The set covering problem : a group theoretic approach
Revue française d'informatique et de recherche opérationnelle. Série verte, Tome 5 (1971) no. V3, pp. 83-103.
@article{RO_1971__5_3_83_0,
     author = {Thiriez, Herv\'e},
     title = {The set covering problem : a group theoretic approach},
     journal = {Revue fran\c{c}aise d'informatique et de recherche op\'erationnelle. S\'erie verte},
     pages = {83--103},
     publisher = {EDP-Sciences},
     volume = {5},
     number = {V3},
     year = {1971},
     zbl = {0266.90039},
     language = {en},
     url = {http://www.numdam.org/item/RO_1971__5_3_83_0/}
}
TY  - JOUR
AU  - Thiriez, Hervé
TI  - The set covering problem : a group theoretic approach
JO  - Revue française d'informatique et de recherche opérationnelle. Série verte
PY  - 1971
SP  - 83
EP  - 103
VL  - 5
IS  - V3
PB  - EDP-Sciences
UR  - http://www.numdam.org/item/RO_1971__5_3_83_0/
LA  - en
ID  - RO_1971__5_3_83_0
ER  - 
%0 Journal Article
%A Thiriez, Hervé
%T The set covering problem : a group theoretic approach
%J Revue française d'informatique et de recherche opérationnelle. Série verte
%D 1971
%P 83-103
%V 5
%N V3
%I EDP-Sciences
%U http://www.numdam.org/item/RO_1971__5_3_83_0/
%G en
%F RO_1971__5_3_83_0
Thiriez, Hervé. The set covering problem : a group theoretic approach. Revue française d'informatique et de recherche opérationnelle. Série verte, Tome 5 (1971) no. V3, pp. 83-103. http://www.numdam.org/item/RO_1971__5_3_83_0/

[1] J. P. Arabeyre, J. Fearnley, F. Steiger and W. Teather, «The airline crew scheduling problem : a survey», Transportation Science, 3, n° 2, May 1969.

[2] P. Berthier, Phong Truan Nghiem et B. Roy, «Programmes linéaires en nombres entiers et procédures S.E.P.», METRA, vol. 4, n° 3, 1965.

[3] E. Balas, « An additive algorithm for solving linear programs with 0-1 variables »,Operations Research, 13, n° 4, 1965. | MR | Zbl

[4] R. S. Garfinkel and G. L. Nemhauser, «The set partitioning problem : set covering with equality constraints», Operations Research, 17, pp. 848-856, 1969. | Zbl

[5] A. M. Geoffrion, An Improved Implicit Enumeration Approach for Integer Programming, The Rand Corporation, RM-5644-PR, June 1968. | Zbl

[6] F. Glover. A Multiplan Dual Algorithm for the 0-1 Integer Programming Problem. Case Institute of Technology, Management Science Report n° 25, 1965.

[7] R. E. Gomory, « On the relation between integer and noninteger solutions to linear programs », Proc. Nat. Acad. Sci., 53, pp. 260-295, 1965. | MR | Zbl

[8] R. E. Gomory, « An Algorithm for Integer Solutions to Linear Programs », pp. 269-302 in Recent Advances in Mathematical Programming, Graves, R. L., and Wolfe, P., (Eds.), McGraw-Hill, 1963. | MR | Zbl

[9] W. C. Healy Jr., « Multiple choice programming », Operations Research, 12, pp. 122-138, 1964. | MR | Zbl

[10] R. W. House, L. D. Nelson and T. Rado, « Computer Studies of a Certain Class of Linear Integer Problems », Recent Advances in Optimization Techniques, Lavi, A., and Vogl, T., (Eds.), Wiley, 1966. | Zbl

[11] A. H. Land and A. G. Doig, « An automatic method of solving discrete linear programming problems », Econometrica, 28, pp. 497-520, 1960. | MR | Zbl

[12] E. L. Lawler and M. D. Bell, « A method for solving discrete optimization problems », Operations Research, 14, n° 6, 1966.

[13] G. D. Mostow, J. H. Sampson and J. P. Meyer, Fundamental Structures of Algebra, McGraw-Hill, 1963. | MR | Zbl

[14] J. F. Pierce, « Application of combinatorial programming to a class of all-zero-one integer programming problems », Management Science, 15, pp. 191-209, 1968. | MR

[15] R. Roth, « Computer solutions to minimum cover problems », Operations Research, 17, pp. 455-466, 1969. | Zbl

[16] B. Roy et R. Benayoun, « Programmes linéaires en variables bivalentes et continues sur un graphe (Programme Poligami) », METRA, vol. 6, n° 4, 1967.

[17] B. Roy, Algèbre Moderne et Théorie des Graphes, Dunod éd., 1970. | MR

[18] B. Roy, An Algorithm for a General Constrained Set Covering Problem, Computing and Graph Theory (To be published), Academic Press, New York. | MR | Zbl

[19] J. F. Shapiro, « Dynamic programming algorithms for the integer programming problem-I : the integer programming problem viewed as a knapsack type problem »,Operations Research, 16, 1968. | MR | Zbl

[20] J. F. Shapiro, « Group theoretic algorithms for the integer programming problem-II : extension to a general algorithm », Operations Research, 16, n° 5, 1968. | MR | Zbl

[21] H. M. Thiriez, Implicit Enumeration Applied to the Crew Scheduling Problem, Dept. of Aeronautics, M.I.T., 1968.

[22] H. M. Thiriez, Airline Crew Scheduling : a Group Theoretic Approach, Ph. D. Thesis, M.I.T. FTL-R69-1, 1969.