
WHEN A LOGARITHM IS A MISSPELLED
ALGORITHM

Mioara Joldes

Résumé. — The high-quality floating-point implementation of elementary functions is a
complex process. A variety of techniques ranging from numerical polynomial approxima-
tion algorithms to rigorous computation for bounding the approximation error are used.
Firstly, we present a brief overview of this process. Then we show how rigorous compu-
tation methods based on multiprecision interval arithmetic and Taylor models are used
for certified computation of tight bounds for supremum norms of approximation errors.

1. General research context

In many floating-point software systems there is a need for computing approxi-
mated values of mathematical functions such as exp, log, sin, arccos, or some com-
positions of them. These elementary functions are usually implemented in mathe-
matical libraries called libm. Such libraries are available on most systems and many
numerical programs depend on them. The word game, "A logarithm is just a miss-
pelled algorithm”, finds a proper signification in the general context of this work : the
implementation and evaluation of an elementary function (like log) on a computer.
Usually, this is reduced to a simple finite sequence of floating-point additions and
multiplications. These operations are preferred because they are highly optimized
in current hardware. A brief overview of the process of implementing elementary
functions on a computer (in a floating-point environment) and of additional tools
required for this process is presented in what follows. Starting early in the history
of computing architectures, the floating-point format is used for approximate com-
putation with real numbers. Before 1985, floating-point computations were very he-
terogeneous depending on the computer platform on which they were performed,
which led to many numerical errors. The IEEE-754 standard adopted in 1985, defines
binary floating-point formats : Ft =

{
2E ·m|E ∈ Z,m ∈ Z, 2t−1 ≤ |m| ≤ 2t − 1

}
∪ {0}

43

MIOARA JOLDES

of precision t. For example, with the required bounds on E, F24 is the single pre-
cision format. It also defines exact semantics for the basic operations (+, âĹŠ,×,÷
and √). All these operations have to produce correctly rounded results, as if the
operations were carried out in infinite precision and these intermediate results were
then rounded. This contributed to a certain level of portability and provability of
floating-point algorithms across standard-compliant platforms. However, most of
real applications use also elementary functions. But until recently, there was no such
requirement for these functions. The main impediment for this was the table maker’s
dilemma (TMD) [2], named in reference to the early builders of logarithm tables. This
problem can be stated as follows : consider an elementary function f and a floating-
point number x. Since floating-point numbers are rational numbers, in many cases,
the image y = f(x) is not a rational number, and therefore, cannot be represented
exactly as a floating-point number. The correctly rounded result will be the floating-
point number that is closest to this mathematical value. Using a finite precision en-
vironment (on a computer), only an approximation ŷ to the real number y can be
computed. If the accuracy used for computation is not enough, it is impossible to
decide the correct rounding of ŷ. A technique published by Ziv [1] is to improve the
accuracy of the approximation until the correctly rounded value can be decided. A
first practical improvement over Ziv’s approach derives from the availability of tight
bounds on the worst-case accuracy required to compute many elementary functions,
computed by Lefevre and Muller [2]. This improvement allowed for the possibility
of writing a libm where the functions are correctly rounded and this is obtained at
known and modest additional costs. This is one of the main purposes of the Arenaire
team that develops the CRlibm project [3]. In the new standard IEEE754-2008, correct
rounding for elementary functions is recommended. The participation of leading mi-
croprocessor manufacturers like Intel or AMD for this standard revision proves that
the purpose of CRlibm was achieved : the requirement of correct rounding for ele-
mentary functions is compatible with industrial requirements and can be done for
a modest additional cost compared to a classical libm. However, beside the TMD,
the development and implementation of correctly rounded elementary functions is
a complex process. A general scheme for this would include :
– Use the above mentioned methods of Muller and Lefevre [2] to obtain the neces-
sary precision t in the worst-cases.
– Argument reduction for the function f to be considered : this involves the reduc-
tion of the problem to evaluating a function g over a small interval [a, b]. For this
different ad-hoc methods are used on a case by case basis for each function.
– Find a polynomial approximation p1 for g such that the maximum relative error
between p1 and g is small enough to allow for correct rounding in the general case.
Find a polynomial approximation p2 for g such that the maximum relative error bet-
ween p2 and g is small enough (less then 2−t) to allow for correct rounding in the

44

WHEN A LOGARITHM IS A MISSPELLED ALGORITHM

worst-case. Obtaining good polynomial approximations and the certification of the
approximation errors is detailed below.
– Write the code for evaluating p1 and p2 with the required accuracy. In this step
round-off errors have to be taken into account for each multiplication and addition
such that the total error stays below the required threshold.

2. Rigorous and tight bounding of approximation errors

As mentioned above, one key step in the implementation of elementary functions
is polynomial approximation. This is preferred since polynomials can be evaluated
completely based only on multiplications and additions. But since in general, poly-
nomial operations are easier to use or implement, there are many other applications
where it is useful to have a polynomial approximation to a function. In the same time,
the approximation error between the function and the polynomial is very important
since one must know that the approximation is sufficiently good for the respective
application.

In general, since we want to minimize the number of operations needed for eva-
luation, we are interested in finding polynomial approximations for which, given
a degree n, the maximum error between the function and the polynomial is mini-
mum. The “minimax approximation” has been broadly developed in the literature
and its application to elementary function implementation is discussed in detail in
S. Chevillard’s thesis [4]. Usually this approximant is computed numerically, using
a version of Remez algorithm [4], so an a posteriori error bound is needed.

Obtaining a tight bound for the approximation error reduces to computing a tight
bound for the supremum norm of the error function over the considered interval.
This error function is given by ε(x) = p(x)/f(x) − 1 or ε(x) = p(x) − f(x) depending
on whether the relative or absolute error is considered. In other words, we are loo-
king for a sufficiently tight interval r, such that ‖ε‖∞ ∈ r. Here, ‖ε‖∞ denotes the
supremum norm, defined by ‖ε‖∞ = supx∈[a,b]{|ε(x)|}. The presented problem can
be seen as a univariate rigorous global optimization problem, but it seems to present
many issues unsuspected at a first sight [5]. In consequence, we present two rigorous
computing techniques that we used for solving this problem : interval arithmetic
and Taylor models. In what concerns reliability in computation with finite precision
numbers and validation of the results obtained, one well established technique is
interval arithmetic. In the framework of interval arithmetic, we define an interval
x as a pair x = [x, x] consisting of two numbers x and x with x ≤ x. A real num-
ber x ∈ R is contained in an interval x, i.e., x ∈ x, iff x ≤ x ≤ x. The elementary
arithmetic operations, as well as the elementary functions can be straightforwardly
extended to handle intervals. If the endpoints of an interval are not representable
on a given computer, outward rounding, possibly in multiprecision arithmetic, is
performed. The MPFI library [6] provides such a multiprecision interval arithmetic :

45

MIOARA JOLDES

when performing an operation, the user chooses the precision used for representing
the bounds of the result. The precision may be arbitrarily high.

One fundamental use of interval arithmetic is bounding the image of a function
over an interval. However, it is very well known that interval calculations generally
overestimate the image of a function and this phenomenon is in general proportional
to the width of the interval. We are therefore interested in using thin intervals for
obtaining a reasonably tight bounding of the function image.

While this method can be successfully used in general, when trying to solve our
problem, one is faced with what is known in the literature of interval based methods
under the name of "dependency phenomenon". Roughly speaking, since f and p

are highly correlated, branch and bound methods based on using intervals of smal-
ler width in order to obtain less overestimation, end up with an unreasonably high
number of small intervals. Note that the difference between f and p is also highly
cancellating, but this can be avoided using multiprecision interval arithmetic.

In order to reduce the dependency, Taylor models are used. They are a basic
tool for replacing functions with a polynomial and an interval remainder bound, on
which basic arithmetic operations or bounding methods are easier. When speaking
about Taylor models, one usually considers a couple (p, R), where : p is the Taylor
polynomial, and R is an interval bound for the Taylor remainder.

Thus, we have : ∀x ∈ I, f(x) − p(x) ∈ R. Arithmetic operations can be easily de-
fined on such couples. For example, the sum of two Taylor models is obtained by
adding the polynomials and the interval remainders respectively. For all others ope-
rations and compositions with elementary we refer to [7]. However, the available
software implementations for Taylor models are scarce. The best known is COSY [7].
Although highly optimised and used, COSY has two major drawbacks for our spe-
cific problem. First, it does not provide multiple precision arithmetic, and thus fails
to solve the cancellation problem mentioned. Second, it does not deal with the pro-
blem of functions with false singularities (that appear frequently in our case when
considering relative errors), thus failing to provide a finite bound for the remainder
for such functions.

3. Results and Conclusions

Multiprecision interval arithmetic and Taylor models are used in order to compute
rigorous and tight bounds for approximation errors. The techniques presented above
were implemented and used for example for one function needed in the code ofCRlibm.

46

WHEN A LOGARITHM IS A MISSPELLED ALGORITHM

Références

[1] A. Ziv, Fast evaluation of elementary mathematical functions with correctly rounded last bit,
ACM Transactions on Mathematical Software, 17(3) :410-423, 1991.

[2] V. Lefevre, J.-M. Muller, Worst cases for correct rounding of the elementary functions in double
precision, 15th IEEE Symposium on Computer Arithmetic, Colorado, June 2001.

[3] CRLibm, a library of correctly rounded elementary functions in double-precision,
http ://lipforge.ens-lyon.fr/www/crlibm/.

[4] S. Chevillard, Évaluation efficace de fonctions numériques. Outils et exemples, École Normale
Supérieure de Lyon, Lyon, France, 2009.

[5] S. Chevillard, M. Joldes, C. Lauter Certified and fast computation of supremum norms of
approximation errors, 19th IEEE SYMPOSIUM on Computer Arithmetic, Los Alamitos, CA,
Portland, OR,169–176, 2009

[6] MPFI, Multiple Precision Floating-Point Interval Library,
http ://gforge.inria.fr/projects/mpfi/.

[7] K. Makino and M. Berz, Taylor Models and Other Validated Functional Inclusion Methods,
International Journal of Pure and Applied Mathematics, Vol. 4, 379–456, 2003.

Mioara Joldes
Laboratoire de l’Informatique du Parallélisme, École Normale Supérieure de Lyon,
46, Allée d’Italie 69364 Lyon Cedex 07.
E-mail : mioara.joldes�ens-lyon.fr

47

