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Résumé. — In this work, we propose a new model of arterial blood pressure, combining
differential equations (windkessel terms) and partial differential equations (Korteweg-de
Vries terms). The objective of this study is to define some characteristics of the vessels
obtained from non-invasive measurements.

This is a jointed work with Michel Sorine and Taous Meriem Laleg (Inria Rocquen-
court).

1. Introduction

The cardiovascular system can be seen as consisting of the heart, a complex double
chamber pump, pumping the blood into vessels organized into vascular compart-
ments forming a closed circulation loop. This point of view is useful for building
models of the whole system as interconnection of simpler subsystem models. Such
reduced mathematical models are usually a set of coupled ordinary differential equa-
tions, each of them representing the input-output behaviour of a subsystem : conser-
vation law of the blood quantity for short time-intervals and specific behaviour laws.
They can be used for understanding the global hydraulic behaviour of the system
during a heartbeat. They can also be used to study the short-term control by the
autonomous nervous system [4, 3, 2].

The pulse pressure plays an important rule in the circulatory system. It undergoes
an increase in its amplitude and a decrease in its pulse width when it propagates
along the arterial tree. These observed phenomena are called "peaking" and "stee-
pening" and are usually explained by the existence of reflected waves. The pulse
pressure is decomposed into forward and backward waves associated to some li-
nearized models. In this article we propose to decompose the solution into some
nonlinear waves.

2. Governing equations.

In this section, we suppose that for normal space and time scales, the windkessel
model predomines but, for small time and small space scales, there appears a boun-
dary layer where the windkessel model is no more convenient. This ansatz is used in
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singular perturbation computations to develop a corrector of the motion of the fluid
in this boundary layer.
The idea of a boundary layer where a corrector of the motion of the fluid satisfies
a KdV equation is a conjecture to represent the wave phenomena rather fast when
compared to the windkessel effect. We derive formally the equations satisfied by this
corrector. We still need to prove that the solutions converge (in a sense to be defined)
to the solutions of equations (1), (2), (3) and (4).
We suppose that the arteries can be identified with an elastic tube, and blood flow is
supposed to be an incompressible fluid.
Thus, we consider a one dimensional elastic tube of mean radius R0. The Navier
Stokes equation can read as

AT +QZ = 0,(1)
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where, A(T, Z) is the cross-sectional area of the vessel, Q(T, Z) is the blood flow and
P(T, Z) is the blood pressure. Moreover ρ is the blood density and ν a coefficient of
viscosity of blood.
Furthermore, the motion of the wall satisfies, (see for example [6])

(3)
ρwh0R0

A0
ATT = (P − Pe) −

h0

R0
σ

where, R0 is the mean radius of the tube, ρw is the wall density, Pe is the pressure
outside the tube, h0 denotes the mean thickness of the wall. Moreover, σ is the ex-
tending stress in the tangential direction.

Remark : Usually the term ρwh0R0

A0
ATT is neglected because ATT is small.

This system is completed by a model of the local compliance of the vessels, a state
equation

(4) σ = E
∆A

2A0
.

where ∆A = A − A0, with A0 the cross-sectional area at rest, and E is the coefficient
of elasticity. By hypothesis, let ǫ =

(
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L

)2/5
.
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= O(ǫ5) = λǫ5.

We first adimensionalize the variables to get a quasi 1D Navier-Stokes equation,

at + qz = 0,(5)
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q
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,(6)

λǫ5att + a = p.(7)
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Then, we decompose formaly the solutions in series with slow and fast terms,
namely,

aǫ(t, z) = ǫa1(t, z,
t

ǫ
,
z− t

ǫ2
) + ...

pǫ(t, z) = ǫp1(t, z, ,
t

ǫ
,
z− t

ǫ2
) + ...

qǫ(t, z) = ǫq1(t, z, ,
t

ǫ
,
z− t

ǫ2
) + ...

In this type of method we introduce the following notations, with τ = t
ǫ

, ξ = z−t
ǫ2 .

f(t, z, τ, ξ) = f̄(t, z) + f̃(t, z, τ, ξ), with f̄(t, z) = lim
τ,ξ→+∞

f.

We suppose that all the functions f̃ are rapidly decreasing at infinity in τ, ξ and
carries the rapid variations of fǫ in the layer 0 ≤ td = O(ǫ), 0 ≤ z ′d − t ′d = O(ǫ2).
The terms f̃ correspond to the boundary layer and the terms f̄ correspond to the
outer part.

We get the following pulse pressure model. For the rapid variations, we get a
Korteweg de Vries equation in p̃1

(8) 2p̃1τ + (2q1 + p1)p̃1ξ + λp̃1ξξξ = 0.

For the slow terms,we get an equation in p̄1

(9) p̄1tt + ηp̄1t − p̄1zz = 0.

A low frequency approximation of (9) gives a 2 or 3-element windkessel system
for each position, (P̄ is the slow pressure term in initial variables),

(10)
dP̄(T)

dT
+
P̄(T)

RpC
=
P∞
RpC

+
P̃(T, Zm)

RHC

where C and P∞ are respectively the arterial compliance and the asymptotic
pressure,RH and Rp are the heart and peripheric resistances.

Therefore, we propose to estimate the measured arterial blood pressure as the
sum of a N-soliton (P̃) describing the fast phenomena and a windkessel model (P̄)
representing the slow phenomena.

P(T, Z) = P̃(T, Z) + P̄(T, Z).

The description of the obtention of the model can be found in the detailed article
[1].

3. Numerical validation of the model

The pressure P is the sum of a N-soliton (the fast component) and a 2-element
windkessel solution (the slow one). The identification is done for a 2 or 3-solitons
and a 2-element windkessel. The figure 1 illustrates the rather good results obtained
from real arterial blood pressure data measured at the finger level with a FINAPRES
sensor.
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4. Conclusion

In this article we have proposed a reduced model of the input-output behaviour
of an arterial compartment, including the short systolic phase where wave pheno-
mena are predominant. The close form formulae of these non-linear models of pro-
pagation in conjunction with windkessel models are rather easy to use to represent
wave shapes at the input and output of an arterial compartment. Some very promi-
sing preliminary comparisons of numerical results obtained along this line with real
pressure data have been shown.

FIGURE 1. Pressure at the finger : real and estimated data
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