974, V-l.



54 M. KRAKOWSKI

Notice that for Ml Mil iÊ = - and / = ~—5as well known. (S.5) is
P 1— P

the Pollaczek-Khinchin formula for waiting line expectation in its linear form
(linear with respect to R) (cf. réf. 1).

To obtain the usual Pollaczek-Khintchine équation we have to represent
R in terms of the variance and the expectation of thè service time duratiöns.

This was done in réf. 1, p. 75; équation (4.6) :

(5.6) R = (var X +

where X == total service time (random variable) and X"= E(X) = l/[x.

Section 2

VFrom (S.3) it follows that for G/G/l

(5.7) / > pq.

If R < 1/jjt then also

(5.8) / < pq + p(l — ôo) < ?<1 + ? for G/G/l.

If the expected remaining service time is non-increasing, or if the proba-
bility density of service termination (hazard function in life-testing; agê-
specific mortality in life insurance) is non-decreasing then certainly R < 1/fz.

From (S.7) and (S.8) it follows that for G/G/l

(5.9) //p —1 < Z / p - l + Ôo <q< //p.

Section 3

The Pollaczek-Khintchine relation can be extended to the system M/G/l
but limited to N customers, i.e. arrivai rate is X when n < N and is zero while
n = N3 when the system is full.

(S.l) is still valid but with (cf. theorem Û)

(SJO) «^T-V a n d Qo-T^T
l—PN 1 — FN

and becomes

1 — FN 1 — rN

The effective, i.e. the « successful » arrivai rate is now
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and (S.2) becomes

From (S.ll) and (S.12) we get

(S.Î3) l = - (\-P0-PN).

l — p

The conservation of customers (ref. 1) requires that

(S.14) * ( 1 - > N ) = {*(1-PO),

i.e. that the (effective) input frequency equals the (effective) output frequency.

Therefore (S.13) can be written as

Po has to be derived by other means, so that (S.IO) and (S.15) are incomplete.

Of course, the factor R is the same in the bounded as in the unbounded
queuing system since it refers to the -full-load opération. The linear forms (S.13)
and (S.15) can be transformed into quadratic forms using (S.6).

Observe that (S.13) becomes (S.5) when N tends to infinity, as expected,
since PN tends then to zero.

When N = 1 no waiting line for service is allowed and we have P0 + P1~l;
our formula (S.13) yields, of course, / = 0 in this case.

Section 4

The Pollaczek-Khintchine formula (S.5) can be extended to the case when
the customers arrive in groups, the events beirtg distributed in time in a Pois-
sonian fashion. The size of the group can itself be a random variable.

Let

(5.16) at = probability that an àrri ving group fes i members; i'^ 1.

(5.17) A = E(at) « Sfaf

(5.18) \ == frequency of group arrivais

(S. 19) X = A\ = frequency of customer arrivais.

Then the expected waiting time for service is

(S.20) vv = q ~ + (1 — QQ)R + G - //X

n° janvier 1974, V-l.



5 6 M, KRAKOWSKI

where

(5.21) G — average time à inëinber of an arriving group waits for his fellows
to be serviced once the « old >> customers have left the queuing System.

If there are k customers in a group of arrivais then the average time of
waiting for service after the « old » customers have left the system is the

. 1 , 2 k—l . , _ IA:— 1
average of - H , ï.e. GK = - —

I* I* V- f* 2
00 «

In turn, the average of the Gk is G = £ akGk ~ •=•- (A — 1).
i 2^

According to the Scholion to theórem B> q~ /and, of course, we have
6o ~ fo (probability that the booth is empty) for M/G/l, with pr without
bulking. Therefore

(5.22) w±-il + p R 0 1

and

(S.23) is the result sought for bulkëd arrivais. Note that when À = 1 we
get the usual Pollaczeck-Khintchine formula (S.5) in linear form.

The fact that the queue length / increases with growing average bulk size A
is plausible. But the fact that the loss is proportional to A — 1 is not intuitively
obvious.
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