@article{RFM_2002__6_S2_53_0, author = {Moreira Dos Santos, C\'eline}, title = {D\'ecidabilit\'e de la th\'eorie universelle de certains semigroupes commutatifs}, journal = {Femmes & math}, pages = {53--56}, publisher = {Association femmes et math\'ematiques}, year = {2002}, language = {fr}, url = {http://www.numdam.org/item/RFM_2002__6_S2_53_0/} }
Moreira Dos Santos, Céline. Décidabilité de la théorie universelle de certains semigroupes commutatifs. Femmes & math, Forum 6 des Jeunes Mathématiciennes et des Jeunes Informaticiennes (2002), pp. 53-56. http://www.numdam.org/item/RFM_2002__6_S2_53_0/
[1] P. Ara, K. R. Goodearl, K. C. O’Meara et E. Pardo , Separative cancellation for projective modules over exchange rings. Israel Journal of Mathematics 105 (1998), 105–137. | MR | Zbl
[2] G. S. Boolos et R. C. Jeffrey, Computability and Logic. Cambridge University Press éditeur (1989) | MR | Zbl
[3] C. C. Chang et H. J. Keisler, Model Theory. North Holland éditeur (1973) | MR | Zbl
[4] A. H. Clifford et G. B. Preston, The algebraic theory of semigroups, Vol I. Mathematical Surveys of the A.M.S 7 (1961) | MR | Zbl
[5] Céline Moreira, Decomposition of strongly separative monoids. à paraître dans J. Pure Appl. Algebra | Zbl
[6] Céline Moreira, A refinement monoid whose maximal antisymmetric quotient is not a refinement monoid. à paraître dans Semigroup Forum | MR | Zbl
[7] Friedrich Wehrung , Restricted injectivity, transfer property and decompositions of separative positively ordered monoids. Communications in Algebra 22-5 (1994), 1747–1781. | MR | Zbl
[8] Friedrich Wehrung , The dimension monoid of a lattice. Algebra Universalis 40-3 (1998), 247–411. | MR | Zbl