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EQUIVARIANT COHOMOLOGY 

A N D TOPOLOGICAL THEORIES 

R. S T O R A 
Laboratoire de Physique Théorique ENSLAPP* 1 

and 
Theory Division. CERN. 1211 GENEVA 23. SWITZERLAND 

Abstract 

The basic concepts and definit ions of eqnivariant cohornology are summarized. Its role in 
the construction of topological theories is exemplified in the case of the 4-d topological Yang 
Mills. Sqme other examples are briefly mentioned. 

*URA 14-3(5 du CNRS, associée à l'Ecole Normale Supérieure de Lyon et à l'Université de Savoie, 
t Groupe d'Annecy: LA PP. Chemin de Bellevue, BP 110, F-74941 Annecy-le-Vieux Cedex, France. 

Ce texte reprend une prépublication du Laboratoire de Physique Théorique E N S L A P P 

de Décembre 1995, ENSLAPP-A-571/95 . 
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1 Introduction 

In the preceding lecture devoted to a description of a few aspects of the Slavnov symmetry, 
we have insisted on its limits of applicability to the perturbative set up which we have in­
terpreted as a clash between locality and geometry. It is, to say the least, embarassing that 
the Slavnov symmetry emerges algebraically from the Faddeev Popov gauge fixing procedure, 
thus providing an algebraic substitute for the meaningless integration over the gauge group, 
and, as stressed in the preceding lecture, a conceptual introduction of this symmetry is still 
missing. 

The construction by E. Witten, in 1988, of topological field theories[6] has started a similar 
-but different- debate. 

These theories [1] are indeed the realm of equivariant cohomology [4] which we shall discuss 
here rather than "twisted N — 2 Supersymmetry" which led to their discovery. This cohomol­
ogy describes the topology of orbit spaces and, in spite of the formal similarities -which boil 
down to the use of integral representaions of S functions, both bosonic and fermionic- should 
not be confused with the cohomology associated with gauge fixing. 

2 Equivariant Cohomology 

This section is mostly based on Cart an 1950 and Kalkman 1993 [4]. 
The situation is as follows: 
Let M be a smooth manifold, ft*(M) the differential forms on M^M the differential. Let 

G be a connected Lie group acting smoothly on M. Each element A € Lie G is represented by 
a vector field A and, to it are associated two operations: on S7*(M) : ^ ( A ) , the inner product 
with A and the Lie derivative PM{^) — [LM(A), CIM]+. One has 

^ / f A ) . / v ! A ' ) j = /A / (!A.A']) (2.1) 

where [A, A'] is the commutator in Lie G 

: M / ( A ) . , , , ! A ' ) J - o 

Ku(AUu(A ' ) ] = f M ( [A,A ' ] ) 

: ' .w(A).</„] = 0 (2.2) 

The question is to define a cohomology which coincides with the de Rham cohomology of 
M/G when this is a smooth manifold, i.e. when M is a principal G bundle over M/G. Modulo 
global effects, forms on M/G can be identified with forms on M which are both horizontal 
i.e. such that 

M / ( A ) ^ = 0 VA (2.3) 

and invariant 
f.u(A)«; = 0 VA (2.4) 

Such forms are called basic. 
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The basic cohomology of M is the de Hham eohomology of M restricted to the complex 
of basic forms. When the action of G is good, this is the cohomology of M/G. Then, it 
contains the characteristic classes obtained by substituting into a symmetric G-invariant (for 
the adjoint action) polynomial on Lie G the curvature il of a G-conneetion u,\ Those classes 
are independent of u\ A related problem is to extend the theory of characteristic classes to 
associated bundles: if P(B.G) is a principal G bundle, and M as above (with the action 
considered as a left action, the associated bundle E(B,M) — P(B,G) * M (i.e; the quotient 
of P x M by the simultaneous right action on P and left action on M) is a generalization of 
P{B, G) — P(B, G) x G. Characteristic classes involve a connection u; on P and its curvature 

- H. This motivates the following definition: 
The equivariant cohomology of (M. (I-M JM{\)(\[{\)) is the basic cohomology of (f)*(A/) 

H ( G ) . (IM + d\v, • hi + Mr ? hi + 1 n-'h wliere W(G) is the Weil algebra of G, a graded com­
mutative differential algebra defined in terms of the generators UJ (deg. UJ — 1), Cl (deg ft = 2) 
with values in Lie G by: the structure equations 

d\yuj — il — - [ U ; , L J ] 

•iw{\)u = X fw{X)Q = Q 

fw(\)u> = [X.u] (W(X)Q = ~[XAT\. (2.5) 

This is the so-called Weil model for equivariant cohomology. 

Equivalent ly (Kalkman 93) equivariant cohomology is defined as the basis cohomology of 
(fi*(A/) © W(G),dM + <Uv + (u{^) - /A/(n),Gv(A),rM(A) + MA)) which we shall call the 
intermediate model. One goes from the Weil scheme to the intermediate scheme by the algebra 
automorphism 

,r„- ~> .,•„„ = e ' ^ x w (2.6) 
which transforms the differential and operation as indicated. The easiest way to do the 
computation is to establish and solve differential equations for the interpolating family 

. , : „ . - - > = p ' ' U ^ ' l . r , r 0 < t < 1 (2.7) 

The interesting feature of tlie* intermediate scheme is to replace i\j{X) + i\v{X) by zw'(A), 
and accordingly produce the generalized rovariant differential D — d\j + d\y + £M(U;) — * A / ( f i ) . 

Since basic cochains are polynomials in u.\Q, with coefficients in fl*(A/), the condition 
i\v(X)X = 0 allows to consider only polynomials in f). In view of the in variance property, the 
differential can then be reduced to dr — d\f — i^f(Q). This is the Cartan differential. It is a 
differential because on invariant cochains df- — hi{Q) = G H ^ ) + Gr(^) = 0. 

We shall see in the applications that it is useful to use both the Weil scheme and the 
iiitermediate schenle. 

The initial requirement that the cohomology thus defined coincides with the basic cohomol­
ogy of M when the action is good. i.e. \l is a principal bundle is fulfilled thanks to Cartan's 
"theorem .T" according to which. equivariant cohomology maps isomoiphically onto the basic 
cohomology of \I. through the replacement uj -> uj.i] —* Q where J; is a connection on M 
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and Q its curvature. (This is easily proved using the homotopy which insures the triviality of 

the cohomology of W{G). 

Most applications to be found in the next section are concerned with the construction [7] 

of equi variant cohomology classes associated with a closed invariant form on M, x m 5 which 

is automatically horizontal in the intermediate scheme. There are in general obstructions to 

such extensions [7]. One case of general interest has led V. Mathai and D. Quillen (1986) [4] 

to interesting integral representations of the Thorn Class [2] of a vector bundle £ ' ( 5 , V) with 

base B, fiber V a real vector space of even dimension |V r|. By the introduction of a metric || || 

on the fiber, we can assume that the structure group is reduced to SOjV7). One writes 

E(B,V) = P(B,SO\V\) x V 

SO(\V\) 1 J 

where P is the orthonormal frame bundle associated with E. 

The Poincaré dual of the zero section of E\ \ 0 , is a cohomology class of degree |K| with 

the property 

/ J £ H V > | B | — / u> A \Q (2.9) 

JV=Q JE 

for all forms UJ of degree where, in the left hand side UJ stands for the restriction of UJ to 

the submanifold V — 0. One candidate is 

x s = S{V) A dV = N0 f eibV+QdVdbdu> (2.10) 

with b G V'*,u> G Al '*, Ao a normalisation constant such that fv \s = 1. This can be written, 

in the intermediate scheme 

\ 6 = 6{V) A dV = N0 f eSt""{CjV)dh duo (2.11) 

with 

>'.-,, I' = DV = dV + lcV 

Sto,,<IV = DdV = QV + *dV 

hfopoJ EE Dùb^ — (1) ~ UJUJ 

Sfop'fb = D.^yib — VtuJ — uJlb 

i.e. Sfop ^ DVAV + (2.12) 

From the integral formula, we get 

Dvav\S = Ao f D t*"**v\lb 

= A„ J -Ihu < :i"v,<lh ,U 

= - An l(h-^)4- + ( f te - co) 4 es<°v(QV)db dw 
•I <7 w' ab 

= - Ao /' (b~ + <L: ~- - + iob^) es"*{QV)db du (2.13) 
./ \ (U' ab c)OJ db) 
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The terms from the first parenthesis yield zero by in!egraiion by parts, both in b in the 

sense of distributions, and in us for algebraic reason. The seeoud term is CQI{UJ) which can be 

replaced by f'\\,iv(u:)* which is zero because, by invariance of \>; does not depend on UJ and 

the resnlt is an invariant combination of WdV. Since invariance under iy(X) is obvious in the 

intermediate scheme. \($ defines an element of eqnivariant cohomology. 

Of course \& has a distributional character. By the same method, one can construct a 

smooth representative 

X f = Ao / db dl' e -W^ ' -*^) (2.14) 

where < , > is an invariant metric on V*. \ , is normalized in such a way that fv \ e = 1. 

The only change in the previous proofs is that the result now depends on (Ì, and, in the last 

step of the proof f^hi^) ran be replaced by f'vMr{^) + £\v(w). Similarly Stop is replaced by 

Dv4\> + DQb + Dxv 

S(0pu? — il — — = D\yuJ 

Sfc>pn = -[u; ,n] (2.15) 

Going back to the Weil scheme merely replaces dV by dV + UJV. 

Differentiating \ f with respect to t (or other parameters involved in the metric < , > 

yields 

fx, = —No J St0p (i<f*>) e ^ ~ ^ d b d* 

= -No(Su,r v + .%>p „•) / Ì < | A > e ^ ' - ^ d b du 

- A o / . % , P ' " : ^ H > E ^ v - ' ^ d b du, (2.16) 

The last term vanishes by the same argument according to which \t is closed. Thus, 

the cohomology class of \ is independent of the parameters involved in the metric. Similar 

properties hold for different choices of\ i \ H on P(-B • (/•)• Similarly, the pull back of \ e by a 

section V — V (/)). V'(/ry) = l~l\'(l>) describes the Poincaré dual of the manifold of zeroes of 

that section, and the corresponding (lass is independent of the choice of section, provided it is 

transverse to the zero section (so thai the intersection of the two sections defines a manifold). 

In the next section, and in F. Thuillier's talk, we shall meet another class of constructions 

which yield eqnivariant cohomology classes. 

In conclusion, the Mat hai' Quillen formulae are, in the equivariant set up the exact ana­

logues of the integral representations of S functions or gaussians which are the core of the 

Faddeev Popov gauge fixing procedure. 

3 Application to topological field theories 

One of the challenges of topological field theories is whether some strict field theory rules 

are able to produce "topology". The main difficulty seems to be connected with gauge fixing 
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or, put differently, with finding a good procedure to integrate basic forms over field space 
in such a way that such general principles as locality can be used. In what follows we shall 
mainly be concerned with topological Yang Mills theories. The case of 2d topological gravity 
is both easier (2 < < 4 ) and more difficult (diffeomorphism groups are more subtle than gauge 
groups). See Becclii's talk [3] and F. Thuillier's talk [ 5 ] . 

Whereas YM1^ was found by twisted N — 2 supersymmetry arguments (Witten 88), it 
soon became apparent it had to do with equivariant cohomology in spite of confusions due 
to the similarities with the Slavnov symmetry covered up by the abuse of symbols such as 
QBRST...- YM.\'P is supposed to be the characterisitc cohomology theory -intersection theory 
of A/Q resp. its restriction to the manifold 

F-*F = F~ = 0 (3.17) 

The operation Stop 1S defined as follows 

Stop a = 0 - Dau 

Stop V = - DaVt 

Stop U = D,-^[u>,Uj] 

Stoptt = - k f i ] (3.18) 

In the Weil scheme 
ir = Sa + D a u (3.19) 

In the intermediate scheme 

0 = Sa: -Dau = fA{uj)a. (3.20) 

uj is an element of the Weil algebra (to be later replaced by a connection on .4), £), its curvature. 
Since the idea is to transform integration over A/Q into integration over A, we have in 

particular to transform cohomology classes of A/Q into equivariant cohomology classes which 
become basic cohomology classes upon the replacement of CJ, Q by a connection LJ and its 
curvature { } . 

Those cohomology classes which give rise to the Donaldson polynomials are constructed 
according to a standard scheme (cf. F. Thuillier's talk [ 5 ] ) , which, in the present case, reduces 
down to the following: consider the G bundle P( / i , G) x A over B x A. and, on it, the Q 
invariant connection a. In the intermediate scheme its equivariant curvature is 

r'ntft = K + <U + (fn + <A) ( - ' ) - ( ' / - + M ) ( « ) ] « + \ \ « , « ] 

= F(a ) + r",t,r-+ 0 (3.21) 

In t lie Weil scheme, it is 
= / • • { , / ; , o (3.22) 
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where 

C"'"1 = Sa + 1)^ (3.23) 

J-FQ becomes a mixed form of degree 2 upon substituting usAi by i*. a ^-connection on *4 and 

its curvature il. Any (V invariant |x)lynomial of T,,} (^/-characteristic class) can be split into 

a sum of terms of fixed bidegrce in ii*(B). because of G basicity, and fl>LASJC(A). Integration 

over a homology class in B yields an element of ìi?iasìC{A). independently of the choice of u>, Ù. 

Consider now some such, element of decree dim. A4, where Ai — { solutions of F — *F, up to 

gauge transformations } . Restricting to Ai the corresponding class in. H*(A/Q) is represented 

by exterior multiplication by a representative of the Poincaré dual of F — *F = 0, considered 

as the zero set of a section of an appropriate Q bundle: 

\F_.F=ti= [T>ZVb(>s,'>^~F~+i<*~<b~>)\ . _ ., (3.24) 
../ UJ — UJ 

Q = Ù 

where 

F~ = F - *F (3.25) 

Sfop uJ~ = ib~ — [u\ JJ~] 

STLIPILR = [uvife-] (3.26) 

The choice of ÙJAÌ can be expressed, using the Faddeev Popov identity in the Weil algebra 

J VujVn S(u: - J;) S(Q - fi) = 1 (3.27) 

where the S functions are either fermionie or bosonic. Given a Q co vari ant Lie Q valued 

fermionic gauge function 
Il(n.V) = / / ( ( / ) - i/< (3.28) 

whose vanishing defines a connection 

^ = --_!_Ria) -Sa (3.29) 
II ( <i 11) • 

one has: 

/ Ù ( / / (a. ».• )*($to''//( a. 1• ) )) Pu'Pfì = i. (3.30) 

Indeed 

A ( // ( a. 1.• ) ) = ,let //(a) D„ fi(u,- - ^ ) 

S'"<U(a. r) = ^-t't- + II(a)D.,n 

= //t »/}/>., ill - <>> (3.31) 

with 0. the curvaime of Ò.': as one nuiy check, using the first A function: by differentiating 

Wirt )»."• = 0 (3.32) 

133 



and using the gauge covariance of //(// \ one does get 

o = 1 (3.33) 
H(a)Da da- K ' 

The Fadcleev Popov Weil identity ran hi- rewritten as 

j P^pnprnn es"*W{°W = 1 (3 .34) 

with 

Stopv = [ a f t ] + M > ] (3.35) 

The usual choice is 
H(a) = Dl (3.36) 

It excludes reducible connections. 
Given the grading and power counting arguments which follow from this construction, it 

is licit to add to the argument of the exponential in Eq.(3.34) a term of the form 

Stonr[n,ti]$ ,(3.37) 

(This is also necessary if one foresees a perturbative treatment). 
The above arguments which are rather general (compare with Atiyah Jeffrey, 1990), allow 

to recover both the observables and the action first introduced by Witten. There remains 
to look at the integration variables, which, so far, are 6", 0, fhu;, Q. Recall however the 
meaning of 0: 

0 = Sa + Dtlu (3.38) 

One may consider v as a free variable by inserting an extra S function: 

J X V S ( v - (Sa + Dau)\ = 1 (3.39) 
\(,:-(Sa + Da^)) 

One thus gets the following basic form: 

I X V " Vh~ XV DQ PQ XV Vv A V - {Sa + Dau)) 

- J X V " Vlr XV Vil V(l XV XV A O -(Sa + Dau)) 

f ^ D : a , i • 2 + s l [ ^ • ^ v ] + l 2 [ Г ^ ^ ] + [ s 2 . n ] ' [ a . a ] ^340) 

where O is one of the above mentioned observables. an equivariant form of degree dim JW. 
At this point, one is facing attain the problem of integrating a basic top form over field space. 
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Formally, up to zero modes, the integrand is a top form in v so that v can be (almost) 
forgotten in A((i: — (Sa + Df,u?)). One may then multiply through 

/ ^ Ч т « ) ) Л ^ ( " ) - 1 (3.41) 
•'У 

where jg denotes filler integration. Using 1 lie standard notation, this may be replaced by 
(Atiyah Jeffrey 90) 

/ ( » ( g ! r O ) A m ( ( / ) ^ 1 (3.42) 

and Co can be in turn replaced by u? under the integral in Eq'.(3.40). This operation is licit 
locally over Л/Q, when с/) is invertible i.e.. within the Gribov horizon. One thus gets a top 
form in UJ so that D(1UJ can be deleted from the integration form in Eq.(3.40). So, provided 
one exercises all the necessary care in using the Faddeev Popov gauge fixing procedure one 
gets 

<0> = lr

 V l r V * Ш ЪПЩЩ(Яа)о[Ф]оЪй Vb 

where {0(Ua)} is a gauge invariant partition of unity such that m a is invertible inside Ua and 
the subscripts 0 refer to the zero modes. At this point, one has recovered a local field theory 
-up to zero mode problems-, whose ultraviolet stability is however not very wrell expressed: 
recall that before gauge fixing the action is of the form Stop\. with \ basic: 

S(X)\ = / ( / / ) \ = 0 A,// e UeQ (3.44) 

In order to express this property in terms of a Ward identity, we introduce (Home 89, 
Ouvry Stora Van Baal 89): 

IF = ( ) ( \ ) + /(//) A G A Lie Q, // € S Lie Q (3.45) 

where A.// are the ghosts corresponding to the graded Lie algebra generated by S(\), ?'(/./) 
(respectively odd and even). 

Extending the operation >' r , , / i by 
^• / , / !А = // (3.46) 

and IF by 

I FA - —-[A. A] 
2 

1Г// = [A./t] (3.47) 

we have 
И' 2 = 0 [Si,'l'.\V] = i) (3.48) 
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It is desirable to write the gauge fixing action as Stopxgf, with W\gj — 0 upon a suitable 

extension of Siop and W on the corresponding Lagrange multipliers. This can be done as 

follows: 

Si0*W (¡i g(«) + = ( m g(a) + ,¡ m(a)A + ^ 

- / /g(/ / ) + —- + m + m(a)u;j + Am(fl)A + + A ^ ( 0 + (3.49) 

with 

WX = ( \V/i = m S'^/i = A 5 f o p ?ñ = it 

W( = 0 Win - 0 5" o pA = 0 Stopi = 0 ^ ' 

(f. A. A. odd ; m,//,//, even). Here ^ and m replace 6,¿¡> in terms of which the naive gauge fixing 

is expressed. Í has ghost number 0, u\ A have ghost number 1, ¡i has ghost number 2, m, A have 

ghost number -1, ¡1 has ghost number -2. This should of course go with the integration over 

the corresponding variables. More generally, one could add to the bosonic gauge fixing term 

fig(a) in Eq.(3.49), a fermionic gauge fixing term of the form \H(a, One missing link here 

is a derivation of this gauge fixing procedure via an identity involving graded fiber integration 

over the vertical tangent bundle of A. Also, one should verify that the introduction of W 

solves the ultraviolet stability problem. This also deserves further investigation. 

4 Conclusion and Outlook 

In this lecture we have attempted to justify the point of view that equivariant cohomology is 

the appropriate framework to discuss the local aspects of topological theories. It seems indeed 

to provide a construction of both the corresponding tautological actions and of a remarkable 

class of observables. It is definitely different from the cohomology associated with the gauge 

fixing of conventional gauge theories. In the latter case, the observables are functions on 

orbit space. These are not cohomology classes. One could alternatively interpret them as the 

cohomology of orbit space with maximum dimension (oc !) and prescribed decrease properties, 

which does not help very much. 

The choice of this topic, however underdeveloped has been sporadically justified during this 

conference: the observables of 2-d topological gravity (cf. C Becchi's talk) can be constructed 

by the general technique alluded to in section 3; the similarity transformations described in 

M. Kato's talk, which, pair apparently different topological conformal models are nothing else 

than the Kalkman automorphism (Eq. 2 . 8 ) suitably interpreted. 

One final conclusion which applies to this lecture, the first one, and a few others in this 

conference concerns the necessity to reconcile -if possible- geometry and locality by resolving 

the (bihov horizon problem, either by patching as done in C. BeechTs talk or by direct use 

of a connection with, non vanishing curvature. 
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