Recherche Coopérative sur Programme ${ }^{0} 25$

R. Stora

Equivariant Cohomology and Topological Theories

Les rencontres physiciens-mathématiciens de Strasbourg - RCP25, 1997, tome 48
«Conférences de M. Bauer, A. Beauville, O. Babelon, A. Bilal, R. Stora », , exp. nº 6, p. 127-138
http://www.numdam.org/item?id=RCP25_1997__48__127_0

L'accès aux archives de la série «Recherche Coopérative sur Programme no 25 » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

EQUIVARIANT COHOMOLOGY

AND TOPOLOGICAL THEORIES

R. STORA
Laborutoire de Physique Théorique ENSLAPP* ${ }^{\text {t }}$
and
Theory Division. CERN. I.11 GENEVA 23, SWTTZERLAND

Abstract

The basic concepts and definitions of equivariant cohomology are summarized. Its role in the construction of topological theories is exemplified in the case of the 4-d topological Yang Mills. Some other examples are briefly mentioned.

[^0]Ce texte reprend une prépublication du Laboratoire de Physique Théorique ENSLAPP de Décembre 1995, ENSLAPP-A-571/95.

1 Introduction

In the preceding lecture devoted to a description of a few aspects of the Slavnov symmetry, we have insisted on its limits of applicability to the perturbative set up which we have interpreted as a clash between locality and geometry. It is, to say the least, embarassing that the Slavnov symmetry emerges algebraically from the Faddeev Popov gauge fixing procedure, thus providing an algebraic substitute for the meaningless integration over the gauge group, and, as stressed in the preceding lecture, a conceptual introduction of this symmetry is still missing.

The construction by E. Witten, in 1988, of topological field theories[6] has started a similar -but different- debate.

These theories [1] are indeed the realm of equivariant cohomology [4] which we shall discuss here rather than "twisted $N=2$ Supersymmetry" which led to their discovery. This cohomology describes the topology of orbit spaces and, in spite of the formal similarities -which boil down to the use of integral representaions of δ functions, both bosonic and fermionic- should not be confused with the cohomology associated with gauge fixing.

2 Equivariant Cohomology

This section is mostly based on Cartan 1950 and Kalkman 1993 [4].
The situation is as follows:
Let M be a smooth manifold, $\Omega^{*}(M)$ the differential forms on M, d_{M} the differential. Let G be a comnected Lie group acting smoothly on M. Each element $\lambda \in \operatorname{Lie} G$ is represented by a vector field $\underline{\lambda}$ and, to it are associated two operations: on $\Omega^{*}(M): i_{M}(\lambda)$, the inner product with $\underline{\lambda}$ and the Lie derivative $\ell_{M}(\lambda)=\left[i_{M}(\lambda), d_{M}\right]_{+}$. One has

$$
\begin{equation*}
\left[\ell_{M}(\lambda), i_{M}\left(\lambda^{\prime}\right)\right]=i_{M}\left(\left[\lambda, \lambda^{\prime}\right]\right) \tag{2.1}
\end{equation*}
$$

where $\left[\lambda, \lambda^{\prime}\right]$ is the commutator in Lie G

$$
\begin{align*}
{\left[i_{M}(\lambda) \cdot i_{M}\left(\lambda^{\prime}\right)\right] } & =0 \\
{\left[\ell_{M}(\lambda) \cdot \epsilon_{M}\left(\lambda^{\prime}\right)\right] } & =\epsilon_{M}\left(\left[\lambda, \lambda^{\prime}\right]\right) \\
{\left[\epsilon_{M}(\lambda) \cdot d_{M}\right] } & =0 \tag{2.2}
\end{align*}
$$

The question is to define a cohomology which coincides with the de Rham cohomology of M / G when this is a smooth manifold. i.e. when M is a principal G bundle over M / G. Modulo global effects, forms on $M /(\dot{r}$ can be identified with forms on M which are both horizontal i.e. such that

$$
\begin{equation*}
i_{M}(\lambda)_{w}=0 \quad \forall \lambda \tag{2.3}
\end{equation*}
$$

and invariant

$$
\begin{equation*}
f_{M}(\lambda)_{w}=0 \quad \forall \lambda \tag{2.4}
\end{equation*}
$$

Such forms are called basic.

The basic cohomology of M is the de Rham cohomology of M restricted to the complex of basic foms. When the adion of $(;$ is good. this is the colomology of M / G. Then, it contains the characteristic classes oftained by substituting into a symmetric G-invariant (for the adjoint action) polynomial on Lie (ithe curvature Ω of a G-connection ω. Those classes are independent of ω. A related problem is to extend the theory of characteristic classes to associated bundles: if $P(B, G)$ is a priucipal G bundle, and M as above (with the action considered as a left action, the associated bundle $E(B, M)=P(B, G) \times M$ (i.e; the quotient of $P \times M$ by the simultaneons right action on P and left action on M) is a generalization of $P\left(B, G_{r}\right)=P(B,(i) \times($. (haracteristic classes involve a comection ω on P and its curvature Ω. This motivates the following delinition:

The equivariant cohomology of $\left(M_{M} d_{M}, i_{M}(\lambda) f_{M}(\lambda)\right)$ is the basic cohomology of $\left(\Omega^{*}(M)\right.$ $W(G), d_{M}+d_{W}, i_{M}+i_{W},\left(_{M}+i_{W}\right)$, where $W(G)$ is the Weil algebra of G, a graded commutative differential algebra defined in terms of the generators ω (deg. $\omega=1$), $\Omega(\operatorname{deg} \Omega=2)$ with values in Lie G by: the structure equations

$$
\begin{align*}
d_{W} \omega & =\Omega-\frac{1}{2}[\omega, \omega] \\
d_{W} \Omega & =-[\omega, \Omega] \\
i_{W}(\lambda) \omega & =\lambda \quad \ell_{W}(\lambda) \Omega=0 \\
f_{W}(\lambda) \omega & =[\lambda, \omega] \quad \ell_{W}(\lambda) \Omega=-[\lambda, \Omega] . \tag{2.5}
\end{align*}
$$

This is the so-called Weil model for equivariant cohomology.
Equivalently (Kalkman 93) equivariant cohomology is defined as the basis cohomology of $\left(\Omega^{*}(M) \bigcirc W(G), d_{M}+d_{W}+\ell_{M}(\omega)-i_{M}(\Omega), \ell_{W}(\lambda), \ell_{M}(\lambda)+\ell_{W}(\lambda)\right)$ which we shall call the intermediate model. One goes from the Weil scheme to the intermediate scheme by the algebra automorphism

$$
\begin{equation*}
x_{W} \rightarrow x_{I n t}=e^{i_{M}(\omega)} x_{W} \tag{2.6}
\end{equation*}
$$

which transforms the differential and operation as indicated. The easiest way to do the computation is to establish and solve differential equations for the interpolating family

$$
\begin{equation*}
x_{W} \rightarrow x_{1}=\ell^{t i_{M}(\omega)} x_{W} \quad 0 \leq t \leq 1 \tag{2.7}
\end{equation*}
$$

The interesting feature of the intormediate scheme is to replace $i_{M}(\lambda)+i_{W}(\lambda)$ by $i_{W}(\lambda)$, and accordingly produce the generalized covariant differential $D=d_{M}+d_{W}+\ell_{M}(\omega)-i_{M}(\Omega)$.

Since basic corhains are polymomials in $\omega \cdot \Omega$. with coefficients in $\Omega^{*}(M)$, the condition $i_{W}(\lambda) X=0$ allows to consider only polynomials in Ω. In view of the invariance property, the differential can then be reduced to $d_{C}=d_{M}-i_{M}(\Omega)$. This is the Cartan differential. It is a differential because on invarian cochams $d_{C}^{2}=C_{M}(\Omega) \equiv \rho_{M}(\Omega)+\ell_{W}(\Omega)=0$.

We shall see in the applications that it is useful to use both the Weil scheme and the intermediate scheme.

The initial requirement that the chomology the defined concides with the basic cohomotogy of M when the action is gool. i.e. $I /$ is a principal bandle is fulfilled thanks to Cartan's "theorem 3" according to which, equivarian cohomology maps isomorphically onto the basic cohomology of M. throngh the mplacement $\omega \rightarrow \dot{\alpha}, \Omega \rightarrow \Omega$ where $\dot{\alpha}$ is a comection on \bar{M}
and $\tilde{\Omega}$ its curvature. (This is easily proved using the homotopy which insures the triviality of the cohomology of $W(G)$.

Most applications to be found in the next section are concerned with the construction [7] of equivariant cohomology classes associated with a closed invariant form on M, χ_{M}, which is antomatically horizontal in the intermediate scheme. There are in general obstructions to such extensions [7]. One case of general interest has led V. Mathai and D. Quillen (1986) [4] to interesting integral representations of the Thom Class [2] of a vector bundle $E(B, V)$ with base B, fiber V a real vector space of even dimension $|V|$. By the introduction of a metric \|| \| on the fiber, we can assume that the structure group is reduced to $S O|V|$. One writes

$$
\begin{equation*}
E(B, V)=P(B, S O|V|) \quad \stackrel{\times}{S O(|V|)} \tag{2.8}
\end{equation*}
$$

where P is the orthonormal frame bundle associated with E.
The Poincare dual of the zero section of E, χ_{0}, is a cohomology class of degree $|V|$ with the property

$$
\begin{equation*}
\int_{V=0} \omega^{|E|-|V|=|B|}=\int_{E} \omega \wedge \chi_{0} \tag{2.9}
\end{equation*}
$$

for all forms ω of degree $|B|$, where, in the left hand side ω stands for the restriction of ω to the submanifold $V=0$. One candidate is

$$
\begin{equation*}
K_{\delta}=\delta(V) \wedge d V=N_{0} \int e^{i b V+\bar{\omega} d V} d b d \bar{\omega} \tag{2.10}
\end{equation*}
$$

with $b \in V^{*}, \bar{\omega} \in \wedge V^{*}, N_{0}$ a normalisation constant such that $\int_{V} \chi_{\delta}=1$. This can be written, in the intermediate scheme

$$
\begin{equation*}
\backslash_{\delta} \equiv \delta(V) \wedge d \Gamma=N_{0} \int e^{S_{t o p}(\bar{\omega} V)} d b d \bar{\omega} \tag{2.11}
\end{equation*}
$$

with

$$
\begin{align*}
& S_{\text {top }} V= D V=d V+\omega V \\
& S_{\text {top }} d V= D d V=\Omega V+\omega d V \\
& S_{\text {top }} \vec{\omega} \equiv D_{\bar{a} b}=i b-\omega \bar{\omega} \\
& S_{\text {top }} i b \equiv D_{\bar{a} b}, \vec{b}=\Omega \bar{\omega}-\omega i b \\
& S_{\text {top }}=D_{V} \cdot d V+D_{\bar{\omega} b} \tag{2.12}\\
& \text { i.e. }
\end{align*}
$$

From the integral formula. we get

$$
\begin{align*}
& =\lambda_{11} \int-D_{\omega_{1}}, 4 \\
& =-l_{n} \int(b-\omega \dot{\omega}) \frac{\partial}{\partial \omega^{\prime}}+(\Omega \bar{\omega}-\omega b) \frac{\partial}{\partial b} e^{S_{\text {top }}(\bar{\omega} V)} d b d \bar{\omega} \\
& =-x_{0} \int\left(b \frac{\partial}{\partial \omega}+\Omega \bar{\omega} \frac{\partial}{\partial b}-\omega \bar{\omega} \frac{\partial}{\partial \bar{\omega}}+\omega b \frac{\partial}{\partial b}\right) e^{S_{\text {top }}(\bar{\omega} V)} d b d \bar{\omega} \tag{2.13}
\end{align*}
$$

The tems from the first parenthesis fied rero by integration by parts, both in b in the sense of distributions, and in w for algehnair reason. The second term is $f_{\text {wh }}(w)$ which can be replaced by $f_{\text {rat }}(\omega)$, which is zero becanse. hy inariance of ωV. is does not depend on ω and the result is an invariant combination of I. d. Since invariance under $i_{v}(\lambda)$ is obvious in the intermediate scheme. Is defines an clement of equivariant cohomology.

Of course is has a distributional chatacter. By the same method, one can construct a smooth representative

$$
\begin{equation*}
I_{t}=\lambda_{0} \int d b d \bar{u} e^{\left.S_{t o p}(i)-t-\frac{i\langle\omega}{z}\right)} \tag{2.14}
\end{equation*}
$$

where $<,>$ is an invariant metric on V. . is nomalized in such a way that $\int_{V} \chi_{c}=1$. The only change in the previons proofs is that the result now depends on Ω, and, in the last step of the proof $f_{w h}(\omega)$ call be replaced by $f_{V, d}(\omega)+f_{W}(\omega)$. Similarly $S_{t o p}$ is replaced by $D_{V, d V^{\prime}}+D_{\bar{W} b}+D_{W}$

$$
\begin{align*}
& S_{t o, \omega}=\Omega-\frac{1}{2}[\omega, \omega]=D_{W \omega} \omega \\
& S_{\operatorname{top}} \Omega=-[\omega, \Omega] \tag{2.15}
\end{align*}
$$

Going back to the Weil scheme merely replaces $d V$ by $d V+\omega V$.
Differentiating
, with respect to (or other parameters involved in the metric $<,>$ yields

$$
\begin{align*}
& \frac{\partial}{\partial \epsilon} \backslash=-N_{0} \int S_{\text {top }}\left(\frac{i\langle\omega b\rangle}{2}\right) e^{S_{\text {topi }}\left(\tilde{\omega} V-\frac{i<\omega, b\rangle}{2}\right)} d b d \bar{\omega} \\
& =-N_{0}\left(S_{\operatorname{ton},} V+S_{\tan } W^{\prime}\right) \int \frac{i\langle\bar{\omega} b>}{2} \epsilon^{S_{\operatorname{top}}\left(\bar{\omega} V-\epsilon \frac{i \leq \bar{\omega}, b\rangle}{2}\right)} d b d \bar{\omega} \\
& -N_{0} \int S_{t a p} \frac{i\langle\bar{u}, b\rangle}{2} e^{S_{t, p p}\left(\bar{\omega} V^{\prime}-\epsilon \frac{i\langle\bar{u}, b\rangle}{2}\right)} d b d \bar{\omega} \tag{2.16}
\end{align*}
$$

The last term vanishes by the same argment according to which χ_{c} is closed. Thus, the cohomology class of \backslash is independent of the parameters involved in the metric. Similar properties hold for different choics of $\dot{\alpha} \cdot \hat{Q}$ on $P\left(\cdot B \cdot(\dot{r} \cdot)\right.$. Similarly, the pull back of λ_{ϵ} by a section $V=V(p), V(p)=,^{-1} I(p)$ describes the Poincare dual of the manifold of zeroes of that section. and the comesponding class is independent of the choice of section, provided it is transverse to the zero section (so that the intersection of the two sections defines a manifold).

In the next section, and in F . Thuilliers talk. we shall meet another class of constructions which yield equivariant cohomology classes.

In conclusion. the Mathai Quillen formulae are, in the equivariant set up the exact analogues of the integral representations of δ functions or ganssians which are the core of the Faddeev Popor gauge lixing procedure.

3 Application to topological field theories

One of the challenges of topological fidel theories is whether some strict fiet theory rules are able to produce "topology". The main difficulty seems to be connected with gauge fixing
or, put differently, with finding a good procedure to integrate basic forms over field space in such a way that such general principles as locality can be used. In what follows we shall mainly be concerned with topological Yang Mills theories. The case of 2 d topological gravity is both easier $(2 \ll 4)$ and more difficult (diffeomorphism groups are more subtle than gauge groups). See Becchi's talk [3] and F. Thuillier's talk [5].

Whereas $Y M_{4}^{\text {top }}$ was found by twisted $N=2$ supersymmetry arguments (Witten 88), it soon became apparent it had to do with equivariant cohomology in spite of confusions due to the similarities with the Slavnov symmetry covered up by the abuse of symbols such as $Q_{B R S T . . .} Y M_{4}^{\text {tor }}$ is supposed to be the characterisitc cohomology theory -intersection theory of $\mathcal{A} / \mathcal{G}$ resp. its restriction to the manifold

$$
\begin{equation*}
F-* F=F^{-}=0 \tag{3.17}
\end{equation*}
$$

The operation $S_{\text {top }}$ is defined as follows

$$
\begin{align*}
S_{\text {top }} a & =\psi-D_{a} \omega \\
S_{\text {top }} \psi & =[\omega, \psi]-D_{a} \Omega \\
S_{\text {top }} \omega & =\Omega-\frac{1}{2}[\omega, \omega] \\
S_{\text {top }} \Omega & =-[\omega, \Omega] \tag{3.18}
\end{align*}
$$

In the Weil scheme

$$
\begin{equation*}
\psi=\delta a+D_{a} \omega \tag{3.19}
\end{equation*}
$$

In the intermediate scheme

$$
\begin{equation*}
\psi=\delta a ; \quad-D_{a} \omega=\ell_{\mathcal{A}}(\omega) a \tag{3.20}
\end{equation*}
$$

w is an element of the Weil algebra (to be later replaced by a connection on \mathcal{A}), Ω, its curvature.
Since the idea is to transform integration over $\mathcal{A} / \mathcal{G}$ into integration over \mathcal{A}, we have in particular to transform cohomology classes of $\mathcal{A} / \mathcal{G}$ into equivariant cohomology classes which become basic cohomology classes upon the replacement of ω, Ω by a connection $\tilde{\omega}$ and its curvature $\grave{\Omega}$.

Those cohomology classes which give rise to the Donaldson polynomials are constructed according to a standard scheme (cf. F. Thuillier's talk [5]), which, in the present case, reduces down to the following: consider the G bundle $P(B, G) \times \mathcal{A}$ over $B \times \mathcal{A}$, and, on it, the \mathcal{G} invariant comnection a. In the intermediate scheme its equivariant curvature is

$$
\begin{align*}
& =r(a)+i n+! \\
& =F(\|)+!^{i n+n}+\Omega \tag{3.21}
\end{align*}
$$

In the Weil scheme, it is

$$
\begin{equation*}
\mathcal{F}_{(q u,}^{\left.\| V^{\prime \prime}\right)}=F^{\prime}(1)+u^{W \varepsilon i l}+\Omega \tag{3.22}
\end{equation*}
$$

where

$$
\begin{equation*}
u^{n \prime i}=\delta a+D_{n} w \tag{3.23}
\end{equation*}
$$

$\mathcal{F}_{\text {eq }}$ becomes a mixed form of degree 2 upon substituting ω, Ω by $\dot{\mathcal{}}$, a \mathcal{G}-connection on \mathcal{A} and its curvature $\grave{\Omega}$. Any (i invariant polynomial of $\mathcal{F}_{\text {rif }}(G$-characteristic class) can be split into a sum of terms of fixed bidegree in $\Omega^{*}(B)$. because of G basicity, and $\Omega_{\text {basic }}^{*}(\mathcal{A})$. Integration over a homology class in B yields an element of $J_{b_{n s i}^{*}}^{*}(\mathcal{A})$, indejendently of the choice of $\tilde{\omega}, \tilde{\Omega}$. Consider now some such element of legree dim. \mathcal{M}, where $\mathcal{M}=\{$ solutions of $F=* F$, up to gange transformations $\}$. Restricting to. \mathcal{M} the corresponding class in $H^{*}(\mathcal{A} / \mathcal{G})$ is represented by exterior multiplication by a mpesentative of the Poincare dual of $F-* F=0$, considered as the zero set of a section of an appropriate \mathcal{G} bundle:

$$
\begin{align*}
& \backslash_{F^{-}} F=\| \tag{3.24}\\
&=\int \mathcal{D} \bar{\nu} \mathcal{D} b_{r} S_{t o p}\left(\omega^{-} F^{-}+i\left\langle\omega^{-}, b^{-}\right\rangle\right) \\
& \omega=\tilde{\omega} \\
& \Omega=\tilde{\Omega}
\end{align*}
$$

where

$$
\begin{gather*}
F^{-}=F-* F \tag{3.25}\\
S_{t o p} \bar{u}^{-}=i b^{-}-\left[\omega, \bar{\omega}^{-}\right] \\
S_{t o p} i b^{-}=\left[\Omega, \bar{\omega}^{-}\right]-\left[\omega, i b^{-}\right] \tag{3.26}
\end{gather*}
$$

The choice of $\dot{\omega} \cdot \tilde{\Omega}$ can be expressed, using the Faddeev Popov identity in the Weil algebra

$$
\begin{equation*}
\int \mathcal{D} \omega \mathcal{D} \Omega \delta(\omega-\tilde{\omega}) \delta(\Omega-\tilde{\Omega})=1 \tag{3.27}
\end{equation*}
$$

where the δ functions are either fermionic or bosonic. Given a \mathcal{G} covariant Lie \mathcal{G} valued fermionic gauge function

$$
\begin{equation*}
H(a, a)=H(a) \cdot \vartheta \tag{3.28}
\end{equation*}
$$

whose vanishing defines a comection

$$
\begin{equation*}
\dot{\alpha}=-\frac{1}{H(a) D_{1}} H(a) \cdot \delta a \tag{3.29}
\end{equation*}
$$

one has:

$$
\begin{equation*}
\int \delta\left(I I(a \cdot \cdot) \delta\left(S^{+u p} H(a, u)\right)\right) \mathcal{D} \cdot D \Omega=1 \tag{3.30}
\end{equation*}
$$

Indeed

$$
\begin{align*}
& \delta(I I(\omega \cdot \omega))=\operatorname{det} I I(\omega) D_{, 2} \delta(\omega-\dot{\omega}) \\
& S^{\prime \prime} H(a \cdot u)=\frac{\delta H}{\delta_{\underline{I}}}, \underline{v}+H(a) D_{7} \Omega \\
& =H(a) D_{n}(\Omega-\text { Q }) \tag{3.31}
\end{align*}
$$

with Ω. the curvature of $\dot{\sim}$: as me may heck, using the lirst δ function: by differentiating

$$
\begin{equation*}
H(a) c=0 \tag{3.32}
\end{equation*}
$$

and using the gauge covariance of $H(a)$. one does get

$$
\begin{equation*}
\tilde{Q}=\frac{1}{H(a) D_{a}} \frac{\delta H}{\delta \underline{a}} \tilde{\psi} \tilde{\psi} \tag{3.33}
\end{equation*}
$$

The Faddeev Popov Weil identity can be rewritten as

$$
\begin{equation*}
\int \mathcal{D} \omega \mathcal{D} \Omega \mathcal{D} \overline{\mathcal{D}} \bar{\Omega} e^{S^{t o p}(\bar{\Omega} H(a) \psi)}=1 \tag{3.34}
\end{equation*}
$$

with

$$
\begin{align*}
S^{\operatorname{tap}} \bar{\Omega} & =\bar{\psi}+[\omega, \bar{\Omega}] \\
s^{\operatorname{top}} \bar{u} & =[\Omega, \bar{\Omega}]+[\omega, \bar{\psi}] \tag{3.35}
\end{align*}
$$

The usual choice is

$$
\begin{equation*}
H(a)=D_{a}^{*} \tag{3.36}
\end{equation*}
$$

It excludes reducible commections.
Given the grading and power counting arguments which follow from this construction, it is licit to add to the argument of the exponential in Eq.(3.34) a term of the form

$$
\begin{equation*}
\operatorname{s}^{t o p} \operatorname{tr}[\Omega, \bar{\Omega}] \bar{\psi} \tag{3.37}
\end{equation*}
$$

(This is also necessary if one foresees a perturbative treatment).
The above arguments which are rather general (compare with Atiyah Jeffrey, 1990), allow to recover both the observables and the action first introduced by Witten. There remains to look at the integration variables, which, so far, are $\bar{\omega}^{-}, b^{-}, \bar{\psi}, \bar{\Omega}, \omega, \Omega$. Recall however the meaning of ψ :

$$
\begin{equation*}
\psi=\delta a+D_{a} \omega \tag{3.38}
\end{equation*}
$$

One may consider t as a free variable by inserting an extra δ function:

$$
\begin{equation*}
\int \mathcal{D} \ell \underbrace{\delta\left(1-\left(\delta a+D_{a} \omega\right)\right)}_{M\left(1 \cdot-\left(\delta a+D_{a} \omega\right)\right)}=1 \tag{3.39}
\end{equation*}
$$

One thus gets the following basic form:

$$
\begin{aligned}
& \int \mathcal{D} \bar{\omega}^{-} \mathcal{D} b^{-} \mathcal{D} u \mathcal{D} \Omega \mathcal{D} \bar{\Omega} \mathcal{D} \overline{\mathcal{V}} \mathcal{D} \hat{\operatorname{l}}\left(\varphi-\left(\delta a+D_{a} \omega\right)\right)
\end{aligned}
$$

$$
\begin{align*}
& =\int \mathcal{D} \dot{H}^{-} \mathcal{D} b^{-} \mathcal{D} \omega \mathcal{D} \Omega \mathcal{D} \Omega \mathcal{D} \psi \mathcal{D} \cup \backslash\left(\psi-\left(\delta a+D_{a} \omega\right)\right) \\
& \text { O) } t^{i b-F^{-}-\left(b^{-}\right)^{2}+w^{-}\left(D_{a}\right)^{-}+w^{-}\left[D x^{-}\right]+D_{a}^{*}} \tag{3.40}
\end{align*}
$$

where \mathcal{O} is one of the alowe mentioned observables, an equivariant form of degree $\operatorname{dim} \mathcal{M}$. At this point. one is facing again the prohem of integrating a basic top form over field space.

Formally, up to zero modes, the integrand is a top form in e so that 4 can be (almost) forgoten in $\lambda\left(\varphi-\left(\delta a+D_{n} \omega\right)\right)$. Onc may then multiply throngla

$$
\begin{equation*}
\int_{\mathcal{G}} d(g(n)) \cdot \operatorname{lig}(n)=1 \tag{3.41}
\end{equation*}
$$

where $f_{\mathcal{G}}$ denotes fiber integration. Ising the standard notation, this may be replaced by (Atiyah Jeffrey 90)

$$
\begin{equation*}
\int_{\mathcal{G}} \delta(g(a)) \cdot \ln (a) \dot{\omega}=1 \tag{3.42}
\end{equation*}
$$

and \tilde{e} can be in turn replaced by w moder the integral in Eq. (3.40). This operation is licit locally over $\mathcal{A} / \mathcal{G}$, when $m(a)$ is invertible i.e.. within the Gribov horizon. One thus gets a top form in ω so that $D_{a} w$ can be deleted from the integration form in Eq.(3.40). So, provided one exercises all the necessary care in using the Faddeev Popov gauge fixing procedure one gets

$$
\begin{aligned}
& \langle\mathcal{O}\rangle=\sum_{i n} \int_{u_{n}} \mathcal{D} \bar{\omega}^{-} \mathcal{D} b^{-} \mathcal{D} \omega \mathcal{D} \Omega \mathcal{D} \Omega \mathcal{D} \bar{\psi} \mathcal{D} \psi(\mathcal{D} a)_{0}[\psi]_{0} \mathcal{D} \bar{\omega} \mathcal{D} b
\end{aligned}
$$

$$
\begin{align*}
& \epsilon^{i n g_{a}(a)+\omega m_{n w}} \tag{3.43}
\end{align*}
$$

where $\left\{\theta\left(U_{\alpha}\right)\right\}$ is a gange invariant partition of unity such that m_{α} is invertible inside U_{α} and the subscripts 0 refer to the zero modes. At this point, one has recovered a local field theory -up to zero mode problems-. whose ultraviolet stability is however not very well expressed: recall that before gange fixing the action is of the form $S^{\text {top }} \gamma$, with χ basic:

$$
\begin{equation*}
\delta(\lambda)=i(\mu) \=0 \quad \lambda, \mu \in \operatorname{LieG} \tag{3.44}
\end{equation*}
$$

In order to express this property in terms of a Ward identity, we introduce (Horne 89 , Ouvry Stora Van Baal 59):

$$
\begin{equation*}
W=\delta(\lambda)+i(\prime) \quad \underline{\lambda} \in \Lambda \text { Lie } \mathcal{G}, \quad \underline{\mu} \in S \text { Lie } \mathcal{G} \tag{3.45}
\end{equation*}
$$

where $\lambda . \mu$ are the ghosts comesponting to the graded Lie algebra generated by $\delta(\lambda), i(\mu)$ (respectively odd and even).

Extending the operation sto b

$$
\begin{equation*}
f^{+\infty p} \lambda=\mu \tag{3.46}
\end{equation*}
$$

and W by

$$
\begin{align*}
& H^{\prime}=-\frac{1}{2}[\lambda \cdot \lambda] \\
& H_{\mu}=[\lambda \cdot \mu] \tag{3.47}
\end{align*}
$$

we have

$$
\begin{equation*}
11^{2}=0 \quad\left[S^{t o p} \cdot 11\right]=0 \tag{3.48}
\end{equation*}
$$

It is desirable to write the gange fixing action as $S^{t o p} \chi_{g f}$, with $W \chi_{g f}=0$ upon a suitable extension of $S^{t o p}$ and W on the corresponding Lagrange multipliers. This can be done as follows:

$$
\begin{gather*}
S^{t o p} W\left(\bar{\mu} \mathrm{~g}(a)+\frac{i \mu \ell}{2}\right)=S^{\text {top }}\left(\bar{m} \mathrm{~g}(a)+\bar{\mu} \mathrm{m}(a) \lambda+\frac{i \bar{m} \ell}{2}\right) \\
=i\left(\mathrm{~g}(a)+\frac{-f^{2}}{2}+\bar{m}\left(\frac{\delta \mathrm{~g}(a)}{\delta a} t+\mathrm{m}(a) \omega\right)+\bar{\lambda} \mathrm{m}(a) \lambda+\bar{\mu} \mathrm{m}(a) \mu+\bar{\mu} \frac{\delta \mathrm{m}}{\delta a}(\psi+D \omega) \lambda\right. \tag{3.49}
\end{gather*}
$$

witil

$$
\begin{array}{llll}
W \bar{\lambda}=1 & W \mu=\bar{m} & S^{\operatorname{top}} \bar{\mu}=\bar{\lambda} & S^{\text {top }} \bar{m}=i \ell \\
W \ell=0 & W \bar{m}=0 & S^{\operatorname{top}} \bar{\lambda}=0 & S^{\operatorname{top}} \ell=0 \tag{3.50}
\end{array}
$$

($\ell, \bar{\lambda}, \lambda$, odd $; \bar{m}, \mu \bar{\mu}$ even). Here $\bar{\ell}$ and \bar{m} replace $b, \bar{\omega}$ in terms of which the naïve gauge fixing is expressed. ℓ has ghost number $0, \omega$, λ have ghost number $1, \mu$ has ghost number $2, \bar{m}, \bar{\lambda}$ have ghost number $-1, \bar{\mu}$ has ghost number -2 . This should of course go with the integration over the corresponding variables. More generally, one could add to the bosonic gauge fixing term $\tilde{\mu} g(a)$ in Eq.(3.49), a fermionic gauge fixing term of the form $\bar{\lambda} H(a, \psi)$. One missing link here is a derivation of this gauge fixing procedure via an identity involving graded fiber integration over the vertical tangent bundle of \mathcal{A}. Also, one should verify that the introduction of W solves the ultraviolet stability problem. This also deserves further investigation.

4 Conclusion and Outlook

In this lecture we have attempted to justify the point of view that equivariant cohomology is the appropriate framework to discuss the local aspects of topological theories. It seems indeed to provide a construction of both the corresponding tautological actions and of a remarkable class of observables. It is definitely different from the cohomology associated with the gauge fixing of conventional gange theories. In the latter case, the observables are functions on orbit space. These are not cohomology classes. One could alternatively interpret them as the cohomology of orbit space with maximum dimeusion (∞ !) and prescribed decrease properties, which toes not help very much.

The choice of this topic, however underdeveloped has been sporadically justified during this conference: the observables of 2-d topological gravity (cf. C. Becchi's talk) can be constructed by the general technicue alluded to in section 3; the similarity transformations described in M. Kato's talk. which pair apparently different topological conformal models are nothing else than the Kalkman automorphism (Eq. 2.8) sutably interpreted.

One final conclusion which applies to this lecture, the first one, and a few others in this conference concerns the necessity to reconcile -if possible- geometry and locality by resolving the (iribor horizon problem, cither by patching as done in (\because Becchi's talk or by direct use of a comection with non vanishing curvature.

5 Acknowledgments

I wish to thank the organizers of this smposium for the opportunity they gave us to confront our impressions about onr gains and losses of mederstanding of gauge theories. I also wish to thank (. Becchi and (. Imbimbo for many discussions about their recent work, M. Bauer, G. Girardi, F. Thuillier, J. Zimm-Justin for many exchanges of ideas concerning both the prehistorical period and later developments. We owe a special debt to Alain Rouet who, after exerting his energy in discovemg the BRS symmery decided that real life does not require ghosts, and to (lande Itzykson a contident of all thoss, mitil his premature death.

References

[1] Baulieu L., Singer I.M.. I9R8. V.P. B15 (Proc. Supl.). 12:
Baulieu L., Singer I.M., 1991. (..M.I'. 135, 25.3;
Horne J.H., 1989, N.P. B318. 22:
Braam P., April 1988, (ERN seminar;
Ouvry S.. Stora R.. van Baal P.. 1989, Phys. Lett. B220, 159;
Kanno H., 1989, Z. Phys. Particlis and Fields 43, 477 ;
Atiyah M.F., Jeffrey L., 1990, J.G.P. 7, 119;
Blau M.. Lectures at the Karpacz Winter School on Infinite Dimensional Geometry in Physics, 17-27 February 1992, NHiHEF-H/92-07;
Stora R., Thuillier F.. Wallet J.C.. Lectures at the lst Caribbean Spring School of Mathematics and Theoretical Physics, Saint-François, Guadeloupe, May 30-June 13 1993, ENSLAPP-A-481/94, IPNO-TH-94/29:
Witten E., 1991, Int. Journ. of Mod. Phys. A6, 2115;
Cordes S., Moore (i., Rangoolam S., Les Houches Lectures 1994, HEP-TH9411210, YCTP-P11-94.
[2] Bott R., Tu L.W., Differential forms in Algebraic Topology, Graduate texts in Mathematics, Springer Verlag.
[3] Becchi (C . Collina R., Lmbimbo ('.. (ERN-TH-7302/94, GEF TH 6-1994, to appear in Symmetry and Simplicity in Theoretical Physics. Symposium for the 65 th birthday of Sergio Fubini. Torino (1994). World Scientific, Singapore (1994):
Imbimbo (.. Nucl. Phys. B41 (Proc. Suppl.), 302. 1995.
Becchi (... Imbimbo (\circ. ('ERNTH-95-24), (GEF TH 95-8.
[4] Cartan H.. Colloque de Topologie (Expaces Fibrés). Brussels (1950), CBRM 15-56;

- Atiyah M.F.. Bot! R., 198 i. Topology 23. I:

Mathai V.. Quillen D.. 19s6. Topolog! 25, 8.5;
Kalkman J.. 1993. Com. Vinth. Phys. 153. 47;

- Berline N.. Getzler E. Vergue M.. "Ileat Kernels and Dirac Operators", Grundlehren des Mathematischen Wissenschaf 29 s. Spinger Verlag Berlin Heidelberg (1992);
Greub W., Hadperin S.. Vanstone R.. "(ommetions curvature and cohomology", vol. III, Acad. Press. New Lork (1973).
[5] Stora R., Thuillier F., Wallet W.. Lectures at the 1st Caribbean Spring School of Mathematics and Theoretical Physics. Saiut-Frauçois, Guadeloupe, May 30-June 15, 1995. Baner M.. Thuillier F., in preparation.
[6] Witten E., 1988. (.M.P. 117. 353.
[7] Wu S., 1993, JGP 10 n4. 381.

[^0]: *URA 14-36 du CNRS, associée à I Eoole Normale Supérieure de Lyon et à l'Université de Savoie.
 ${ }^{\dagger}$ Groupe d'Amecy: LAPP. Chemin de Bellevne, BP 110 , F-T4941 Annecy-le-Vieux Cedex, France.

